Skip to main content
Erschienen in: Diagnostic Pathology 1/2020

Open Access 01.12.2020 | Research

Analysis of lung biopsies using the 2015 WHO criteria and detection of sensitizing mutations——a single-institution experience of 5032 cases

verfasst von: Yupeng Zeng, Yunxiang Zhu, Ying Ding, Liuyang Xu, Boya Zhai, Xiang Zhang, Qiaoyun Ge, Jiao Li, Qiyuan Song, Xiao Li, Zhihong Zhang

Erschienen in: Diagnostic Pathology | Ausgabe 1/2020

Abstract

Background

A specialized classification for small biopsies was added to the 2015 WHO classification of lung tumors. The purpose of this study is to explore and summarize the experience of applying the newly proposed classifications and criteria to clinical practice.

Methods

We used the 2015 WHO criteria to sort out 5032 small lung biopsies from a group of Chinese patients, and demonstrated their clinicopathological features, mutational status and the relationship between these factors.

Results

The most common diagnosis was primary lung carcinoma (3130, 62.2%), among which adenocarcinoma (1421, 28.2%) was the most frequent histological type. The mutational assays using ARMS-PCR technology demonstrated that EGFR was positive in 56.1% cases(499/889, from adenocarcinoma and NSCC, favor adenocarcinoma), ALK in 5.7% cases(12/211, from NSCC, which comprised all the primary lung carcinomas except small cell carcinomas), and ROS1 in 0.9% cases(2/211, from NSCC). Another 898 NSCC specimens went through an immunohistochemical (IHC) examination for ALK (D5F3) and 38 of them were positive (4.2%). The overall mutation rate of ALK was 4.5% (50/1119). There was no significant difference between ARMS-PCR and immunohistochemistry in the positive rate of ALK mutation detection (P = 0.359). EGFR mutations (P = 0.02) and ALK mutations (P < 0.001) both decreased with an increasing patient age. Furthermore, the amount of EGFR mutations was higher in adenocarcinoma (64.1% vs 34.1%, P < 0.001) than in NSCC, favor adenocarcinoma. In contrast, ALK mutations were more common in NSCC, favor adenocarcinoma (4.2% vs 8.4%, P = 0.021).

Conclusions

This single-center study exhibited a large subset of small lung biopsies from a Chinese institution and demonstrated that applying the 2015 WHO classification for small lung biopsies can help predict the mutational status of primary lung carcinomas.
Hinweise
Yupeng Zeng and Yunxiang Zhu contributed equally to this work.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13000-020-00975-3.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ALK
Anaplastic lymphoma kinase
ARMS-PCR
Amplification refractory mutation system-polymerase chain reaction
EGFR
Epidermal growth factor receptor
IHC
Immunohistochemistry
MCAC
Metastatic colorectal adenocarcinoma
NSCC
Non-small cell carcinoma
NSCC, NOS
Non-small cell carcinoma, not otherwise specified
NSCLC
Non-small cell lung cancer
PEAC
Pulmonary enteric adenocarcinoma
WHO
World Health Organization

Background

According to the newly released report of cancer epidemiology in China, lung cancer is the most common malignant tumor and the leading cause of cancer death [1], which is a conclusion that can be drawn from cases worldwide [2, 3]. Unfortunately, two-thirds of the patients with lung cancer are already in the advanced stage when they are first diagnosed and thus do not qualify for surgery [4]. Their treatment options are mainly dictated by histological diagnosis based on small biopsy specimens. Furthermore, with the introduction of lung cancer screening program and advances in radiologic imaging techniques and availability, the early detection rates and the overall number of lung cancer cases identified have increased. The rapid advancement of precision lung cancer medicine has necessitated the requirement to provide complete diagnostic evaluations of small biopsy specimens. Accordingly, the 2015 WHO classification of lung tumors established the first chapter addressing the handling of small lung biopsies, and proposed corresponding criteria and terminology for the diagnosis of small biopsy specimens [5]. In this context, 5032 small lung biopsies were received by the First Affiliated Hospital of Nanjing Medical University during 2015–2018.
The purpose of this study is to explore and summarize the experience of applying the newly proposed classifications and criteria to clinical practice by clarifying the distribution of age, gender, pathologic categories and mutational status of this subset of small lung biopsies and demonstrating the relationship between these factors.

Methods

Patients

All the cases of small lung biopsies (bronchoscopic, needle, or core biopsies) diagnosed in the First Affiliated Hospital of Nanjing Medical University during 2015 to 2018, the total number of which was 5032, were reviewed. Simple demographic data was collected, and the diagnostics of hematoxylin and eosin, special staining and immunohistochemical (IHC) labeled sections were reviewed on all cases. Molecular pathologic testing results were reviewed on the subset of cases where these assays were performed clinically. All cases were sorted out on the basis of the diagnostic criteria and terms for small biopsies from the 2015 WHO classification of lung tumors.

Staining

All cases were handled as routine specimens in the pathology laboratory at the First Affiliated Hospital of Nanjing Medical University. Tissues were fixed in 4% neutral buffered formalin and processed through paraffin. Two to 4 mm sections were stained with hematoxylin and eosin in addition to special stains (Acid-fast stains, PAS stains or Masson stains) and IHC labeling when clinically indicated. Table 1 lists the antibodies used for IHC. All antibodies, except ALK (Ventana ALK, D5F3, rabbit monoclonal anti-human ALK, Roche), were from Maixin Biotechnologies, Fuzhou, Fujian, China, and were used in the delivered concentrations with no need for dilution (ready-to-use). Antibody visualization was performed with the Envision Plus detection system (Ventana, Roche). Appropriate positive and negative controls were used with each antibody and each case.
Table 1
Details of used immunohistochemical antibodies
Antibody
Clone
Dilution
Source
TTF1
SPT24
Maixin, Fujian, China
Napsin-A
MX015
Maixin, Fujian, China
P40
ZR8
Maixin, Fujian, China
P63
MX013
Maixin, Fujian, China
CK5/6
MX040
Maixin, Fujian, China
CD56
MX039
Maixin, Fujian, China
CgA
LK2H10 + PHE5
Maixin, Fujian, China
Syn
SP11
Maixin, Fujian, China
Ki67
MX006
Maixin, Fujian, China
ALK
D5F3
Roche

Mutational analysis

Experienced pathologists selected a block with typical morphologic features from each case to ensure sample adequacy (> 200 tumor cells). DNA was extracted from 3 to 6 sections and Amplification Refractory Mutation System PCR (ARMS-PCR) was used to establish the mutational status of EGFR, ALK, ROS1 (AmoyDx, Xiamen, Fujian, China).

Results

Patient demographics

Among the 5032 small biopsies, 3280 were from men (65%) and 1752 (35%) from women. The patients age ranged from 11 to 93 years (median 63 years). The numbers of small lung biopsies each year during 2015–2018 were respectively 1068, 1299, 1511 and 1154.

Diagnostic categories

The most common diagnosis was primary lung carcinoma (3130, 62.2%), followed by inflammatory lesion (1326, 26.4%), metastatic tumor (165, 3.3%), primary nonepithelial malignant tumor (36, 0.7%), and benign or borderline tumor (25, 0.5%) (Fig. 1). Three hundred and fifty (6.9%) case had insufficient tissue or a subset of histopathologic features which were insufficient for a specific diagnosis to be rendered. A detailed classification is found in supplementary Table S1.
The majority of the 3130 primary lung carcinomas were able to be classified as squamous cell carcinoma, adenocarcinoma or small cell carcinoma (2106, 67.3%). The remaining 1024 (32.7%) lacked the characteristic morphological features of squamous cell carcinoma, adenocarcinoma or neuroendocrine tumor.
As recommended by the 2015 WHO classification schema, the following antibodies were used for IHC studies as appropriate: TTF-1, Napsin A, p40, p63, CK5/6, CD56, CgA, Syn and Ki-67 [5]. Those cases (34, 0.7%) that did not label with any antibodies or had atypical expression were classified as non-small cell carcinoma, not otherwise specified (NSCC, NOS). The remainder was further classified on the basis of their morphology and IHC labeling patterns. The diagnostic categories for all the primary lung carcinomas were summarized in Table 2.
Table 2
Summary of the histopathological types in 3130 cases of primary lung carcinomas
Histopathological types
Total
Rate
Adenocarcinoma
1421
45.4%
Squamous cell carcinoma
368
11.8%
Small cell carcinoma
317
10.1%
NSCC, favor adenocarcinoma
501
16.0%
NSCC, favor squamous cell carcinoma
360
11.5%
NSCC, favor typical carcinoid
6
0.2%
NSCC, favor atypical carcinoid
4
0.1%
NSCC with spindle cell and/or giant cell carcinoma
27
0.9%
NSCC, favor mixed neuroendocrine carcinoma
13
0.4%
NSCC, favor large cell neuroendocrine carcinoma
16
0.5%
NSCC, favor adenosquamous carcinoma
54
1.7%
NSCC, favor salivary gland-type tumors
9
0.3%
NSCC, NOS
34
1.1%
Total
3130
1
Primary non-epithelial malignant tumors occurred in 36 patients (0.7%). Twenty-seven patients were diagnosed with lymphoma, most commonly mucosa-associated lymphoid tissue lymphoma (MALToma). In addition, there were 4 cases of epithelioid hemangioendothelioma, 2 cases of fibrosarcoma, 2 cases of malignant melanoma, and 1 case of myogenic sarcoma (Fig. 2).
Metastatic tumors represented 165 of the cases (3.3%), 147 being of epithelial origin and 18 nonepithelial. The most common metastasis to the lung was from breast cancer (55 cases, 33.3%), followed by 34 cases (20.6%) of colorectal cancer and 12 cases (7.3%) of renal cell carcinoma (Fig. 3).
Among our 5032 biopsies there were 16 benign tumors. Two cases were papillomas, considered benign of epithelial tumors. The remaining 14 benign tumors were of mesenchymal origin, including 8 hamartomas, 2 leiomyoma and 1 case each of lipoma, fibrolipoma, schwannoma, and inflammatory myofibroblastic tumor. There were also 9 solitary fibrous tumors, usually treated as a fun borderline tumor (Fig. 4).
A specific diagnosis was not achieved in 350 biopsies (6.9%), mainly due to insufficient tissue. Two samples (0.04%) were determined to be too small for processing. The microscopic appearance of 140 tissue samples demonstrated non-specific morphology such as normal lung tissue, striated muscle, dermal tissue, exudate, necrotic tissue, and red blood cell. Only descriptive diagnosis was made in these cases (2.8%). The remainder was considered as suspicious malignancy (208, 4.1%) and 3 scenarios were found where such a diagnosis should be rendered: 1) Patients with atypical cells but the atypia was inconspicuous, 2) few atypical cells were present in the tissue sample, and 3) patients with precancerous lesions, including those samples of coming from the periphery of the lesion.

Analysis of patients undergoing surgery after biopsy

Among the 5032 cases, 444 patients underwent surgery after biopsy. A consistent diagnosis was reported for 368 cases between the surgical specimen and the biopsy specimen. The details of the remaining 76 cases, whose surgical diagnosis differed from their corresponding biopsy diagnosis, are shown in Tables 3 and 4.
Table 3
Comparison between the diagnoses of biopsy and surgery
Biopsy diagnoses
Surgical diagnoses
Amount
Rate
Benign lesion
Cancer
20
4.5%
Suspicious malignancy
Inflammatory lesion
3
0.7%
Suspicious malignancy
Cancer
32
7.2%
NSCC, NOS
Cancer of specific type
4
0.9%
Different in histopathological subtype
17
3.8%
Consistent in histopathological diagnostics
368
82.9%
Total
444
100.0%
Table 4
The 17 Cases different in subtype between surgical diagnosis and biopsy diagnosis
No.
Surgery
Biopsy
C4403
Adenosquamous carcinoma
Adenocarcinoma
C3094
Adenosquamous carcinoma
Adenocarcinoma
C2309
Adenosquamous carcinoma
Adenocarcinoma
C848
Adenosquamous carcinoma
Adenocarcinoma
C987
Adenosquamous carcinoma
Squamous cell carcinoma
C1420
Adenocarcinoma
Squamous cell carcinoma
C4319
Adenocarcinoma
Squamous cell carcinoma
C5019
Adenocarcinoma
Adenosquamous carcinoma
C14
Large cell carcinoma
Adenocarcinoma
C213
Large cell carcinoma
Squamous cell carcinoma
C1309
Squamous cell carcinoma + Sarcomatoid carcinoma
Squamous cell carcinoma
C823
Squamous cell carcinoma + Sarcomatoid carcinoma
Mixed neuroendocrine carcinoma
C2348
Squamous cell carcinoma
Spindle cell malignancy
C1048
Small cell carcinoma
Adenocarcinoma
C2947
Mucoepidermoid carcinoma
Squamous cell carcinoma
C2109
Lymphoepithelioma-like carcinoma
Squamous cell carcinoma
C1895
Lipoma
Hamartoma

Molecular detection

Amplification Refractory Mutation System PCR (ARMS-PCR) was used to identify EGFR gene mutations in 889 cases of adenocarcinoma (Table 5). Four hundred and ninety-nine cases (56.1%) were found to be mutant, 238 (26.8%) with p.L858R, 222 cases (25.0%) with exon 19 deletions, 15 (1.7%) with p.L861Q, 14 (1.6%) with exon 20 insertions, 13 (1.5%) with exon 18 mutation, 13 (1.5%) with p.T790M, and 2 (0.2%) with p.S786I. There were 18 cases of co-mutation of EGFR (Table 6), including 8 cases of p.L858R with p.T790M, 4 cases of exon 19 deletions with p.T790M, 1 case of exon 18 mutation with p.T790M, 2 cases of p.S768I with exon 18 mutations, and 3 cases of p.L861Q with exon 18 mutations,. In this study, p.T790M and p.S768I did not occur alone.
Table 5
Distribution of EGFR mutations
Mutational type
Total
Proportion
EGFR L858R
238
26.8%
EGFR 19-del
222
25.0%
EGFR L861Q
15
1.7%
EGFR 20-ins
14
1.6%
EGFR Exon 18 mutant
13
1.5%
EGFR T790M
13
1.5%
EGFR S768I
2
0.2%
EGFR mutant
499
56.1%
EGFR-
390
43.9%
Totala
889
100.0%
aThe number of EGFR mutant was less than that of EGFR mutations due to co-mutation
Table 6
The co-mutational status of EGFR
Mutation 1
Mutation 2
Amount
T790M
L858R
8
T790M
19-del
4
T790M
Exon 18
1
S768I
Exon 18
2
L861Q
Exon 18
3
We also assayed for ALK and ROS1 mutations in 211 patients with non-small cell lung cancer through ARMS-PCR. Mutations here were identified in 12 and 2 cases respectively, corresponding to mutation rates of 5.7 and 0.9%. In addition, immunohistochemical ALK (D5F3) testing was performed in another 898 patients with non-small cell lung cancer. The number of positive cases and the rate of positive case were 38 and 4.2% respectively. The overall mutation rate of ALK was 4.5% (50/1119). There was no significant difference between ARMS-PCR and immunohistochemistry in the detection of an ALK mutation (P = 0.359).

Analysis of the relationship between mutational status and clinicopathologic features

EGFR mutations were more common in females (39.7% vs 67.5%, P < 0.001) while no gender difference was noted in ALK mutations (3.7% vs 5.7%, P = 0.133). EGFR mutations (P = 0.02) and ALK (P < 0.001) mutations both decreased with an increasing patient age. Furthermore, the amount of EGFR mutations was higher in adenocarcinoma (64.1% vs 34.1%, P < 0.001) than in NSCC, favor adenocarcinoma. In contrast, ALK mutations were more common in NSCC, favor adenocarcinoma (4.2% vs 8.4%, P = 0.021) (Table 7).
Table 7
Analysis of the relationship between mutational status and clinicopathologic features
Characteristics
EGFR
Rate(%)
P value
ALK
Rate(%)
P value
MT
WT
MT
WT
Gender
 Male
221
335
39.7
< 0.0001
22
570
3.7
0.133
 Female
283
136
67.5
23
378
5.7
Age
 < 50
77
50
60.6
0.020
15
96
13.5
< 0.0001
 50–69
306
278
52.4
27
564
4.6
 ≥70
121
143
45.8
3
288
1.0
Histological category
 Adenocarcinoma
418
234
64.1
< 0.0001
28
644
4.2
0.021
 NSCC, favor adenocarcinoma
81
156
34.1
15
163
8.4

Discussion

Lung cancer is a malignancy with the highest incidence and mortality not only in China, but also in the United States, Europe and every other place around the world [1, 3]. For the reason that most patients of lung cancer have lost surgery opportunity at the time of diagnosis, small biopsy has become the best choice for these patients to determine the tumor histological type and molecular genetic characteristics, and to guide their follow-up treatment. CT-guided percutaneous needle biopsy was for the first time introduced to the clinicians in 1960s, and now it has gradually developed into a mature minimally invasive diagnostic technique [6]. In the meantime, with the development of endoscopic techniques, bronchoscopy has long been an important means for the diagnosis of lung cancer and one of the main methods for early detection of lung cancer [7]. In addition, in recent years, the application of diverse pathological techniques, especially immunohistochemical staining, has become increasingly mature and extensive, and the specificity and sensitivity of antibodies have been constantly improved. On the basis of this background, the postoperative diagnosis has been partially replaced by preoperative diagnosis, providing guidance for more accurate treatment. In this context, small lung biopsy is playing an increasingly important role in the diagnosis of lung cancer. This study demonstrated the distribution of a subset of 5032 small lung biopsies and revealed the clinicopathological and genetic characteristics of lung cancer from a large Chinese institution, in order to provide better assistance for clinical treatment.
We applied the criteria and terminology from the 2015 WHO classification for small lung biopsies in our study. In the previous clinical practice, a diagnosis of NSCLC was enough for the clinicians to make treatment decisions, and the diagnosis of small biopsies mostly referred to the diagnostic criteria and terminology of surgical specimens. However, the deepening of lung cancer research and the rapid development of targeted therapy have heightened the requirement for more detailed histological classification. Moreover, the diagnosis of small biopsies referring to the diagnostic criteria of surgical specimens is always not accurate and precise enough due to the heterogeneity of tumor tissues and the randomness of biopsy technique. As a result, the 2015 WHO classification of lung tumors for the first time provided a specialized classification for small biopsies (bronchoscopic, needle, or core biopsies).
The latest WHO classification emphasized the importance of saving specimens in the diagnostic process of small lung biopsies. In addition to making H&E sections and immunohistochemical sections, we should set aside adequate specimens for molecular pathologic detection to guide targeted therapy. For patients with clearly defined adenocarcinoma differentiation, patients with poor morphological differentiation and immunophenotypic tendency toward adenocarcinoma, patients with large cell carcinoma as well as patients with NSCC, NOS, the testing of EGFR, ALK, ROS1 and other tumor driver genes should be performed to help find probable therapeutic targets. The specialized terms for small biopsies are roughly in correspondence with those of surgical specimens, while the former feels more conciliatory. Those cases which are obviously inconsistent with small cell carcinoma in morphology and do not have the typical morphological features of adenocarcinoma or squamous cell carcinoma should be firstly classified as non-small cell carcinoma (NSCC). Then, a diagnostic tendency should be defined on basis of morphological features and immunophenotypic characteristics, such as “favor adenocarcinoma”, “favor squamous cell carcinoma”, “with spindle cell and/or giant cell carcinoma”, and so forth. Some cases lack typical morphological features of squamous cell carcinoma, adenocarcinoma or neuroendocrine tumor while their immunophenotype is atypical or even completely naked. This part of cases should be divided into non-small cell carcinoma, not otherwise specified (NSCC, NOS). If these cases still do not have typical morphology and specific immunostaining after radical resection and adequate sampling, they will be diagnosed as large-cell carcinoma. Pathologists should pay attention that, due to the limited amount of tissue, it could be very hard to determine the origin of a malignancy merely with small biopsy specimens. Therefore, the substitution of non-small cell carcinoma (NSCC) for non-small cell lung cancer (NSCLC) can make the diagnosis more accurate and cautious. The diagnostic terms of small lung biopsies provided by the latest version of the WHO classification are more moderate and cautious, and simultaneously correspond one-to-one to those from the diagnostic classification of surgical specimens. In this way, pathologists can render diagnoses based on both small biopsies and surgical specimens more flexibly. In the meantime, clinicians and patients can have a better understanding of the randomness and limitations of small biopsies.
The lung is the only organ that receives blood and lymph circulation from the whole body. The dense capillary network in the lung is the first barrier for tumor cells to enter the venous system from the lymphatics [8]. Therefore, metastatic tumors are more common in lung than in other organs, and tumors originating from almost any part of the body can metastasize to the lung. In this study, there were 165 cases of metastatic tumors, the most common metastasis to lung was from breast carcinoma (55 cases, 33.3%), followed by 34 cases (20.6%) of colorectal carcinoma and 12 cases (7.3%) of renal cell carcinoma. According to the data from International Registry Lung Metastases and another similar study of Indian population, the top three lung metastatic tumors were colorectal carcinoma (33–37%), breast carcinoma (17–19%), and renal cell carcinoma (12–17%) [912]. Actually, the global incidence of colorectal cancer is lower than that of breast cancer [3]. Therefore, it can be speculated that colorectal cancer is more likely to metastasize to the lung than breast cancer, and breast cancer is more likely to metastasize to the lung in the Chinese population than in others.
It is difficult to determine the origin of tumor only by small lung biopsies. Usually, pathologists can provide clinicians with some clues based on H&E morphology and immunostaining. Distinguishing pulmonary enteric adenocarcinoma (PEAC) from metastatic colorectal adenocarcinoma (MCAC) is of particular concern. Both of PEAC and MCAC can be present with a morphology of colorectal carcinoma, and CK20, CDX2 and MUC2 can be immunohistochemically positive in both of them. Usually, MCAC does not have other morphological subtypes except enteric morphology, and CK7, TTF-1 and Napsin A are generally negative in MCAC [13]. In rare cases, the MCAC can express TTF-1, where it may not be completely distinguished from PEAC [14]. Therefore, for the patients with a history of colorectal cancer and a lung lesion of microscopical enteric morphology, a diagnosis of MCAC is a priority. Currently, only after MCAC is clinically excluded by colonoscopy can a pathologist render a diagnosis of primary PEAC. Recent studies have shown that PEAC demonstrates similar mutational characteristics to non-small cell lung cancer, rather than to primary or metastatic colorectal adenocarcinoma [14].
The proportion of adenocarcinoma, squamous cell carcinoma and small cell carcinoma was slightly higher than that of Asian population from SEER database, which were 61.4% vs 58.1, 23.3% vs 15.5, 10.1% vs 7.8% respectively. We can find that adenocarcinoma account for the majority of primary lung cancer in our study, which has been a growing trend in recent decades.
In this study, 444 patients underwent surgery after small biopsy, among which 368 patients received a consistent diagnosis. These cases made up a concordance rate of 82.9%, without treatment option changes. Among the 17 cases that received different histopathological diagnostics based on the surgery after small biopsy, the most common situation was that adenosquamous carcinoma was misdiagnosed as adenocarcinoma (4 cases) or squamous cell carcinoma (1 case) in the previous diagnosis. These cases fully demonstrated the heterogeneity of lung cancer and the randomness and limitations of small biopsy. Therefore, as pathologists, we should be aware that we can never be too scrupulous when dealing with small lung biopsies.
The frequency of EGFR mutation in this study was 56.1%, which was close to that of the Chinese population, 50.2%, reported by PIONEER study [15]. According to previous studies and this one, we can find that the frequency of EGFR mutation in China and other countries/regions in East Asia (approximately 30–64%) [1517] is significantly higher than that in India (22.2%) and among white people (approximately 20%) [18]. We found that the amount of EGFR mutations was significantly higher in female adenocarcinoma patients than in male, which was also supported by the data from PIONEER study. It was demonstrated in our study that frequency of EGFR mutation in well-differentiated adenocarcinoma was significantly higher than that in poorly-differentiated adenocarcinoma, while PIONEER study showed that the mutational rate of EGFR was significantly higher in invasive adenocarcinoma than in bronchioloalveolar carcinoma, which is currently called pulmonary adenocarcinoma in situ. Therefore, it can be speculated that the amount of EGFR mutation is higher in invasive adenocarcinoma with distinct morphological differentiation, which needs to be confirmed through further research.
The previously reported prevalence of ALK mutation was 3–7% [1922]. In this study, ALK mutation was found positive in 5.7% cases through ARMS-PCR and in 4.2% cases through IHC(D5F3), which was slightly lower than the mutational rate of 6.1% detected by Wang through IHC(D5F3) [23]. The overall frequency of ALK mutation was 4.5% in this study, which was almost consistent with previous reports. The frequency of ROS1 mutation was 0.9% in this study, which was slightly lower than that in previous reports (1.2–2.2%) [2429], probably because of the small amount of our ROS1-tested cohort.

Conclusions

This single-institution study demonstrated the distribution of a large number of small lung biopsies and revealed the clinicopathological and genetic characteristics of lung cancer from a large Chinese institution. On the basis of that, we found EGFR mutations were more common in females, younger age groups, and well-differentiated adenocarcinoma. Simultaneously, ALK mutation tended to be more common in older age groups, poorly-differentiated adenocarcinoma, and had no gender difference. The criteria and terminology provided by the 2015 WHO classification for small lung biopsies can help predict the mutational status of primary lung carcinomas, and they should be applied to pathologists’ daily work.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13000-020-00975-3.

Acknowledgements

We thank Jeffrey A. Golden, MD and David H. Hwang, MD for their inspiration and suggestions on article arrangement and language improvement.
This study was approved by the First Affiliated Hospital of Nanjing Medical University Ethics Committee.
Not applicable.

Competing interests

There are no conflicts of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
4.
Zurück zum Zitat Travis WD, Brambilla E, Noguchi M, et al. The new IASLC/ATS/ERS international multidisciplinary lung adenocarcinoma classification. J Thorac Oncol. 2011;6:244–85.CrossRefPubMedPubMedCentral Travis WD, Brambilla E, Noguchi M, et al. The new IASLC/ATS/ERS international multidisciplinary lung adenocarcinoma classification. J Thorac Oncol. 2011;6:244–85.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Dail D. Metastases to and from the lung. In: Tomashefski JFCP, Farver CF, Fraire AE, editors. Dail and Hammar's pulmonary pathology. 3rd ed. New York: Springer; 2008. p. 735–66.CrossRef Dail D. Metastases to and from the lung. In: Tomashefski JFCP, Farver CF, Fraire AE, editors. Dail and Hammar's pulmonary pathology. 3rd ed. New York: Springer; 2008. p. 735–66.CrossRef
11.
Zurück zum Zitat Castro CY, Chhieng DC. Cytology and surgical pathology of neoplasms of the lung. In: Chhieng DC, Siegal GP, editors. Updates in diagnostic pathology. New York: Springer; 2005. p. 70–90.CrossRef Castro CY, Chhieng DC. Cytology and surgical pathology of neoplasms of the lung. In: Chhieng DC, Siegal GP, editors. Updates in diagnostic pathology. New York: Springer; 2005. p. 70–90.CrossRef
12.
Zurück zum Zitat Yesner R, Carter D. Pathology of carcinoma of the lung. Changing patterns. Clin Chest Med. 1982;3:257–89.PubMed Yesner R, Carter D. Pathology of carcinoma of the lung. Changing patterns. Clin Chest Med. 1982;3:257–89.PubMed
16.
Zurück zum Zitat Kawaguchi T, et al. Japanese ethnicity compared with Caucasian ethnicity and never-smoking status are independent favorable prognostic factors for overall survival in non-small cell lung cancer: a collaborative epidemiologic study of the National Hospital Organization Study Group for Lung Cancer (NHSGLC) in Japan and a Southern California Regional Cancer Registry databases. J Thorac Oncol. 2010;5:1001–10. https://doi.org/10.1097/JTO.0b013e3181e2f607.CrossRefPubMed Kawaguchi T, et al. Japanese ethnicity compared with Caucasian ethnicity and never-smoking status are independent favorable prognostic factors for overall survival in non-small cell lung cancer: a collaborative epidemiologic study of the National Hospital Organization Study Group for Lung Cancer (NHSGLC) in Japan and a Southern California Regional Cancer Registry databases. J Thorac Oncol. 2010;5:1001–10. https://​doi.​org/​10.​1097/​JTO.​0b013e3181e2f607​.CrossRefPubMed
Metadaten
Titel
Analysis of lung biopsies using the 2015 WHO criteria and detection of sensitizing mutations——a single-institution experience of 5032 cases
verfasst von
Yupeng Zeng
Yunxiang Zhu
Ying Ding
Liuyang Xu
Boya Zhai
Xiang Zhang
Qiaoyun Ge
Jiao Li
Qiyuan Song
Xiao Li
Zhihong Zhang
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Diagnostic Pathology / Ausgabe 1/2020
Elektronische ISSN: 1746-1596
DOI
https://doi.org/10.1186/s13000-020-00975-3

Weitere Artikel der Ausgabe 1/2020

Diagnostic Pathology 1/2020 Zur Ausgabe

Neu im Fachgebiet Pathologie