Skip to main content
Erschienen in: Cardiovascular Toxicology 6/2018

29.05.2018

Analysis of Safety Margin of Lithium Carbonate Against Cardiovascular Adverse Events Assessed in the Halothane-Anesthetized Dogs

verfasst von: Ai Goto, Yuji Nakamura, Nur Jaharat Lubna, Koki Chiba, Mihoko Hagiwara-Nagasawa, Hiroko Izumi-Nakaseko, Kentaro Ando, Atsuhiko T. Naito, Atsushi Sugiyama

Erschienen in: Cardiovascular Toxicology | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

Lithium is one of the classical drugs that have been widely used for treating bipolar disorder. However, several cardiac side effects including sick sinus syndrome, bundle branch block, ventricular tachycardia/fibrillation, non-specific T-wave abnormalities in addition to Brugada-type electrocardiographic changes have been noticed in patients who were given antidepressant, anticonvulsant, and/or antipsychotic drugs besides lithium. In this study, we assessed cardiohemodynamic and electrophysiological effects of lithium carbonate by itself to begin to analyze onset mechanisms of its cardiovascular side effects. Lithium carbonate in intravenous doses of 0.1, 1, and 10 mg/kg over 10 min was cumulatively administered with an interval of 20 min to the halothane-anesthetized beagle dogs (n = 4), which provided peak plasma Li+ concentrations of 0.02, 0.18, and 1.79 mEq/L, respectively, reflecting sub-therapeutic to toxic concentrations. The low and middle doses prolonged the ventricular effective refractory period at 30 min and for 5–30 min, respectively. The high dose decreased the heart rate for 45–60 min, delayed the intraventricular conduction for 15–20 min and the ventricular repolarization at 45 min, and prolonged the effective refractory period for 5–60 min. No significant change was detected in the other cardiovascular variables. Thus, lithium alone may have a wide safety margin against hemodynamic adverse events; however, it would directly and/or indirectly inhibit Na+ and K+ channels, which may synergistically increase the ventricular refractoriness from the sub-therapeutic concentration and decrease the heart rate at the supra-therapeutic one. These findings may partly explain its clinically observed various types of arrhythmias as well as electrocardiographic changes.
Literatur
1.
Zurück zum Zitat DeBattista, C. (2015). Antipsychotic agents & lithium. In B. G. Katzung & A. J. Trevor (Eds.), Basic & clinical pharmacology (13th ed., pp. 490–509). New York: McGraw Hill Education. DeBattista, C. (2015). Antipsychotic agents & lithium. In B. G. Katzung & A. J. Trevor (Eds.), Basic & clinical pharmacology (13th ed., pp. 490–509). New York: McGraw Hill Education.
2.
Zurück zum Zitat Yap, Y. G., Behr, E. R., & Camm, A. J. (2009). Drug-induced Brugada syndrome. Europace, 11, 989–994.CrossRefPubMed Yap, Y. G., Behr, E. R., & Camm, A. J. (2009). Drug-induced Brugada syndrome. Europace, 11, 989–994.CrossRefPubMed
3.
Zurück zum Zitat Darbar, D., Yang, T., Churchwell, K., Wilde, A. A., & Roden, D. M. (2005). Unmasking of brugada syndrome by lithium. Circulation, 112, 1527–1531.CrossRefPubMedPubMedCentral Darbar, D., Yang, T., Churchwell, K., Wilde, A. A., & Roden, D. M. (2005). Unmasking of brugada syndrome by lithium. Circulation, 112, 1527–1531.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Wright, D., & Salehian, O. (2010). Brugada-type electrocardiographic changes induced by long-term lithium use. Circulation, 122, e418–e419.PubMed Wright, D., & Salehian, O. (2010). Brugada-type electrocardiographic changes induced by long-term lithium use. Circulation, 122, e418–e419.PubMed
5.
Zurück zum Zitat Sugiyama, A. (2008). Sensitive and reliable proarrhythmia in vivo animal models for predicting drug-induced torsades de pointes in patients with remodelled hearts. British Journal of Pharmacology, 154, 1528–1537.CrossRefPubMedPubMedCentral Sugiyama, A. (2008). Sensitive and reliable proarrhythmia in vivo animal models for predicting drug-induced torsades de pointes in patients with remodelled hearts. British Journal of Pharmacology, 154, 1528–1537.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Johannesen, L., Vicente, J., Mason, J. W., Sanabria, C., Waite-Labott, K., Hong, M., et al. (2014). Differentiating drug-induced multichannel block on the electrocardiogram: randomized study of dofetilide, quinidine, ranolazine, and verapamil. Clinical Pharmacology & Therapeutics, 96, 549–558.CrossRef Johannesen, L., Vicente, J., Mason, J. W., Sanabria, C., Waite-Labott, K., Hong, M., et al. (2014). Differentiating drug-induced multichannel block on the electrocardiogram: randomized study of dofetilide, quinidine, ranolazine, and verapamil. Clinical Pharmacology & Therapeutics, 96, 549–558.CrossRef
7.
Zurück zum Zitat Cao, X., Nakamura, Y., Wada, T., Izumi-Nakaseko, H., Ando, K., & Sugiyama, A. (2016). Electropharmacological effects of amantadine on cardiovascular system assessed with J-Tpeak and Tpeak-Tend analysis in the halothane-anesthetized beagle dogs. The Journal of Toxicological Sciences, 41, 439–447.CrossRefPubMed Cao, X., Nakamura, Y., Wada, T., Izumi-Nakaseko, H., Ando, K., & Sugiyama, A. (2016). Electropharmacological effects of amantadine on cardiovascular system assessed with J-Tpeak and Tpeak-Tend analysis in the halothane-anesthetized beagle dogs. The Journal of Toxicological Sciences, 41, 439–447.CrossRefPubMed
8.
Zurück zum Zitat Van de Water, A., Verheyen, J., Xhonneux, R., & Reneman, R. S. (1989). An improved method to correct the QT interval of the electrocardiogram for changes in heart rate. Journal of Pharmacological Methods, 22, 207–217.CrossRefPubMed Van de Water, A., Verheyen, J., Xhonneux, R., & Reneman, R. S. (1989). An improved method to correct the QT interval of the electrocardiogram for changes in heart rate. Journal of Pharmacological Methods, 22, 207–217.CrossRefPubMed
9.
Zurück zum Zitat Linakis, J. G., Savitt, D. L., Schuyler, J. E., Simon, P. M., & Raymond, R. M. (2000). Lithium has no direct effect on cardiac function in the isolated, perfused rat heart. Pharmacology & Toxicology, 87, 39–45.CrossRef Linakis, J. G., Savitt, D. L., Schuyler, J. E., Simon, P. M., & Raymond, R. M. (2000). Lithium has no direct effect on cardiac function in the isolated, perfused rat heart. Pharmacology & Toxicology, 87, 39–45.CrossRef
10.
Zurück zum Zitat Descotes, J., Lievre, M., Rouzioux, J. M., Faucon, G., & Evreux, J. C. (1978). Cardiac electrophysiological effects of lithium gluconate in anesthetized dogs. Therapie, 33, 661–670; (in French).PubMed Descotes, J., Lievre, M., Rouzioux, J. M., Faucon, G., & Evreux, J. C. (1978). Cardiac electrophysiological effects of lithium gluconate in anesthetized dogs. Therapie, 33, 661–670; (in French).PubMed
11.
Zurück zum Zitat Abdel-Zaher, A. O., & Abdel-Rahman, M. M. (1999). Lithium chloride-induced cardiovascular changes in rabbits are mediated by adenosine triphosphate-sensitive potassium channels. Pharmacological Research, 39, 275–282.CrossRefPubMed Abdel-Zaher, A. O., & Abdel-Rahman, M. M. (1999). Lithium chloride-induced cardiovascular changes in rabbits are mediated by adenosine triphosphate-sensitive potassium channels. Pharmacological Research, 39, 275–282.CrossRefPubMed
12.
Zurück zum Zitat Mamiya, K., Sadanaga, T., Sekita, A., Nabeyama, Y., Yao, H., & Yukawa, E. (2005). Lithium concentration correlates with QTc in patients with psychosis. Journal of Electrocardiology, 38, 148–151.CrossRefPubMed Mamiya, K., Sadanaga, T., Sekita, A., Nabeyama, Y., Yao, H., & Yukawa, E. (2005). Lithium concentration correlates with QTc in patients with psychosis. Journal of Electrocardiology, 38, 148–151.CrossRefPubMed
13.
Zurück zum Zitat Alvarez, P. A., & Pahissa, J. (2010). QT alterations in psychopharmacology: proven candidates and suspects. Current Drug Safety, 5, 97–104.CrossRefPubMed Alvarez, P. A., & Pahissa, J. (2010). QT alterations in psychopharmacology: proven candidates and suspects. Current Drug Safety, 5, 97–104.CrossRefPubMed
Metadaten
Titel
Analysis of Safety Margin of Lithium Carbonate Against Cardiovascular Adverse Events Assessed in the Halothane-Anesthetized Dogs
verfasst von
Ai Goto
Yuji Nakamura
Nur Jaharat Lubna
Koki Chiba
Mihoko Hagiwara-Nagasawa
Hiroko Izumi-Nakaseko
Kentaro Ando
Atsuhiko T. Naito
Atsushi Sugiyama
Publikationsdatum
29.05.2018
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 6/2018
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-018-9464-0

Weitere Artikel der Ausgabe 6/2018

Cardiovascular Toxicology 6/2018 Zur Ausgabe