Skip to main content
Erschienen in: Virology Journal 1/2019

Open Access 01.12.2019 | Research

Analysis of the codon usage pattern of the RdRP gene of mycovirus infecting Aspergillus spp.

verfasst von: Mikyung Je, Hayeon Kim, Hyeon S. Son

Erschienen in: Virology Journal | Ausgabe 1/2019

Abstract

Background

Mycoviruses that infect fungi generally do not have a significant effect on the host and, instead, reduce the toxicity of the fungi. However, recent studies have shown that polymycovirus-1, a mycovirus that infects Aspergillus species known to cause disease in humans, is related to increased virulence of the fungus.

Methods

Comparative analysis was performed of RdRP gene codon usage patterns of Aspergillus fumigatus polymycovirus-1 (AfuPmV-1) and other mycoviruses known to infect Aspergillus spp. to examine the genetic characteristics of AfuPmV-1. In addition, codon usage analysis was performed to determine whether the nucleotide composition and codon usage characteristics of AfuPmV-1 were also present in other polymycoviruses and hypervirulence-related mycoviruses. Phylogenetic analysis was also performed to investigate their evolutionary relationship.

Results

Analysis of nucleotide composition indicated that AfuPmV-1 had the highest GC content among analyzed mycoviruses and relative synonymous codon usage analysis indicated that all of the codons preferred by AfuPmV-1 ended with C or G, while codons ending with A or U were not observed. Moreover, the effective number of codons, the codon adaptation index, and correspondence analysis showed that AfuPmV-1 had greater codon preference compared with other mycoviruses and that AfuPmV-1 had relatively high adaptability to humans and fungi. These results were generally similar among polymycoviruses.

Conclusions

The codon usage pattern of AfuPmV-1 differs from other mycoviruses that infect Aspergillus spp. This difference may be related to the hypervirulence effect of AfuPmV-1. Analysis of AfuPmV-1 codon usage patterns could contribute to the identification and prediction of virulence effects of mycoviruses with similar genetic characteristics.
Abkürzungen
AfuCV
Aspergillus fumigatus chrysovirus
AfuPmV-1
Aspergillus fumigatus polymycovirus-1
AfuPV-1
Aspergillus fumigatus partitivirus-1
AfuTmV-1
Aspergillus fumigatus tetramycovirus-1
BbPmV-1
Beauveria bassiana polymycovirus-1
CAI
Codon adaptation index
COA
Correspondence analysis
dsRNAs
Double-stranded RNAs
ENC
Effective number of codons
RdRP
RNA-dependent RNA polymerase
RSCU
Relative synonymous codon usage
SD
Standard deviation

Background

Mycoviruses are viruses that infect fungi and are known to be infectious to most fungal species. While mycoviruses have little or no influence on the fungal host in most cases, some have been shown to control the pathogenicity of the host by increasing or decreasing the virulence [1, 2]. To date, research on mycoviruses has mainly focused on plant pathogenic fungi. The hypovirulence effect of mycoviruses in fungi has led to the development of biological control agents to reduce the virulence of fungi on important crops and plant resources [2, 3]. There have been relatively few studies on the hypervirulence effect of mycoviruses, although some results have been reported recently. In 2015, the A78 virus, which infects the human pathogenic fungus, Aspergillus fumigatus, was reported to have significant mild hypervirulence effects in the moth species, Galleria mellonella [4], and similar virulence effects have been reported in Aspergillus fumigatus tetramycovirus-1 (AfuTmV-1) found in the same fungus [5]. AfuTmV-1 was renamed AfuPmV-1, and its virus family name was changed from Tetramycoviridae to Polymycoviridae as more viruses showing similar characteristics to AfuTmV-1 were discovered, including BbPmV-1, which infects the insect pathogenic fungus, Beauveria bassiana [6] (Table 1).
Table 1
The genome of polymycovirus-1 (AfuTmV-1)
Host
Segment (bp)
ORF
Product
Gene
Length
Protein
Length (aa)
Aspergillus fumigatus
dsRNA1 (2403)
RdRP ORF
2292 nt
RNA dependent RNA polymerase
763
dsRNA2 (2233)
unknown_ORF
2091 nt
hypothetical protein
696
dsRNA3 (1970)
Methyl transferase ORF
1845 nt
methyl transferase
614
dsRNA4 (1131)
PAS-rp ORF
840 nt
proline/alanine/serine (PAS)-rich protein
279
Aspergillus is a fungus that belongs to the phylum Ascomycota and is related to various human diseases through infection, including aspergillosis on infection of the lungs, asthma, and allergies. Moreover, it is one of the fatal human pathogenic fungi, with a high mortality rate in patients with low immunity by opportunistic infection [7, 8]. Although studies have focused on polymycovirus-1 with regard to the increase in fungal pathogenicity in A. fumigatus, it is also important to examine other mycoviruses, such as partitivirus, chrysovirus, and victorivirus, which are infectious to other species in the genus Aspergillus, including A. fumigatus, A. foetidus, A. ochraceus, and A. niger. This study was performed to explore other mycoviruses that may increase the pathogenicity of the genus Aspergillus by comparison with polymycovirus-1, and to investigate the genetic characteristics of mycoviruses that enhance the toxicity of human pathogenic fungi.

Methods

Sequence data collection

The AfuPmV-1 genome consists of four capped double-stranded RNAs (dsRNAs), of which the largest dsRNA1 segment encodes the RNA-dependent RNA polymerase (RdRP) [5, 6]. The data were downloaded from the NCBI GenBank database (https://​www.​ncbi.​nlm.​nih.​gov/​genbank) and the complete nucleotide sequences of the RdRP coding region of mycoviruses that infect Aspergillus species were used. Eight sets of data published between 2006 and 2015 were studied in the analysis. Other polymycoviruses and hypervirulence-related mycoviruses data were downloaded from NCBI for comparison (Table 2).
Table 2
Summary of datasets
No.
Accession no.
Fungal host
Mycovirus
Abbr.
Length
Ref.
Nucleotide
Protein
Nucleotide (nt)
Protein (aa)
1
FN376847
CAY25801
Aspergillus fumigatus
partitivirus-1
AfuPV-1
1629
542
[22]
2
FN178512
CAX48749
Aspergillus fumigatus
chrysovirus
AfuCV
3345
1114
[23]
3
HG975302
CDP74618
Aspergillus fumigatus
polymycovirus-1b
AfuPmV-1
2292
763
[5]
4
HE588144
CCD33020
Aspergillus foetidus
alternavirusc
AfAltV
3375
1124
[24]
5
HE588147
CCD33024
Aspergillus foetidus
victorivirusd
AfVV
2520
839
[25]
6
HE588148
CCD33025
Aspergillus foetidus
exartaviruse
AfExV
2889
962
[26]
7
DQ270031
ABC86749
Aspergillus ochraceus
partitivirus
AoPV
1620
539
[27]
8
EU289897a
ABX79997
Aspergillus niger
alternavirus
AniAltV
3375
1124
[28]
9
MF444217
AWY10945
Sclerotinia sclerotiorum
tetramycovirus-1
SstRV1
2403
800
[29]
10
MF317878
AVZ65983
Penicillium digitatum
polymycoviruses 1
PdPmV1
2283
760
[30]
11
LN896307
CUS18595
Beauveria bassiana
polymycovirus 1
BbPmV-1
2328
775
[6]
12
LN896311
CUS18599
Beauveria bassiana
polymycovirus 2
BbPmV-2
2304
767
[6]
13
LC350277
BBC27878
Alternaria alternata
chrysovirus 1
AaCV1
3354
1174
[31]
14
KM235317
AKF14154
Penicillium marneffei
partitivirus-1
TmPV1
1638
545
[32]
No. 1~8: mycoviruses infecting Aspergillus (Group 1); No. 9~12: other polymycoviruses (Group 2); No. 13~14: hypervirulence-related mycoviruses (Group 3)
aputative RdRP gene
boriginally named Aspergillus fumigatus tetramycovirus-1
cproposed name of Aspergillus foetidus fast virus
dproposed name of Aspergillus foetidus slow virus 1
eproposed name of Aspergillus foetidus slow virus 2

Codon usage analysis

The programs CodonW (https://​sourceforge.​net/​projects/​codonw/) and CALcal (http://​genomes.​urv.​es/​CAIcal/) were used to conduct analyses of nucleotide composition, overall/local G + C content, relative synonymous codon usage (RSCU), effective number of codons (ENC), codon adaptation index (CAI), and correspondence analysis (COA) for each of the selected genetic data [9, 10]. Nucleotide composition analysis was conducted based on the overall frequency of nucleic acid occurrence (A%, C%, U%, and G%), total AU%/GC%, frequency of the third nucleic acid in synonymous codons (A3s, C3s, U3 s, and G3 s), and the GC3s values. The RSCU is a value represented as the ratio between predicted and observed usage rates of specific codons, assuming that all synonymous codons were used equally for an amino acid. An RSCU value of 1.0 indicates that all codons were used randomly or equally. The value would be greater (less) than 1.0 if certain codons were used more (less) frequently [11, 12]. In particular, codons with RSCU values ≥1.6 are considered over-represented codons, while those with RSCU values ≤0.6 are considered under-represented codons [13, 14]. The ENC is a simple and absolute method to measure codon usage bias in genes and genomes. The GC3s values are used in the calculation, and the ENC value ranges from 20 to 61. The ENC is inversely proportional to codon usage bias, and lower ENC values indicate stronger codon usage bias. A gene that does not show any codon usage bias would have an ENC value of 61. On the other hand, a gene that shows a high degree of codon usage bias would have an ENC value of 20, indicating that only one codon was used for an amino acid. Generally, ENC values < 35 are interpreted as showing strong codon usage bias [15, 16]. The CAI is the geometric mean of relative adaptation level and is a quantitative method to calculate the differences in codon usage bias against highly expressed known reference data. The CAI value ranges between 0 and 1, with values closer to 1 indicating a high degree of similarity between the reference data and the codon usage pattern and expression level, whereas smaller values indicate lower similarity in the codon usage pattern and expression level [17]. The reference data of codon usage levels in humans (Homo sapiens) and fungus (Aspergillus fumigatus) were acquired from the codon usage database (http://​www.​kazusa.​or.​jp/​codon/) for comparison [18]. Furthermore, the RSCU values were examined by the COA method with the XLSTAT 2016 program for visualization of the CodonW results. The COA method is the preferred method in the area of multivariate analysis and represents the data as vectors consisting of rows and columns [19]. Each individual data of the RdRP codon region was represented as a vector with 59 dimensions covering 59 codons except methionine (AUG) and tryptophan (UGG), which lack synonymous codons, as well as termination codons. A comparative analysis was performed including three groups: mycoviruses infecting Aspergillus (Group 1), polymycoviruses with a fungal host other than Aspergillus (Group 2), and newly reported mycoviruses that enhance host virulence (Group 3).

Phylogenetic analysis

The phylogenetic relationships among the mycoviruses used for the analysis were inspected and phylogenetic analysis was conducted using the MEGA7 program (http://​www.​megasoftware.​net) to infer the influence of evolutionary processes on codon usage patterns. RdRP coding sequences were aligned with the MUSCLE algorithm, and the phylogenetic tree was constructed by applying the Maximum Likelihood method and the Kimura 2-parameter substitution model. The robustness of the tree was verified with the bootstrap value set to 1000 [20].

Results

Nucleotide composition features

Basic nucleotide composition analysis was conducted for the RdRP gene of mycoviruses infecting Aspergillus spp. (Table 3, Fig. 1). The mean and standard deviation (SD) of A%, C%, U%, and G% were 23.16 ± 4.00, 25.09 ± 5.13, 25.13 ± 3.54, and 26.63 ± 4.04, respectively. The mean and SD of total AU% and GC% were 48.29 ± 6.76 and 51.71 ± 6.76, respectively. The mean and SD of A3s, C3s, U3 s, G3 s, and GC3s were 22.34 ± 8.66, 34.72 ± 12.09, 34.26 ± 10.20, 32.15 ± 7.47, and 53.48 ± 13.45, respectively. AfuPmV-1 showed the lowest frequencies of nucleotides A and U and the highest frequency of nucleotide C among the Aspergillus-infecting mycoviruses included in the analysis. Similarly, the frequencies of the four types of nucleotides in the third position of synonymous codons were the lowest with A3s and U3 s and highest with C3s. As nucleotide C occurred relatively abundantly in AfuPmV-1, the GC content and GC3s indices were highest in this virus with values of 62.74 and 78.30, respectively (Fig. 1). The GC content of AfuPmV-1 was reported to be approximately 63% in a previous study of the entire or partial genome sequences of Polymycoviridae viruses [6]. As a result of the comparison, Group 2 showed a similar pattern to that of AfuPmV-1. The GC content was between 59.97 and 61.98%, and the frequencies of nucleotides at the third position in the synonymous codons were higher in C3s and G3 s than in A3s and U3 s, respectively. Among these, BbPmV-1 is an experimentally reported virus that may be related to mild hypervirulence. The Group 3 results differed from those of Groups 1 and 2 (Table 3).
Table 3
Nucleotide compositions of the RdRP genes of Aspergillus-infecting mycoviruses
https://static-content.springer.com/image/art%3A10.1186%2Fs12985-019-1115-y/MediaObjects/12985_2019_1115_Tab3_HTML.png
CAIH: compare with Homo sapiens as reference set
CAIA: compare with Aspergillus fumigatus as reference set
The dotted line shows the result of AfuPmV-1 analysis, and the solid line shows the result of analysis of polymycoviruses

RSCU value and codon usage preference

The RSCU values of AfuPmV-1, AfuCV, and AfuPV-1 of Group1 were compared to inspect the codon usage bias according to virus species (Table 4, Fig. 2). Of codons related to the entire 18 amino acids, 18 codons were preferred in AfuPmv-1 of which 11 showed RSCU values ≥1.6. AfuCV showed 17 preferred codons, three of which had RSCU values ≥1.6. AfuPV had 20 preferred codons, three of which showed RSCU values ≥1.6. AfuPmV-1 showed similarities to AfuCV in codons CAC (His), CAG (Gln) and to AfuPV-1 in codons CUC (Leu) and AUC (Ile). The codons preferred by each virus individually were as follows. The codons solely preferred in AfuPmV-1 were GUC (Val), UAC (Tyr), GAC (Asp), UCC (Ser), CCC (Pro), ACC (Thr), GCC (Ala), UGC (Cys), CGC (Arg), and GGC (Gly) for 10 of the amino acids. Remarkably, all of these were C-ended codons (Fig. 2). Codons solely preferred in AfuCV were CUG (Leu), AUA (Ile), CCG (Pro), GCU (Ala), AGC (Ser), and AGG (Arg) for six of the amino acids, and in AfuPV-1, CUU (Leu), CAU (His), CAA (Gln), UCA (Ser), CCA (Pro), GCA (Ala), GCG (Ala), UGU (Cys), and CGU (Arg) for eight of the amino acids. The codons UUC (Phe), AAC (Asn), AAG (Lys), and GAG (Glu) showed similar preferences in all three viruses. The RSCU values and end nucleotide composition indicated that, in the RdRP coding region, C-ended codons were strongly preferred in AfuPmV-1 (15 of 18), G-ended codons were preferred in AfuCV (7 of 17), and U-ended codons were preferred in AfuPV-1 (8 of 20). Interestingly, there were no A/U-ended codons among the preferred codons of AfuPmV-1, indicating that AfuPmV-1 has a codon bias toward C- and G-ended codons.
Table 4
RSCU analysis of AfuPmV-1, AfuCV, and AfuPV-1
AA
Codon
AfuPmV-1
AfuCV
AfuPV-1
AA
Codon
AfuPmV-1
AfuCV
AfuPV-1
Phe
UUU
0.21a
0.90
0.79
Ser
UCU
0.56a
0.71
1.38
UUC
1.79 b
1.10
1.21
UCC
2.89 b
0.88
1.38
Leu
UUA
0.08a
0.67
0.30
UCA
0.44a
1.24
1.54
UUG
0.46a
1.27
1.20
UCG
0.89
0.35a
0.15a
CUU
0.92
0.33a
1.35
Pro
CCU
0.67
0.59a
0.93
CUC
3.69 b
0.20a
1.35
CCC
1.92 b
0.94
1.07
CUA
0.08a
1.73
0.60a
CCA
0.67
1.18
1.20
CUG
0.77
1.80 b
1.20
CCG
0.75
1.29
0.80
Ile
AUU
1.08
0.72
0.57a
Thr
ACU
0.67
1.25
1.29
AUC
1.32
1.03
1.86 b
ACC
2.00 b
1.10
1.16
AUA
0.60a
1.24
0.57a
ACA
0.08a
1.10
0.52a
Val
GUU
0.29a
0.96
0.70
ACG
1.25
0.55a
1.03
GUC
3.07 b
0.92
0.35a
Ala
GCU
0.54a
1.39
0.94
GUA
0.07a
0.92
0.52a
GCC
2.43 b
0.91
0.71
GUG
0.57a
1.20
2.43 b
GCA
0.27a
1.33
1.18
Tyr
UAU
0.35a
1.04
1.20
GCG
0.76
0.36a
1.18
UAC
1.65 b
0.96
0.80
Cys
UGU
0.67
1.00
1.33
His
CAU
0.46a
0.76
1.25
UGC
1.33
1.00
0.67
CAC
1.54
1.24
0.75
Arg
CGU
0.70
0.64
2.17 b
Gln
CAA
0.33a
0.77
1.22
CGC
2.50 b
0.72
0.77
CAG
1.67 b
1.23
0.78
CGA
0.30a
0.56a
1.15
Asn
AAU
0.42a
0.83
0.77
CGG
1.30
1.04
0.51a
AAC
1.58
1.17
1.23
Ser
AGU
0.11a
0.88
0.92
Lys
AAA
0.50a
0.71
0.60a
AGC
1.11
1.94 b
0.62
AAG
1.50
1.29
1.40
Arg
AGA
0.00a
1.12
0.64
Asp
GAU
0.44a
1.04
1.20
AGG
1.20
1.92 b
0.77
GAC
1.56
0.96
0.80
Gly
GGU
0.81
1.21
1.40
Glu
GAA
0.35a
0.46a
0.74
GGC
1.41
0.97
1.20
GAG
1.65 b
1.54
1.26
GGA
0.59a
0.79
0.70
    
GGG
1.19
1.03
0.70
AA amino acid
Non-degenerate amino acids (Met, Trp) and stop codons are excluded
The boldface are the most preferred codons
aRSCU value ≤0.6; under-represented codons
bRSCU value ≥1.6; over-represented codons
Group 2 showed a similar codon usage pattern to that of AfuPmV-1, which indicates a preference for the C/G-ended codon. Group 3 also preferred C- or G-ended codons, but the four nucleic acids were distributed more evenly.

General codon usage pattern

The ENC value was calculated to quantitatively measure the magnitude of RdRP gene codon usage bias of the eight mycoviruses infecting Aspergillus spp. An ENC value < 35 indicates a strong codon usage bias. The results showed that the ENC value was lowest for AfuPmV-1 (40.67) and the other viruses showed ENC values > 50 (Table 3, Fig. 3). Taking into account the results of previous studies on RNA viruses in which the ENC values of Zaire Ebola virus, Chikungunya virus, Hepatitis C virus, and West Nile virus were 57.23, 55.56, 52.62, and 53.81, respectively [21], AfuPmV-1 appeared to have stronger codon usage bias relative to other viruses. The CAI was calculated to compare the adaptability of synonymous genetic codon usage in mutually different individuals, and the codon usage patterns were considered similar to the reference individual with CAI values closer to 1. This study referred to the CAI values of H. sapiens and A. fumigatus, which have ranges of 0.699–0.762 and 0.676–0.843, respectively. The mean and SD were 0.72 ± 0.02 and 0.74 ± 0.05 for H. sapiens and A. fumigatus, respectively. Remarkably, AfuPmV-1 showed the highest values for both H. sapiens and A. fumigatus with values of 0.762 and 0.843, respectively. These results indicated that AfuPmV-1 has the greatest similarity to the reference data in codon usage pattern and expression level, and that it has higher adaptability to human and fungal hosts compared with other mycoviruses. In Group 2, CAI and ENC values were similar to those of AfuPmV-1 (Table 3).

General trend of codon usage variation

To inspect the trends related to codon usage patterns of the Aspergillus-infecting viruses AfuPmV-1, AfuCV, and AfuPV-1, COA was performed with the RSCU values. Axis1, Axis2, Axis3, and Axis4 of the COA-RSCU explained 44.31, 18.81, 17.33, and 9.78% of the total variation, respectively. The results were based on 59 codons, excluding the three termination codons and methionine (AUG)/tryptophan (UGG) that do not have synonymous codons. Although there were exceptions in the COA results according to the third nucleotide in the codon, G- and C-ended codons formed one group and A- and U-ended codons formed another group (Fig. 4(a)). Moreover, the COA results for over-represented codons with RSCU values ≥1.6 showed that the codons strongly preferred individually by the three viruses formed separate groups (Fig. 4(b)). The observations verified that there were differences in the codon pattern preferences among the Aspergillus-infecting viruses.

Evolutionary relationship between mycoviruses

A phylogenetic tree was constructed to examine the phylogenetic relationships among the 14 mycoviruses, including AfuPmV-1. Polymycoviruses were grouped with AfuPmV-1. Polymycoviruses showed a relatively close relationship with alternaviruses (Fig. 5). To provide more information, the RdRP family for each sequence was examined from Pfam. AfuPmV-1 was assigned to RdRP_1 and all other polymycoviruses with similar codon patterns were assigned to the same RdRP_1 (pfam00680). Other mycoviruses infecting Aspergillus were classified as RdRP_1 or RdRP_4, although they were found in the same fungus (Table 5). This result suggests that the hypervirulent effects of AfuPmV-1 may be more affected by viral genome characteristics than by the effect of Aspergillus as a host.
Table 5
RdRP family as assigned by Pfam
No.
Accession no.
Mycovirus
Family by Pfam
E-value
1
FN376847
Aspergillus fumigatus partitivirus-1
RdRP_1
1e-06
2
FN178512
Aspergillus fumigatus chrysovirus
RdRP_4
1.8e-73
3
HG975302
Aspergillus fumigatus polymycovirus-1
RdRP_1
3.9e-05
4
HE588144
Aspergillus foetidus alternavirus
RdRP_4
3.6e-07
5
HE588147
Aspergillus foetidus victorivirus
RdRP_4
1.2e-105
6
HE588148
Aspergillus foetidus exartavirus
RdRP_1
4.4e-10
7
DQ270031
Aspergillus ochraceus partitivirus
RdRP_1
7.7e-12
8
EU289897
Aspergillus niger alternavirus
RdRP_4
3.8e-07
9
MF444217
Sclerotinia sclerotiorum tetramycovirus-1
RdRP_1
0.00017
10
MF317878
Penicillium digitatum polymycoviruses 1
RdRP_1
4.4e-07
11
LN896307
Beauveria bassiana polymycovirus 1
RdRP_1
2.5e-07
12
LN896311
Beauveria bassiana polymycovirus 2
no match
13
LC350277
Alternaria alternata chrysovirus 1
RdRP_4
7.7e-44
14
KM235317
Penicillium marneffei partitivirus-1
RdRP_1
4.1e-10

Discussion

The mechanism underlying the hypervirulence effect of polymycoviruses has yet to be determined. However, experimental studies have demonstrated the existence of mycoviruses with mild hypervirulence effects, and other mycoviruses with similar sequences are continuously being discovered. The pathogenic effects of pathogenic fungi on the hosts may be increased by infection with mycoviruses that show hypervirulence effects. Therefore, it is necessary to determine the genetic characteristics of mycoviruses with hypervirulence effects. The results of the present study showed that AfuPmV-1 has a high GC content, and all of the strongly preferred codons (RSCU value ≥1.6) ended with either a C or G nucleotide. The distinctive codon usage pattern of AfuPmV-1 compared to other mycoviruses that infect Aspergillus spp. may be related to its hypervirulence effect. These characteristics did not appear in all mycoviruses with hypervirulent effects, but were shared by polymycoviruses. Nucleotide composition and codon usage patterns of polymycoviruses may be useful in predicting hypervirulent effects of unidentified mycoviruses.

Conclusions

Aspergillus spp. are pathogenic fungi that cause various symptoms in humans. The hypervirulence effect of mycoviruses can increase the toxicity of Aspergillus spp. in human hosts, and thus increase the severity of symptoms. Here, AfuPmV-1 was shown to have distinct patterns in some codon usage indexes compared to other mycoviruses that infect Aspergillus spp. The distinctive codon usage pattern of AfuPmV-1 demonstrated in the present study indicated the need for monitoring of mycoviruses with similar characteristics. Research on mycoviruses has generally focused on their hypovirulence effects on fungi that infect plants. With the discovery of polymycoviruses, further research on the hypervirulence effects of mycoviruses is needed, particularly with regard to mechanisms of virulence control in mycoviruses, such as AfuPmV-1, which infects human pathogenic fungi.

Acknowledgements

We’d like to thank those who made their invaluable data publicly available.

Funding

This work was supported by a grant from the National Research Foundation of Korea funded by the Korea government (MSIP) (No. 2016R1C1B2015511) and the Ministry of Education (No. 2017R1D1A1B03033413).

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Ghabrial SA, Suzuki N. Viruses of plant pathogenic fungi. Annu Rev Phytopathol. 2009;47:353–84.CrossRef Ghabrial SA, Suzuki N. Viruses of plant pathogenic fungi. Annu Rev Phytopathol. 2009;47:353–84.CrossRef
2.
Zurück zum Zitat Ghabrial SA, Caston JR, Jiang D, Nibert ML, Suzuki N. 50-plus years of fungal viruses. Virology. 2015;479:356–68.CrossRef Ghabrial SA, Caston JR, Jiang D, Nibert ML, Suzuki N. 50-plus years of fungal viruses. Virology. 2015;479:356–68.CrossRef
3.
Zurück zum Zitat Pearson MN, Beever RE, Boine B, Arthur K. Mycoviruses of filamentous fungi and their relevance to plant pathology. Mol Plant Pathol. 2009;10:115–28.CrossRef Pearson MN, Beever RE, Boine B, Arthur K. Mycoviruses of filamentous fungi and their relevance to plant pathology. Mol Plant Pathol. 2009;10:115–28.CrossRef
4.
Zurück zum Zitat Ozkan S, Coutts Robert HA. Aspergillus fumigatus mycovirus causes mild hypervirulent effect on pathogenicity when tested on Galleria mellonella. Fungal Genet Biol. 2015;76:20–6.CrossRef Ozkan S, Coutts Robert HA. Aspergillus fumigatus mycovirus causes mild hypervirulent effect on pathogenicity when tested on Galleria mellonella. Fungal Genet Biol. 2015;76:20–6.CrossRef
5.
Zurück zum Zitat Kanhayuwa L, Kotta-Loizou I, Ozkan S, Gunning AP, Goutts Robert HA. A novel mycovirus from Aspergillus fumigatus contains four unique dsRNAs as its genome and is infectious as dsRNA. Proc Natl Acad Sci. 2015;112:9100–5.CrossRef Kanhayuwa L, Kotta-Loizou I, Ozkan S, Gunning AP, Goutts Robert HA. A novel mycovirus from Aspergillus fumigatus contains four unique dsRNAs as its genome and is infectious as dsRNA. Proc Natl Acad Sci. 2015;112:9100–5.CrossRef
7.
Zurück zum Zitat Bennett JW. An overview of the genus Aspergillus. In: Machida M, Gomi K, editors. Aspergillus: molecular biology and genomics. Poole: horizon scientific press; 2010. p. 1–17. Bennett JW. An overview of the genus Aspergillus. In: Machida M, Gomi K, editors. Aspergillus: molecular biology and genomics. Poole: horizon scientific press; 2010. p. 1–17.
8.
Zurück zum Zitat Kotta-Loizou I, Coutts Robert HA. Mycoviruses in Aspergilli: a comprehensive review. Front Microbiol. 2017;8:1–15.CrossRef Kotta-Loizou I, Coutts Robert HA. Mycoviruses in Aspergilli: a comprehensive review. Front Microbiol. 2017;8:1–15.CrossRef
9.
Zurück zum Zitat Peden J. Analysis of codon usage, PhD [dissertation]. In: Department of Genetics: University of Nottingham; 1999. Peden J. Analysis of codon usage, PhD [dissertation]. In: Department of Genetics: University of Nottingham; 1999.
10.
Zurück zum Zitat Puigbo P, Bravo IG, Garcia-Vallve S. CAIcal: a combined set of tools to assess codon usage adaptation. Biol Direct. 2008:3–38. Puigbo P, Bravo IG, Garcia-Vallve S. CAIcal: a combined set of tools to assess codon usage adaptation. Biol Direct. 2008:3–38.
11.
Zurück zum Zitat Sharp PM, Li WH. Codon usage in regulatory genes in Escherichia coli does not reflect selection for ‘rare’ codons. Nucleic Acids Res. 1986;14:7737–49.CrossRef Sharp PM, Li WH. Codon usage in regulatory genes in Escherichia coli does not reflect selection for ‘rare’ codons. Nucleic Acids Res. 1986;14:7737–49.CrossRef
12.
Zurück zum Zitat Sharp PM, Li WH. An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol. 1986b;24:28–38.CrossRef Sharp PM, Li WH. An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol. 1986b;24:28–38.CrossRef
13.
Zurück zum Zitat Wong Emily HM, Smith DK, Rabadan R, Peiris M, Poon Leo LM. Codon usage bias and the evolution of influenza a viruses. Codon usage biases of influenza virus. BMC Evol Biol. 2010;10:253.CrossRef Wong Emily HM, Smith DK, Rabadan R, Peiris M, Poon Leo LM. Codon usage bias and the evolution of influenza a viruses. Codon usage biases of influenza virus. BMC Evol Biol. 2010;10:253.CrossRef
15.
Zurück zum Zitat Wright F. The ‘effective number of codons’ used in a gene. Gene. 1990;87:23–9.CrossRef Wright F. The ‘effective number of codons’ used in a gene. Gene. 1990;87:23–9.CrossRef
16.
Zurück zum Zitat Comeron JM, Aguade M. An evaluation of measures of synonymous codon usage bias. J Mol Evol. 1998;47:268–74.CrossRef Comeron JM, Aguade M. An evaluation of measures of synonymous codon usage bias. J Mol Evol. 1998;47:268–74.CrossRef
17.
Zurück zum Zitat Sharp PM, Li WH. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987;15:1281–95.CrossRef Sharp PM, Li WH. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987;15:1281–95.CrossRef
18.
Zurück zum Zitat Nakamura Y, Gojobori T, Ikemura T. Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res. 2000;28:292.CrossRef Nakamura Y, Gojobori T, Ikemura T. Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res. 2000;28:292.CrossRef
19.
Zurück zum Zitat Greenacre MJ. Theory and applications of correspondence analysis. London: Academic Press; 1984. Greenacre MJ. Theory and applications of correspondence analysis. London: Academic Press; 1984.
20.
Zurück zum Zitat Kumar S, Stecher G, Tamra K. Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.CrossRef Kumar S, Stecher G, Tamra K. Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.CrossRef
21.
Zurück zum Zitat Cristina J, Fajardo A, Sonora M, Moratorio G, Musto H. A detailed comparative analysis of codon usage bias in Zika virus. Virus Res. 2016;223:147–52.CrossRef Cristina J, Fajardo A, Sonora M, Moratorio G, Musto H. A detailed comparative analysis of codon usage bias in Zika virus. Virus Res. 2016;223:147–52.CrossRef
22.
Zurück zum Zitat Bhatti MF, Bignell EM, Coutts Robert HA. Complete nucleotide sequences of two dsRNAs associated with a new partitivirus infecting Aspergillus fumigatus. Arch Virol. 2011;156:1677–80.CrossRef Bhatti MF, Bignell EM, Coutts Robert HA. Complete nucleotide sequences of two dsRNAs associated with a new partitivirus infecting Aspergillus fumigatus. Arch Virol. 2011;156:1677–80.CrossRef
23.
Zurück zum Zitat Jamal A, Bignell EM, Coutts Robert HA. Complete nucleotide sequences of four dsRNAs associated with a new chrysovirus infecting Aspergillus fumigatus. Virus Res. 2010;153:64–70.CrossRef Jamal A, Bignell EM, Coutts Robert HA. Complete nucleotide sequences of four dsRNAs associated with a new chrysovirus infecting Aspergillus fumigatus. Virus Res. 2010;153:64–70.CrossRef
24.
Zurück zum Zitat Kozlakidis Z, Herrero N, Ozkan S, Kanhayuwa L, Jamal A, Bhatti MF, Coutts Robert HA. Sequence determination of a quadripartite dsRNA virus isolated from Aspergillus foetidus. Arch Virol. 2013;158:267–72.CrossRef Kozlakidis Z, Herrero N, Ozkan S, Kanhayuwa L, Jamal A, Bhatti MF, Coutts Robert HA. Sequence determination of a quadripartite dsRNA virus isolated from Aspergillus foetidus. Arch Virol. 2013;158:267–72.CrossRef
25.
Zurück zum Zitat Kozlakidis Z, Herrero N, Coutts Robert HA. The complete nucleotide sequence of a totivirus from Aspergillus foetidus. Arch Virol. 2013;158:263–6.CrossRef Kozlakidis Z, Herrero N, Coutts Robert HA. The complete nucleotide sequence of a totivirus from Aspergillus foetidus. Arch Virol. 2013;158:263–6.CrossRef
26.
Zurück zum Zitat Kozlakidis Z, Herrero N, Ozkan S, Bhatti MF, Coutts Robert HA. A novel dsRNA element isolated from the Aspergillus foetidus mycovirus complex. Arch Virol. 2013;158:2625–8.CrossRef Kozlakidis Z, Herrero N, Ozkan S, Bhatti MF, Coutts Robert HA. A novel dsRNA element isolated from the Aspergillus foetidus mycovirus complex. Arch Virol. 2013;158:2625–8.CrossRef
27.
Zurück zum Zitat Kim JW, Choi EY, Kim YT. Intergeneric relationship between the Aspergillus ochraceous virus F and the Penicillium stoloniferum virus S. Virus Res. 2006;120:212–5.CrossRef Kim JW, Choi EY, Kim YT. Intergeneric relationship between the Aspergillus ochraceous virus F and the Penicillium stoloniferum virus S. Virus Res. 2006;120:212–5.CrossRef
28.
Zurück zum Zitat Hammond TM, Andrewski MD, Roossinck MJ, Keller NP. Aspergillus mycoviruses are targets and suppressors of RNA silencing. Eukaryot Cell. 2008;7:350–7.CrossRef Hammond TM, Andrewski MD, Roossinck MJ, Keller NP. Aspergillus mycoviruses are targets and suppressors of RNA silencing. Eukaryot Cell. 2008;7:350–7.CrossRef
29.
Zurück zum Zitat Mu F, Xie J, Cheng S, You MP, Barbetti MJ, Jia J, Wang Q, Cheng J, Fu Y, Chen T, Jiang D. Virome characterization of a collection of Sclerotinia sclerotiorum from Australia. Front Microbiol. 2018;8:2540.CrossRef Mu F, Xie J, Cheng S, You MP, Barbetti MJ, Jia J, Wang Q, Cheng J, Fu Y, Chen T, Jiang D. Virome characterization of a collection of Sclerotinia sclerotiorum from Australia. Front Microbiol. 2018;8:2540.CrossRef
30.
Zurück zum Zitat Niu Y, Yuan Y, Mao J, Yang Z, Cao Q, Zhang T, Wang S, Liu D. Characterization of two novel mycoviruses from Penicillium digitatum and the related fungicide resistance analysis. Sci Rep. 2018;8:5513.CrossRef Niu Y, Yuan Y, Mao J, Yang Z, Cao Q, Zhang T, Wang S, Liu D. Characterization of two novel mycoviruses from Penicillium digitatum and the related fungicide resistance analysis. Sci Rep. 2018;8:5513.CrossRef
31.
Zurück zum Zitat Okada R, Ichinose S, Takeshita K, Urayama S, Fukuhara T, Komatsu K, Arie T, Ishihara A, Egusa M, Kodama M, Moriyama H. Molecular characterization of a novel mycovirus in Alternaria alternata manifesting two-sided effects: Down-regulation of host growth and up-uregulation of host plant pathogenicity. Virology. 2018;519:23–32.CrossRef Okada R, Ichinose S, Takeshita K, Urayama S, Fukuhara T, Komatsu K, Arie T, Ishihara A, Egusa M, Kodama M, Moriyama H. Molecular characterization of a novel mycovirus in Alternaria alternata manifesting two-sided effects: Down-regulation of host growth and up-uregulation of host plant pathogenicity. Virology. 2018;519:23–32.CrossRef
32.
Metadaten
Titel
Analysis of the codon usage pattern of the RdRP gene of mycovirus infecting Aspergillus spp.
verfasst von
Mikyung Je
Hayeon Kim
Hyeon S. Son
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Virology Journal / Ausgabe 1/2019
Elektronische ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-019-1115-y

Weitere Artikel der Ausgabe 1/2019

Virology Journal 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.