Skip to main content
Erschienen in: Pediatric Radiology 8/2021

22.04.2021 | Original Article

Anatomical landmark localization via convolutional neural networks for limb-length discrepancy measurements

verfasst von: Andy Tsai

Erschienen in: Pediatric Radiology | Ausgabe 8/2021

Einloggen, um Zugang zu erhalten

Abstract

Background

Measurement of limb-length discrepancy (LLD) from a radiograph is a cognitively simple but time-consuming task.

Objective

To develop a convolutional neural network (CNN) to localize anatomical landmarks from full-length lower-extremity radiographs in predicting LLD.

Materials and methods

The author searched a hospital’s image database to identify studies performed between Feb. 1, 2016, and Sept. 30, 2019. Inclusion criteria were: (1) patients ≤21 years old, (2) study indication of LLD, (3) full-length lower-extremity anteroposterior radiographs performed on the EOS system, and (4) imaging field-of-view that included entire bilateral femurs and tibias. The six requisite ground truth anatomical landmarks for measuring LLD from each radiograph — bilateral top of femoral heads, medial femoral condyles, and center of tibial plafonds — were manually labeled by a pediatric radiologist. For each landmark, a two-dimensional heatmap was generated to encode the pseudo-probability of a landmark being at a particular spatial location. A CNN was developed that regressed across a collection of these heatmaps for landmark localization and bone length predictions.

Results

The study cohort consisted of 504 full-length lower-extremity radiographs from 359 patients with wide ranging skeletal deformities and in situ hardware. Evaluation of this CNN showed that the mean point-error for the predicted top of femoral head, medial femoral condyle, and center of tibial plafond were 0.37 cm, 0.39 cm and 0.42 cm, respectively. The mean absolute error for the predicted femoral, tibial and limb lengths, and LLD were 0.33 cm, 0.30 cm, 0.30 cm, and 0.36 cm, respectively. Predicted bone lengths correlated strongly with ground truth.

Conclusion

This prototype CNN delivered promising results in predicting bone lengths from full-length lower-extremity radiographs and offers the potential use of a computer algorithm to predict LLD.
Literatur
1.
Zurück zum Zitat Khamis S, Carmeli E (2017) Relationship and significance of gait deviations associated with limb length discrepancy: a systematic review. Gait Posture 57:115–123CrossRef Khamis S, Carmeli E (2017) Relationship and significance of gait deviations associated with limb length discrepancy: a systematic review. Gait Posture 57:115–123CrossRef
2.
Zurück zum Zitat Raczkowski JW, Daniszewska B, Zolynski K (2010) Functional scoliosis caused by leg length discrepancy. Arch Med Sci 6:393–398CrossRef Raczkowski JW, Daniszewska B, Zolynski K (2010) Functional scoliosis caused by leg length discrepancy. Arch Med Sci 6:393–398CrossRef
3.
Zurück zum Zitat Sheha ED, Steinhaus ME, Kim HJ et al (2018) Leg-length discrepancy, functional scoliosis, and low back pain. JBJS Rev 6:e6CrossRef Sheha ED, Steinhaus ME, Kim HJ et al (2018) Leg-length discrepancy, functional scoliosis, and low back pain. JBJS Rev 6:e6CrossRef
4.
Zurück zum Zitat Rannisto S, Okuloff A, Uitti J et al (2015) Leg-length discrepancy is associated with low back pain among those who must stand while working. BMC Musculoskelet Disord 16:11CrossRef Rannisto S, Okuloff A, Uitti J et al (2015) Leg-length discrepancy is associated with low back pain among those who must stand while working. BMC Musculoskelet Disord 16:11CrossRef
5.
Zurück zum Zitat Murray KJ, Azari MF (2015) Leg length discrepancy and osteoarthritis in the knee, hip and lumbar spine. J Can Chiropr Assoc 59:226–237PubMedPubMedCentral Murray KJ, Azari MF (2015) Leg length discrepancy and osteoarthritis in the knee, hip and lumbar spine. J Can Chiropr Assoc 59:226–237PubMedPubMedCentral
6.
Zurück zum Zitat Cleveland RH, Kushner DC, Ogden MC et al (1988) Determination of leg length discrepancy. A comparison of weight-bearing and supine imaging. Investig Radiol 23:301–304CrossRef Cleveland RH, Kushner DC, Ogden MC et al (1988) Determination of leg length discrepancy. A comparison of weight-bearing and supine imaging. Investig Radiol 23:301–304CrossRef
7.
Zurück zum Zitat Lampe HI, Swierstra BA, Diepstraten AF (1996) Measurement of limb length inequality. Comparison of clinical methods with orthoradiography in 190 children. Acta Orthop Scand 67:242–244CrossRef Lampe HI, Swierstra BA, Diepstraten AF (1996) Measurement of limb length inequality. Comparison of clinical methods with orthoradiography in 190 children. Acta Orthop Scand 67:242–244CrossRef
8.
Zurück zum Zitat Terry MA, Winell JJ, Green DW et al (2005) Measurement variance in limb length discrepancy: clinical and radiographic assessment of interobserver and intraobserver variability. J Pediatr Orthop 25:197–201CrossRef Terry MA, Winell JJ, Green DW et al (2005) Measurement variance in limb length discrepancy: clinical and radiographic assessment of interobserver and intraobserver variability. J Pediatr Orthop 25:197–201CrossRef
9.
Zurück zum Zitat Sabharwal S, Zhao C, McKeon J et al (2006) Computed radiographic measurement of limb length discrepancy — full length standing antero-posterior radiograph versus scanograms. J Bone Joint Surg Am 88:2243–2251PubMed Sabharwal S, Zhao C, McKeon J et al (2006) Computed radiographic measurement of limb length discrepancy — full length standing antero-posterior radiograph versus scanograms. J Bone Joint Surg Am 88:2243–2251PubMed
10.
Zurück zum Zitat Escott BG, Ravi B, Weathermon AC et al (2013) EOS low-dose radiography: a reliable and accurate upright assessment of lower-limb lengths. J Bone Joint Surg Am 95:e1831–e1837CrossRef Escott BG, Ravi B, Weathermon AC et al (2013) EOS low-dose radiography: a reliable and accurate upright assessment of lower-limb lengths. J Bone Joint Surg Am 95:e1831–e1837CrossRef
11.
Zurück zum Zitat Garner MR, Dow M, Bixby E et al (2016) Evaluating length: the use of low-dose biplanar radiography (EOS) and tantalum bead implantation. J Pediatr Orthop 36:e6–e9CrossRef Garner MR, Dow M, Bixby E et al (2016) Evaluating length: the use of low-dose biplanar radiography (EOS) and tantalum bead implantation. J Pediatr Orthop 36:e6–e9CrossRef
12.
Zurück zum Zitat LeCun Y, Boser B, Denker JS et al (1989) Backpropagation applied to handwritten ZIP code recognition. Neural Comput 1:541–551CrossRef LeCun Y, Boser B, Denker JS et al (1989) Backpropagation applied to handwritten ZIP code recognition. Neural Comput 1:541–551CrossRef
13.
Zurück zum Zitat LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86:2278–2323CrossRef LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86:2278–2323CrossRef
14.
Zurück zum Zitat LeCun Y, Kavukcuoglu K, Farabet CC (2010) Convolutional networks and applications in vision. Proc IEEE Int Symp Circ Syst 2010:253–256 LeCun Y, Kavukcuoglu K, Farabet CC (2010) Convolutional networks and applications in vision. Proc IEEE Int Symp Circ Syst 2010:253–256
15.
Zurück zum Zitat Khan A, Sohail A, Zahoora U, Oureshi AS (2020) A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev 53:5455–5516CrossRef Khan A, Sohail A, Zahoora U, Oureshi AS (2020) A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev 53:5455–5516CrossRef
16.
Zurück zum Zitat Ciresan D, Meier U, Masci J, Schmidhuber J (2012) Multi-column deep neural network for traffic sign classification. Neural Netw 32:333–338CrossRef Ciresan D, Meier U, Masci J, Schmidhuber J (2012) Multi-column deep neural network for traffic sign classification. Neural Netw 32:333–338CrossRef
17.
Zurück zum Zitat Liu X, Deng Z, Yang Y (2019) Recent progress in semantic image segmentation. Artif Intell Rev 52:1089–1106CrossRef Liu X, Deng Z, Yang Y (2019) Recent progress in semantic image segmentation. Artif Intell Rev 52:1089–1106CrossRef
18.
Zurück zum Zitat Setio AA, Ciompi F, Litjens G et al (2016) Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging 35:1160–1169CrossRef Setio AA, Ciompi F, Litjens G et al (2016) Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging 35:1160–1169CrossRef
19.
Zurück zum Zitat Yasaka K, Akai H, Abe O, Kiryu S (2018) Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study. Radiology 286:887–896CrossRef Yasaka K, Akai H, Abe O, Kiryu S (2018) Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study. Radiology 286:887–896CrossRef
20.
Zurück zum Zitat Kurata Y, Nishio M, Kido A et al (2019) Automatic segmentation of the uterus on MRI using a convolutional neural network. Comput Biol Med 114:103438CrossRef Kurata Y, Nishio M, Kido A et al (2019) Automatic segmentation of the uterus on MRI using a convolutional neural network. Comput Biol Med 114:103438CrossRef
21.
Zurück zum Zitat Milletari F, Navab N, Ahmadi S (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of the Fourth International Conference on 3D Vision, pp 565–571 Milletari F, Navab N, Ahmadi S (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of the Fourth International Conference on 3D Vision, pp 565–571
22.
Zurück zum Zitat Lu F, Wu F, Hu P et al (2017) Automatic 3D liver location and segmentation via convolutional neural network and graph cut. Int J Comput Assist Radiol Surg 12:171–182CrossRef Lu F, Wu F, Hu P et al (2017) Automatic 3D liver location and segmentation via convolutional neural network and graph cut. Int J Comput Assist Radiol Surg 12:171–182CrossRef
23.
Zurück zum Zitat Lakhani P, Sundaram B (2017) Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284:574–582CrossRef Lakhani P, Sundaram B (2017) Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284:574–582CrossRef
24.
Zurück zum Zitat Kooi T, Litjens G, van Ginneken B et al (2017) Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 35:303–312CrossRef Kooi T, Litjens G, van Ginneken B et al (2017) Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 35:303–312CrossRef
25.
Zurück zum Zitat Tompson J, Jain A, LeCun Y, Bregler C (2014) Joint training of a convolutional network and a graphical model for human pose estimation. Proc Adv Neural Inf Proc Syst 1:1799–1807 Tompson J, Jain A, LeCun Y, Bregler C (2014) Joint training of a convolutional network and a graphical model for human pose estimation. Proc Adv Neural Inf Proc Syst 1:1799–1807
26.
Zurück zum Zitat Newell A, Yang K, Deng J (2018) Stacked hourglass networks for human pose estimation. In: Proceedings of the European Conference on Computer Vision, pp 734–750 Newell A, Yang K, Deng J (2018) Stacked hourglass networks for human pose estimation. In: Proceedings of the European Conference on Computer Vision, pp 734–750
27.
Zurück zum Zitat Law H, Deng J (2019) Cornernet: detecting objects as paired keypoints. Int J Comput Vis 128:642–656CrossRef Law H, Deng J (2019) Cornernet: detecting objects as paired keypoints. Int J Comput Vis 128:642–656CrossRef
28.
Zurück zum Zitat Yi J, Wu P, Huang Q, Qu H, Metaxas DN (2020) Vertebra-focused landmark detection for scoliosis assessment. In: IEEE International Symposium on Biomedical Imaging, pp 736–740 Yi J, Wu P, Huang Q, Qu H, Metaxas DN (2020) Vertebra-focused landmark detection for scoliosis assessment. In: IEEE International Symposium on Biomedical Imaging, pp 736–740
29.
Zurück zum Zitat Toshev A, Szegedy C (2014) DeepPose: human pose estimation via deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1653–1660 Toshev A, Szegedy C (2014) DeepPose: human pose estimation via deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1653–1660
30.
Zurück zum Zitat Zhang J, Liu M, Shen D (2017) Detecting anatomical landmarks from limited medical image data using two-stage task-oriented deep neural networks. IEEE Trans Image Proc 26:4753–4764CrossRef Zhang J, Liu M, Shen D (2017) Detecting anatomical landmarks from limited medical image data using two-stage task-oriented deep neural networks. IEEE Trans Image Proc 26:4753–4764CrossRef
31.
Zurück zum Zitat Pfister T, Charles J, Zisserman A (2015) Flowing ConvNets for human pose estimation in videos. In: Proceedings of the IEEE International Conference on Computer Vision, pp 1913–1921 Pfister T, Charles J, Zisserman A (2015) Flowing ConvNets for human pose estimation in videos. In: Proceedings of the IEEE International Conference on Computer Vision, pp 1913–1921
32.
Zurück zum Zitat Payer C, Stern D, Bischof H, Urschler M (2019) Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med Image Anal 54:207–219CrossRef Payer C, Stern D, Bischof H, Urschler M (2019) Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med Image Anal 54:207–219CrossRef
33.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision: pp 1026–1034 He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision: pp 1026–1034
34.
Zurück zum Zitat Qian N (1999) On the momentum term in gradient descent learning algorithms. Neural Netw 12:145–151CrossRef Qian N (1999) On the momentum term in gradient descent learning algorithms. Neural Netw 12:145–151CrossRef
36.
Zurück zum Zitat Zheng Q, Shellikeri S, Huang H et al (2020) Deep learning measurement of leg length discrepancy in children based on radiographs. Radiology 296:152–158CrossRef Zheng Q, Shellikeri S, Huang H et al (2020) Deep learning measurement of leg length discrepancy in children based on radiographs. Radiology 296:152–158CrossRef
38.
Zurück zum Zitat Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6:1–48CrossRef Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6:1–48CrossRef
39.
Zurück zum Zitat Liu D, Zhou KS, Bernhardt D, Comaniciu D (2010) Search strategies for multiple landmark detection by submodular maximization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2831–2838 Liu D, Zhou KS, Bernhardt D, Comaniciu D (2010) Search strategies for multiple landmark detection by submodular maximization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2831–2838
40.
Zurück zum Zitat Ebner T, Stern D, Donner R et al (2014) Towards automatic bone age estimation from MRI: localization of 3D anatomical landmarks. Med Image Comput Assist Interv 2014:421–428 Ebner T, Stern D, Donner R et al (2014) Towards automatic bone age estimation from MRI: localization of 3D anatomical landmarks. Med Image Comput Assist Interv 2014:421–428
41.
Zurück zum Zitat Pan SJ, Yang Q (2018) A survey on transfer leaning. IEEE Trans Knowl Data Eng 22:1345–1359CrossRef Pan SJ, Yang Q (2018) A survey on transfer leaning. IEEE Trans Knowl Data Eng 22:1345–1359CrossRef
Metadaten
Titel
Anatomical landmark localization via convolutional neural networks for limb-length discrepancy measurements
verfasst von
Andy Tsai
Publikationsdatum
22.04.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Radiology / Ausgabe 8/2021
Print ISSN: 0301-0449
Elektronische ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-021-05004-z

Weitere Artikel der Ausgabe 8/2021

Pediatric Radiology 8/2021 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.