Skip to main content
Erschienen in: Clinical Oral Investigations 10/2019

28.01.2019 | Original Article

Angiogenic effect of platelet-rich concentrates on dental pulp stem cells in inflamed microenvironment

verfasst von: Priyadarshni Bindal, Nareshwaran Gnanasegaran, Umesh Bindal, Nazmul Haque, Thamil Selvee Ramasamy, Wen Lin Chai, Noor Hayaty Abu Kasim

Erschienen in: Clinical Oral Investigations | Ausgabe 10/2019

Einloggen, um Zugang zu erhalten

Abstract

Objective

In this study, we aimed to determine the suitable concentrations of human platelet lysate (HPL) and platelet-rich plasma (PRP) for maintaining the in vitro proliferative and angiogenic potential of inflamed dental pulp stem cells.

Materials and methods

Lipopolysaccharide (LPS)-induced inflamed dental pulp-derived stem cells (iDPSCs) were treated with different concentrations of HPL and PRP (10% and 20%) followed by determination of viability using Alamar Blue assay. Expression of angiogenesis-, adhesion-, and inflammation-regulating genes was also analyzed using RT-qPCR array. Furthermore, expression of growth factors at protein level in the cell culture microenvironment was measured using multiplex assay.

Results

Viability of iDPSCs was significantly (p < 0.05) higher in 20% HPL-supplemented media compared to iDPSCs. Expression of 10 out of 12 selected angiogenic genes, four out of seven adhesion molecules, and seven out of nine cytokine-producing genes were significantly (p < 0.05) higher in cells maintained in 20% HPL-supplemented media compared to that in FBS-supplemented media. Furthermore, expression of all the selected growth factors was significantly higher (p < 0.05) in the supernatants from 20% HPL media at 12 and 24 h post-incubation.

Conclusion

This study suggests that 20% HPL could be optimum to stimulate angiogenesis-related factors in iDPSCs while maintaining their viability.

Clinical relevance

This data may suggest the potential use of 20% HPL for expanding DPSCs scheduled for clinical trials for regenerative therapies including dental pulp regeneration.
Literatur
1.
Zurück zum Zitat Berkovitz BK, Holland GR, Moxham BJ (2016) Oral anatomy, histology and embryology. Elsevier Berkovitz BK, Holland GR, Moxham BJ (2016) Oral anatomy, histology and embryology. Elsevier
2.
Zurück zum Zitat Yu C, Abbott P (2007) An overview of the dental pulp: its functions and responses to injury. Aust Dent J 52(s1):S4–S6CrossRefPubMed Yu C, Abbott P (2007) An overview of the dental pulp: its functions and responses to injury. Aust Dent J 52(s1):S4–S6CrossRefPubMed
3.
Zurück zum Zitat Heyeraas K, Kvinnsland I (1991) Tissue pressure and blood flow in pulpal inflammation. Proc Finn Dent Soc 88:393–401 Heyeraas K, Kvinnsland I (1991) Tissue pressure and blood flow in pulpal inflammation. Proc Finn Dent Soc 88:393–401
4.
Zurück zum Zitat Farges J-C (2009) Understanding dental pulp innate immunity - a basis for identifying new targets for therapeutic agents that dampen inflammation. J Appl Oral Sci 17(3), i-i Farges J-C (2009) Understanding dental pulp innate immunity - a basis for identifying new targets for therapeutic agents that dampen inflammation. J Appl Oral Sci 17(3), i-i
5.
Zurück zum Zitat Yumoto H, Hirao K, Hosokawa Y, Kuramoto H, Takegawa D, Nakanishi T, Matsuo T (2018) The roles of odontoblasts in dental pulp innate immunity. Jpn Dent Sci Rev 54(3):105–117CrossRefPubMedPubMedCentral Yumoto H, Hirao K, Hosokawa Y, Kuramoto H, Takegawa D, Nakanishi T, Matsuo T (2018) The roles of odontoblasts in dental pulp innate immunity. Jpn Dent Sci Rev 54(3):105–117CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Yang J, Yuan G, Chen Z (2016) Pulp regeneration: current approaches and future challenges. Front Physiol 7 Yang J, Yuan G, Chen Z (2016) Pulp regeneration: current approaches and future challenges. Front Physiol 7
8.
Zurück zum Zitat Yazid FB, Gnanasegaran N, Kunasekaran W, Govindasamy V, Musa S (2014) Comparison of immunodulatory properties of dental pulp stem cells derived from healthy and inflamed teeth. Clin Oral Investig 18(9):2103–2112CrossRefPubMed Yazid FB, Gnanasegaran N, Kunasekaran W, Govindasamy V, Musa S (2014) Comparison of immunodulatory properties of dental pulp stem cells derived from healthy and inflamed teeth. Clin Oral Investig 18(9):2103–2112CrossRefPubMed
9.
Zurück zum Zitat Sakai V, Zhang Z, Dong Z, Neiva K, Machado M, Shi S et al (2010) SHED differentiate into functional odontoblasts and endothelium. J Dent Res 89(8):791–796CrossRefPubMed Sakai V, Zhang Z, Dong Z, Neiva K, Machado M, Shi S et al (2010) SHED differentiate into functional odontoblasts and endothelium. J Dent Res 89(8):791–796CrossRefPubMed
10.
Zurück zum Zitat Alongi DJ, Yamaza T, Song Y, Fouad AF, Romberg EE, Shi S, Tuan RS, Huang GTJ (2010) Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regen Med 5(4):617–631CrossRefPubMedPubMedCentral Alongi DJ, Yamaza T, Song Y, Fouad AF, Romberg EE, Shi S, Tuan RS, Huang GTJ (2010) Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regen Med 5(4):617–631CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Gnanasegaran N, Govindasamy V, Musa S, Abu Kasim NH (2018) Innate molecular signature of stem cells from carious teeth influences differentiation toward endodermal endpoint. J Immunol Regen Med 1:21–31CrossRef Gnanasegaran N, Govindasamy V, Musa S, Abu Kasim NH (2018) Innate molecular signature of stem cells from carious teeth influences differentiation toward endodermal endpoint. J Immunol Regen Med 1:21–31CrossRef
12.
Zurück zum Zitat Nör J (2006) Buonocore memorial lecture: tooth regeneration in operative dentistry. Oper Dent 31(6):633–642CrossRefPubMed Nör J (2006) Buonocore memorial lecture: tooth regeneration in operative dentistry. Oper Dent 31(6):633–642CrossRefPubMed
13.
Zurück zum Zitat Grando Mattuella L, Westphalen Bento L, de Figueiredo JA, Nor JE, de Araujo FB, Fossati AC (2007) Vascular endothelial growth factor and its relationship with the dental pulp. J Endodont 33(5):524–530CrossRef Grando Mattuella L, Westphalen Bento L, de Figueiredo JA, Nor JE, de Araujo FB, Fossati AC (2007) Vascular endothelial growth factor and its relationship with the dental pulp. J Endodont 33(5):524–530CrossRef
14.
Zurück zum Zitat Gorin C, Rochefort GY, Bascetin R, Ying H, Lesieur J, Sadoine J, Beckouche N, Berndt S, Novais A, Lesage M, Hosten B, Vercellino L, Merlet P, le-Denmat D, Marchiol C, Letourneur D, Nicoletti A, Vital SO, Poliard A, Salmon B, Muller L, Chaussain C, Germain S (2016) Priming dental pulp stem cells with fibroblast growth factor-2 increases angiogenesis of implanted tissue-engineered constructs through hepatocyte growth factor and vascular endothelial growth factor secretion. Stem Cells Transl Med 5(3):392–404CrossRefPubMedPubMedCentral Gorin C, Rochefort GY, Bascetin R, Ying H, Lesieur J, Sadoine J, Beckouche N, Berndt S, Novais A, Lesage M, Hosten B, Vercellino L, Merlet P, le-Denmat D, Marchiol C, Letourneur D, Nicoletti A, Vital SO, Poliard A, Salmon B, Muller L, Chaussain C, Germain S (2016) Priming dental pulp stem cells with fibroblast growth factor-2 increases angiogenesis of implanted tissue-engineered constructs through hepatocyte growth factor and vascular endothelial growth factor secretion. Stem Cells Transl Med 5(3):392–404CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Gonçalves SB, Dong Z, Bramante CM, Holland GR, Smith AJ, Nör JE (2007) Tooth slice–based models for the study of human dental pulp angiogenesis. J Endod 33(7):811–814CrossRefPubMed Gonçalves SB, Dong Z, Bramante CM, Holland GR, Smith AJ, Nör JE (2007) Tooth slice–based models for the study of human dental pulp angiogenesis. J Endod 33(7):811–814CrossRefPubMed
16.
Zurück zum Zitat Mullane EM, Dong Z, Sedgley C, Hu J-C, Botero T, Holland G et al (2008) Effects of VEGF and FGF2 on the revascularization of severed human dental pulps. J Dent Res 87(12):1144–1148CrossRefPubMed Mullane EM, Dong Z, Sedgley C, Hu J-C, Botero T, Holland G et al (2008) Effects of VEGF and FGF2 on the revascularization of severed human dental pulps. J Dent Res 87(12):1144–1148CrossRefPubMed
17.
Zurück zum Zitat Andia I, Maffulli N (2013) Platelet-rich plasma for managing pain and inflammation in osteoarthritis. Nat Rev Rheumatol 9(12):721–730CrossRefPubMed Andia I, Maffulli N (2013) Platelet-rich plasma for managing pain and inflammation in osteoarthritis. Nat Rev Rheumatol 9(12):721–730CrossRefPubMed
18.
Zurück zum Zitat Teixeira LSM, Leijten JC, Wennink JW, Chatterjea AG, Feijen J, van Blitterswijk CA et al (2012) The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation. Biomaterials 33(14):3651–3661CrossRef Teixeira LSM, Leijten JC, Wennink JW, Chatterjea AG, Feijen J, van Blitterswijk CA et al (2012) The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation. Biomaterials 33(14):3651–3661CrossRef
19.
Zurück zum Zitat Kajikawa Y, Morihara T, Sakamoto H, Matsuda Ki, Oshima Y, Yoshida A, Nagae M, Arai Y, Kawata M, Kubo T (2008) Platelet-rich plasma enhances the initial mobilization of circulation-derived cells for tendon healing. J Cell Physiol 215(3):837–845CrossRefPubMed Kajikawa Y, Morihara T, Sakamoto H, Matsuda Ki, Oshima Y, Yoshida A, Nagae M, Arai Y, Kawata M, Kubo T (2008) Platelet-rich plasma enhances the initial mobilization of circulation-derived cells for tendon healing. J Cell Physiol 215(3):837–845CrossRefPubMed
20.
Zurück zum Zitat El-Sharkawy H, Kantarci A, Deady J, Hasturk H, Liu H, Alshahat M et al (2007) Platelet-rich plasma: growth factors and pro-and anti-inflammatory properties. J Periodontol 78(4):661–669CrossRefPubMed El-Sharkawy H, Kantarci A, Deady J, Hasturk H, Liu H, Alshahat M et al (2007) Platelet-rich plasma: growth factors and pro-and anti-inflammatory properties. J Periodontol 78(4):661–669CrossRefPubMed
21.
Zurück zum Zitat Hammond JW, Hinton RY, Curl LA, Muriel JM, Lovering RM (2009) Use of autologous platelet-rich plasma to treat muscle strain injuries. Am J Sports Med 37(6):1135–1142CrossRefPubMedPubMedCentral Hammond JW, Hinton RY, Curl LA, Muriel JM, Lovering RM (2009) Use of autologous platelet-rich plasma to treat muscle strain injuries. Am J Sports Med 37(6):1135–1142CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Sampson S, Gerhardt M, Mandelbaum B (2008) Platelet rich plasma injection grafts for musculoskeletal injuries: a review. Current Reviews in Musculoskeletal Medicine 1(3–4):165–174CrossRefPubMedPubMedCentral Sampson S, Gerhardt M, Mandelbaum B (2008) Platelet rich plasma injection grafts for musculoskeletal injuries: a review. Current Reviews in Musculoskeletal Medicine 1(3–4):165–174CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Govindasamy V, Abdullah AN, Ronald VS, Musa S, Ab Aziz ZA, Zain RB et al (2010) Inherent differential propensity of dental pulp stem cells derived from human deciduous and permanent teeth. J Endodont 36(9):1504–1515CrossRef Govindasamy V, Abdullah AN, Ronald VS, Musa S, Ab Aziz ZA, Zain RB et al (2010) Inherent differential propensity of dental pulp stem cells derived from human deciduous and permanent teeth. J Endodont 36(9):1504–1515CrossRef
24.
Zurück zum Zitat Bindal P, Ramasamy TS, Kasim NHA, Gnanasegaran N, Chai WL (2018) Immune responses of human dental pulp stem cells in lipopolysaccharide-induced microenvironment. Cell Biol Int 42(7):832–840CrossRefPubMed Bindal P, Ramasamy TS, Kasim NHA, Gnanasegaran N, Chai WL (2018) Immune responses of human dental pulp stem cells in lipopolysaccharide-induced microenvironment. Cell Biol Int 42(7):832–840CrossRefPubMed
25.
Zurück zum Zitat Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM (1998) Chemotactic properties of angiopoietin-1 and-2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem 273(29):18514–18521CrossRefPubMed Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM (1998) Chemotactic properties of angiopoietin-1 and-2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem 273(29):18514–18521CrossRefPubMed
26.
Zurück zum Zitat Gao B, Zhou X, Zhou X, Pi C, Xu R, Wan M, Yang J, Zhou Y, Liu C, Sun J, Zhang Y, Zheng L (2015) BMP7 and EREG contribute to the inductive potential of dental mesenchyme. Sci Rep 5:9903CrossRefPubMedPubMedCentral Gao B, Zhou X, Zhou X, Pi C, Xu R, Wan M, Yang J, Zhou Y, Liu C, Sun J, Zhang Y, Zheng L (2015) BMP7 and EREG contribute to the inductive potential of dental mesenchyme. Sci Rep 5:9903CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141(7):1659–1673CrossRefPubMedPubMedCentral Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141(7):1659–1673CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Orlandini M, Marconcini L, Ferruzzi R, Oliviero S (1996) Identification of a c-fos-induced gene that is related to the platelet-derived growth factor/vascular endothelial growth factor family. Proc Natl Acad Sci 93(21):11675–11680CrossRefPubMed Orlandini M, Marconcini L, Ferruzzi R, Oliviero S (1996) Identification of a c-fos-induced gene that is related to the platelet-derived growth factor/vascular endothelial growth factor family. Proc Natl Acad Sci 93(21):11675–11680CrossRefPubMed
29.
Zurück zum Zitat Sainson R, Aoto J, Nakatsu M, Holderfield M, Conn E, Koller E, Hughes CC (2005) Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J 19(8):1027–1029CrossRefPubMed Sainson R, Aoto J, Nakatsu M, Holderfield M, Conn E, Koller E, Hughes CC (2005) Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J 19(8):1027–1029CrossRefPubMed
30.
Zurück zum Zitat Sato N, Beitz J, Kato J, Yamamoto M, Clark J, Calabresi P et al (1993) Platelet-derived growth factor indirectly stimulates angiogenesis in vitro. Am J Pathol 142(4):1119PubMedPubMedCentral Sato N, Beitz J, Kato J, Yamamoto M, Clark J, Calabresi P et al (1993) Platelet-derived growth factor indirectly stimulates angiogenesis in vitro. Am J Pathol 142(4):1119PubMedPubMedCentral
31.
Zurück zum Zitat Ferrari G, Cook BD, Terushkin V, Pintucci G, Mignatti P (2009) Transforming growth factor-beta 1 (TGF-β1) induces angiogenesis through vascular endothelial growth factor (VEGF)-mediated apoptosis. J Cell Physiol 219(2):449–458CrossRefPubMedPubMedCentral Ferrari G, Cook BD, Terushkin V, Pintucci G, Mignatti P (2009) Transforming growth factor-beta 1 (TGF-β1) induces angiogenesis through vascular endothelial growth factor (VEGF)-mediated apoptosis. J Cell Physiol 219(2):449–458CrossRefPubMedPubMedCentral
32.
33.
Zurück zum Zitat Geretti E, Klagsbrun M (2007) Neuropilins: novel targets for anti-angiogenesis therapies. Cell Adhes Migr 1(2):56–61CrossRef Geretti E, Klagsbrun M (2007) Neuropilins: novel targets for anti-angiogenesis therapies. Cell Adhes Migr 1(2):56–61CrossRef
34.
Zurück zum Zitat Limb GA, Chignell AH, Green W, LeRoy F, Dumonde DC (1996) Distribution of TNF alpha and its reactive vascular adhesion molecules in fibrovascular membranes of proliferative diabetic retinopathy. Br J Ophthalmol 80(2):168–173CrossRefPubMedPubMedCentral Limb GA, Chignell AH, Green W, LeRoy F, Dumonde DC (1996) Distribution of TNF alpha and its reactive vascular adhesion molecules in fibrovascular membranes of proliferative diabetic retinopathy. Br J Ophthalmol 80(2):168–173CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Adachi H, Tsujimoto M (2002) FEEL-1, a novel scavenger receptor with in vitro bacteria-binding and angiogenesis-modulating activities. J Biol Chem 277(37):34264–34270CrossRefPubMed Adachi H, Tsujimoto M (2002) FEEL-1, a novel scavenger receptor with in vitro bacteria-binding and angiogenesis-modulating activities. J Biol Chem 277(37):34264–34270CrossRefPubMed
36.
Zurück zum Zitat Salcedo R, Young HA, Ponce ML, Ward JM, Kleinman HK, Murphy WJ, Oppenheim JJ (2001) Eotaxin (CCL11) induces in vivo angiogenic responses by human CCR3+ endothelial cells. J Immunol 166(12):7571–7578CrossRefPubMed Salcedo R, Young HA, Ponce ML, Ward JM, Kleinman HK, Murphy WJ, Oppenheim JJ (2001) Eotaxin (CCL11) induces in vivo angiogenic responses by human CCR3+ endothelial cells. J Immunol 166(12):7571–7578CrossRefPubMed
37.
Zurück zum Zitat Stamatovic SM, Keep RF, Mostarica-Stojkovic M, Andjelkovic AV (2006) CCL2 regulates angiogenesis via activation of Ets-1 transcription factor. J Immunol 177(4):2651–2661CrossRefPubMed Stamatovic SM, Keep RF, Mostarica-Stojkovic M, Andjelkovic AV (2006) CCL2 regulates angiogenesis via activation of Ets-1 transcription factor. J Immunol 177(4):2651–2661CrossRefPubMed
38.
Zurück zum Zitat Sauteur L, Krudewig A, Herwig L, Ehrenfeuchter N, Lenard A, Affolter M, Belting HG (2014) Cdh5/VE-cadherin promotes endothelial cell interface elongation via cortical actin polymerization during angiogenic sprouting. Cell Rep 9(2):504–513CrossRefPubMed Sauteur L, Krudewig A, Herwig L, Ehrenfeuchter N, Lenard A, Affolter M, Belting HG (2014) Cdh5/VE-cadherin promotes endothelial cell interface elongation via cortical actin polymerization during angiogenic sprouting. Cell Rep 9(2):504–513CrossRefPubMed
39.
Zurück zum Zitat Hayashi H, Sano H, Seo S, Kume T (2008) The Foxc2 transcription factor regulates angiogenesis via induction of integrin β3 expression. J Biol Chem 283(35):23791–23800CrossRefPubMedPubMedCentral Hayashi H, Sano H, Seo S, Kume T (2008) The Foxc2 transcription factor regulates angiogenesis via induction of integrin β3 expression. J Biol Chem 283(35):23791–23800CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Jablonska J, Leschner S, Westphal K, Lienenklaus S, Weiss S (2010) Neutrophils responsive to endogenous IFN-β regulate tumor angiogenesis and growth in a mouse tumor model. J Clin Invest 120(4):1151–1164CrossRefPubMedPubMedCentral Jablonska J, Leschner S, Westphal K, Lienenklaus S, Weiss S (2010) Neutrophils responsive to endogenous IFN-β regulate tumor angiogenesis and growth in a mouse tumor model. J Clin Invest 120(4):1151–1164CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Apte RN, Voronov E (2008) Is interleukin-1 a good or bad ‘guy’in tumor immunobiology and immunotherapy? Immunol Rev 222(1):222–241CrossRefPubMed Apte RN, Voronov E (2008) Is interleukin-1 a good or bad ‘guy’in tumor immunobiology and immunotherapy? Immunol Rev 222(1):222–241CrossRefPubMed
42.
Zurück zum Zitat Fan Y, Ye J, Shen F, Zhu Y, Yeghiazarians Y, Zhu W, Chen Y, Lawton MT, Young WL, Yang GY (2008) Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro. J Cereb Blood Flow Metab 28(1):90–98CrossRefPubMed Fan Y, Ye J, Shen F, Zhu Y, Yeghiazarians Y, Zhu W, Chen Y, Lawton MT, Young WL, Yang GY (2008) Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro. J Cereb Blood Flow Metab 28(1):90–98CrossRefPubMed
43.
Zurück zum Zitat Fajardo LF, Kwan HH, Kowalski J, Prionas S, Allison A (1992) Dual role of tumor necrosis factor-alpha in angiogenesis. Am J Pathol 140(3):539–544PubMedPubMedCentral Fajardo LF, Kwan HH, Kowalski J, Prionas S, Allison A (1992) Dual role of tumor necrosis factor-alpha in angiogenesis. Am J Pathol 140(3):539–544PubMedPubMedCentral
44.
Zurück zum Zitat Wang D, Wang H, Brown J, Daikoku T, Ning W, Shi Q, Richmond A, Strieter R, Dey SK, DuBois RN (2006) CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J Exp Med 203(4):941–951CrossRefPubMedPubMedCentral Wang D, Wang H, Brown J, Daikoku T, Ning W, Shi Q, Richmond A, Strieter R, Dey SK, DuBois RN (2006) CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J Exp Med 203(4):941–951CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Billottet C, Quemener C, Bikfalvi A (2013) CXCR3, a double-edged sword in tumor progression and angiogenesis. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1836(2):287–295CrossRef Billottet C, Quemener C, Bikfalvi A (2013) CXCR3, a double-edged sword in tumor progression and angiogenesis. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1836(2):287–295CrossRef
46.
Zurück zum Zitat Rowland KJ, Diaz-Miron J, Guo J, Erwin CR, Mei J, Worthen GS, Warner BW (2014) CXCL5 is required for angiogenesis, but not structural adaptation after small bowel resection. J Pediatr Surg 49(6):976–980CrossRefPubMedPubMedCentral Rowland KJ, Diaz-Miron J, Guo J, Erwin CR, Mei J, Worthen GS, Warner BW (2014) CXCL5 is required for angiogenesis, but not structural adaptation after small bowel resection. J Pediatr Surg 49(6):976–980CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Bouchentouf M, Paradis P, Forner KA, Cuerquis J, Boivin MN, Zheng J, Boulassel MR, Routy JP, Schiffrin EL, Galipeau J (2010) Monocyte derivatives promote angiogenesis and myocyte survival in a model of myocardial infarction. Cell Transplant 19(4):369–386CrossRefPubMed Bouchentouf M, Paradis P, Forner KA, Cuerquis J, Boivin MN, Zheng J, Boulassel MR, Routy JP, Schiffrin EL, Galipeau J (2010) Monocyte derivatives promote angiogenesis and myocyte survival in a model of myocardial infarction. Cell Transplant 19(4):369–386CrossRefPubMed
49.
Zurück zum Zitat Praidou A, Androudi S, Brazitikos P, Karakiulakis G, Papakonstantinou E, Dimitrakos S (2010) Angiogenic growth factors and their inhibitors in diabetic retinopathy. Curr Diabetes Rev 6(5):304–312CrossRefPubMed Praidou A, Androudi S, Brazitikos P, Karakiulakis G, Papakonstantinou E, Dimitrakos S (2010) Angiogenic growth factors and their inhibitors in diabetic retinopathy. Curr Diabetes Rev 6(5):304–312CrossRefPubMed
50.
Zurück zum Zitat Zhu Y, Yuan M, Meng H, Wang A, Guo Q, Wang Y et al (2013) Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review. Osteoarthr Cartil 21(11):1627–1637CrossRefPubMed Zhu Y, Yuan M, Meng H, Wang A, Guo Q, Wang Y et al (2013) Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review. Osteoarthr Cartil 21(11):1627–1637CrossRefPubMed
51.
Zurück zum Zitat Whitman DH, Berry RL, Green DM (1997) Platelet gel: an autologous alternative to fibrin glue with applications in oral and maxillofacial surgery. J Oral Maxillofac Surg 55(11):1294–1299CrossRefPubMed Whitman DH, Berry RL, Green DM (1997) Platelet gel: an autologous alternative to fibrin glue with applications in oral and maxillofacial surgery. J Oral Maxillofac Surg 55(11):1294–1299CrossRefPubMed
52.
Zurück zum Zitat Andia I, Rubio-Azpeitia E (2014) Angiogenic and innate immune responses triggered by PRP in tendon cells are not modified by hyperuricemia. Muscles, ligaments and tendons journal 4(3):292CrossRefPubMedPubMedCentral Andia I, Rubio-Azpeitia E (2014) Angiogenic and innate immune responses triggered by PRP in tendon cells are not modified by hyperuricemia. Muscles, ligaments and tendons journal 4(3):292CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Li C-y, Wu X-y, Tong J-b, Yang X-x, Zhao J-l, Zheng Q-f, Zhao GB, Ma ZJ (2015) Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther 6(1):55CrossRefPubMedPubMedCentral Li C-y, Wu X-y, Tong J-b, Yang X-x, Zhao J-l, Zheng Q-f, Zhao GB, Ma ZJ (2015) Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther 6(1):55CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Forte D, Ciciarello M, Valerii MC, De Fazio L, Cavazza E, Giordano R et al (2015) Human cord blood-derived platelet lysate enhances the therapeutic activity of adipose-derived mesenchymal stromal cells isolated from Crohn’s disease patients in a mouse model of colitis. Stem Cell Res Ther 6(1):170CrossRefPubMedPubMedCentral Forte D, Ciciarello M, Valerii MC, De Fazio L, Cavazza E, Giordano R et al (2015) Human cord blood-derived platelet lysate enhances the therapeutic activity of adipose-derived mesenchymal stromal cells isolated from Crohn’s disease patients in a mouse model of colitis. Stem Cell Res Ther 6(1):170CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Crespo-Diaz R, Behfar A, Butler GW, Padley DJ, Sarr MG, Bartunek J, Dietz AB, Terzic A (2011) Platelet lysate consisting of a natural repair proteome supports human mesenchymal stem cell proliferation and chromosomal stability. Cell Transplant 20(6):797–811CrossRefPubMed Crespo-Diaz R, Behfar A, Butler GW, Padley DJ, Sarr MG, Bartunek J, Dietz AB, Terzic A (2011) Platelet lysate consisting of a natural repair proteome supports human mesenchymal stem cell proliferation and chromosomal stability. Cell Transplant 20(6):797–811CrossRefPubMed
56.
Zurück zum Zitat Fortunato, T.M., Beltrami, C., Emanueli, C., De Bank, P.A., Pula, G. (2016). Platelet lysate gel and endothelial progenitors stimulate microvascular network formation in vitro: tissue engineering implications. Sci Rep, 6 Fortunato, T.M., Beltrami, C., Emanueli, C., De Bank, P.A., Pula, G. (2016). Platelet lysate gel and endothelial progenitors stimulate microvascular network formation in vitro: tissue engineering implications. Sci Rep, 6
57.
Zurück zum Zitat Oliveira SM, Pirraco RP, Marques AP, Santo VE, Gomes ME, Reis RL et al. (2015). Platelet lysate-based pro-angiogenic nanocoatings. Acta Biomater Oliveira SM, Pirraco RP, Marques AP, Santo VE, Gomes ME, Reis RL et al. (2015). Platelet lysate-based pro-angiogenic nanocoatings. Acta Biomater
58.
Zurück zum Zitat Middleton KK, Barro V, Muller B, Terada S, Fu FH (2012) Evaluation of the effects of platelet-rich plasma (PRP) therapy involved in the healing of sports-related soft tissue injuries. The Iowa Orthopaedic Journal 32:150PubMedPubMedCentral Middleton KK, Barro V, Muller B, Terada S, Fu FH (2012) Evaluation of the effects of platelet-rich plasma (PRP) therapy involved in the healing of sports-related soft tissue injuries. The Iowa Orthopaedic Journal 32:150PubMedPubMedCentral
59.
Zurück zum Zitat Galliera E, Corsi M, Banfi G (2011) Platelet rich plasma therapy: inflammatory molecules involved in tissue healing. J Biol Regul Homeost Agents 26(2 Suppl 1):35S–42S Galliera E, Corsi M, Banfi G (2011) Platelet rich plasma therapy: inflammatory molecules involved in tissue healing. J Biol Regul Homeost Agents 26(2 Suppl 1):35S–42S
60.
Zurück zum Zitat Barsotti MC, Losi P, Briganti E, Sanguinetti E, Magera A, Al Kayal T et al (2013) Effect of platelet lysate on human cells involved in different phases of wound healing. PLoS One 8(12):e84753CrossRefPubMed Barsotti MC, Losi P, Briganti E, Sanguinetti E, Magera A, Al Kayal T et al (2013) Effect of platelet lysate on human cells involved in different phases of wound healing. PLoS One 8(12):e84753CrossRefPubMed
61.
Zurück zum Zitat Bendinelli P, Matteucci E, Dogliotti G, Corsi MM, Banfi G, Maroni P, Desiderio MA (2010) Molecular basis of anti-inflammatory action of platelet-rich plasma on human chondrocytes: mechanisms of NF-κB inhibition via HGF. J Cell Physiol 225(3):757–766CrossRefPubMed Bendinelli P, Matteucci E, Dogliotti G, Corsi MM, Banfi G, Maroni P, Desiderio MA (2010) Molecular basis of anti-inflammatory action of platelet-rich plasma on human chondrocytes: mechanisms of NF-κB inhibition via HGF. J Cell Physiol 225(3):757–766CrossRefPubMed
62.
Zurück zum Zitat Drago L, Bortolin M, Vassena C, Taschieri S, Del Fabbro M (2013) Antimicrobial activity of pure platelet-rich plasma against microorganisms isolated from oral cavity. BMC Microbiol 13(1):1CrossRef Drago L, Bortolin M, Vassena C, Taschieri S, Del Fabbro M (2013) Antimicrobial activity of pure platelet-rich plasma against microorganisms isolated from oral cavity. BMC Microbiol 13(1):1CrossRef
63.
Zurück zum Zitat Losi P, Briganti E, Errico C, Lisella A, Sanguinetti E, Chiellini F, Soldani G (2013) Fibrin-based scaffold incorporating VEGF-and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomater 9(8):7814–7821CrossRefPubMed Losi P, Briganti E, Errico C, Lisella A, Sanguinetti E, Chiellini F, Soldani G (2013) Fibrin-based scaffold incorporating VEGF-and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomater 9(8):7814–7821CrossRefPubMed
Metadaten
Titel
Angiogenic effect of platelet-rich concentrates on dental pulp stem cells in inflamed microenvironment
verfasst von
Priyadarshni Bindal
Nareshwaran Gnanasegaran
Umesh Bindal
Nazmul Haque
Thamil Selvee Ramasamy
Wen Lin Chai
Noor Hayaty Abu Kasim
Publikationsdatum
28.01.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Clinical Oral Investigations / Ausgabe 10/2019
Print ISSN: 1432-6981
Elektronische ISSN: 1436-3771
DOI
https://doi.org/10.1007/s00784-019-02811-5

Weitere Artikel der Ausgabe 10/2019

Clinical Oral Investigations 10/2019 Zur Ausgabe

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Zahnmedizin und bleiben Sie gut informiert – ganz bequem per eMail.