Skip to main content
Erschienen in: Inflammation 3/2016

14.03.2016 | ORIGINAL ARTICLE

Angiopoietin-Like Protein 7 Promotes an Inflammatory Phenotype in RAW264.7 Macrophages Through the P38 MAPK Signaling Pathway

verfasst von: Tao Qian, Kun Wang, Jiesheng Cui, Yiduo He, Zaiqing Yang

Erschienen in: Inflammation | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

Angiopoietin-like protein 7 (Angptl7) has been extensively studied for decades, but its potential immune functions have not been characterized. Hence, we investigated the relationship between Angptl7 and inflammation by using RAW264.7 monocyte/macrophage cells. The expression of genes encoding inflammation-associated factors cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, IL-10, and transforming growth factor beta 1 (TGF-β1)) decreased after RAW264.7 cells were treated with anti-Angptl7 polyclonal antibody but increased after the cells were transfected with an Angptl7-expressing plasmid. Angptl7 overexpression enhanced phagocytosis and inhibited the proliferation of RAW264.7 cells. In addition, Angptl7 antagonized the anti-inflammatory effects of TGF-β1 and dexamethasone. Pathway analysis showed that Angptl7 promoted the phosphorylation of both p65 and p38, but only the P38 mitogen-activated protein kinase (MAPK) signaling pathway mediated Angptl7-associated inflammatory functions. Additionally, after 1 week of daily intraperitoneal injections of recombinant TNF-α in a mouse model of peripheral inflammation, Angptl7 expression increased in the mouse eyes. Thus, Angptl7 is a factor that promotes pro-inflammatory responses in macrophages through the P38 MAPK signaling pathway and represents a potential therapeutic target for treatment of inflammatory diseases.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kadomatsu, T., M. Tabata, and Y. Oike. 2011. Angiopoietin-like proteins: emerging targets for treatment of obesity and related metabolic diseases. FEBS Journal 278(4): 559–64.CrossRefPubMed Kadomatsu, T., M. Tabata, and Y. Oike. 2011. Angiopoietin-like proteins: emerging targets for treatment of obesity and related metabolic diseases. FEBS Journal 278(4): 559–64.CrossRefPubMed
2.
Zurück zum Zitat Hato, T., M. Tabata, and Y. Oike. 2008. The role of angiopoietin-like proteins in angiogenesis and metabolism. Trends in Cardiovascular Medicine 18(1): 6–14.CrossRefPubMed Hato, T., M. Tabata, and Y. Oike. 2008. The role of angiopoietin-like proteins in angiogenesis and metabolism. Trends in Cardiovascular Medicine 18(1): 6–14.CrossRefPubMed
3.
Zurück zum Zitat Santulli, G. 2014. Angiopoietin-like proteins: a comprehensive look. Frontiers in Endocrinol (Lausanne) 5: 4. Santulli, G. 2014. Angiopoietin-like proteins: a comprehensive look. Frontiers in Endocrinol (Lausanne) 5: 4.
4.
Zurück zum Zitat Peek, R., B.E. van Gelderen, M. Bruinenberg, and A. Kijlstra. 1998. Molecular cloning of a new angiopoietin-like factor from the human cornea. Investigative Ophthalmology & Visual Science 39(10): 1782–8. Peek, R., B.E. van Gelderen, M. Bruinenberg, and A. Kijlstra. 1998. Molecular cloning of a new angiopoietin-like factor from the human cornea. Investigative Ophthalmology & Visual Science 39(10): 1782–8.
5.
Zurück zum Zitat Peek, R., R.A. Kammerer, S. Frank, I. Otte-Holler, and J.R. Westphal. 2002. The angiopoietin-like factor cornea-derived transcript 6 is a putative morphogen for human cornea. Journal of Biological Chemistry 277(1): 686–93.CrossRefPubMed Peek, R., R.A. Kammerer, S. Frank, I. Otte-Holler, and J.R. Westphal. 2002. The angiopoietin-like factor cornea-derived transcript 6 is a putative morphogen for human cornea. Journal of Biological Chemistry 277(1): 686–93.CrossRefPubMed
6.
Zurück zum Zitat Comes, N., L.K. Buie, and T. Borras. 2011. Evidence for a role of angiopoietin-like 7 (ANGPTL7) in extracellular matrix formation of the human trabecular meshwork: implications for glaucoma. Genes to Cells 16(2): 243–59.CrossRefPubMedPubMedCentral Comes, N., L.K. Buie, and T. Borras. 2011. Evidence for a role of angiopoietin-like 7 (ANGPTL7) in extracellular matrix formation of the human trabecular meshwork: implications for glaucoma. Genes to Cells 16(2): 243–59.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Kuchtey, J., M.E. Kallberg, K.N. Gelatt, T. Rinkoski, A.M. Komaromy, and R.W. Kuchtey. 2008. Angiopoietin-like 7 secretion is induced by glaucoma stimuli and its concentration is elevated in glaucomatous aqueous humor. Investigative Ophthalmology & Visual Science 49(8): 3438–48.CrossRef Kuchtey, J., M.E. Kallberg, K.N. Gelatt, T. Rinkoski, A.M. Komaromy, and R.W. Kuchtey. 2008. Angiopoietin-like 7 secretion is induced by glaucoma stimuli and its concentration is elevated in glaucomatous aqueous humor. Investigative Ophthalmology & Visual Science 49(8): 3438–48.CrossRef
8.
Zurück zum Zitat Parri, M., L. Pietrovito, A. Grandi, S. Campagnoli, E. De Camilli, F. Bianchini, et al. 2014. Angiopoietin-like 7, a novel pro-angiogenetic factor over-expressed in cancer. Angiogenesis. Parri, M., L. Pietrovito, A. Grandi, S. Campagnoli, E. De Camilli, F. Bianchini, et al. 2014. Angiopoietin-like 7, a novel pro-angiogenetic factor over-expressed in cancer. Angiogenesis.
9.
Zurück zum Zitat Lim, S.Y., A. Gordon-Weeks, D. Allen, V. Kersemans, J. Beech, S. Smart, et al. 2015. CD11b myeloid cells support hepatic metastasis through downregulation of angiopoietin-like 7 in cancer cells. Hepatology. Lim, S.Y., A. Gordon-Weeks, D. Allen, V. Kersemans, J. Beech, S. Smart, et al. 2015. CD11b myeloid cells support hepatic metastasis through downregulation of angiopoietin-like 7 in cancer cells. Hepatology.
10.
Zurück zum Zitat Toyono, T., T. Usui, S. Yokoo, Y. Taketani, S. Nakagawa, M. Kuroda, et al. 2015. Angiopoietin-like 7 is an anti-angiogenic protein required to prevent vascularization of the cornea. PLoS One 10(1): e0116838.CrossRefPubMedPubMedCentral Toyono, T., T. Usui, S. Yokoo, Y. Taketani, S. Nakagawa, M. Kuroda, et al. 2015. Angiopoietin-like 7 is an anti-angiogenic protein required to prevent vascularization of the cornea. PLoS One 10(1): e0116838.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Xiao, Y., Z. Jiang, Y. Li, W. Ye, B. Jia, M. Zhang, et al. 2015. ANGPTL7 regulates the expansion and repopulation of human hematopoietic stem and progenitor cells. Haematologica. Xiao, Y., Z. Jiang, Y. Li, W. Ye, B. Jia, M. Zhang, et al. 2015. ANGPTL7 regulates the expansion and repopulation of human hematopoietic stem and progenitor cells. Haematologica.
12.
Zurück zum Zitat Hansson, G.K. 2005. Inflammation, atherosclerosis, and coronary artery disease. New England Journal of Medicine 352(16): 1685–95.CrossRefPubMed Hansson, G.K. 2005. Inflammation, atherosclerosis, and coronary artery disease. New England Journal of Medicine 352(16): 1685–95.CrossRefPubMed
13.
Zurück zum Zitat Dandona, P., A. Aljada, and A. Bandyopadhyay. 2004. Inflammation: the link between insulin resistance, obesity and diabetes. Trends in Immunology 25(1): 4–7.CrossRefPubMed Dandona, P., A. Aljada, and A. Bandyopadhyay. 2004. Inflammation: the link between insulin resistance, obesity and diabetes. Trends in Immunology 25(1): 4–7.CrossRefPubMed
14.
Zurück zum Zitat Bergman, M., M. Djaldetti, H. Salman, and H. Bessler. 2011. Inflammation and colorectal cancer: does aspirin affect the interaction between cancer and immune cells? Inflammation 34(1): 22–8.CrossRefPubMed Bergman, M., M. Djaldetti, H. Salman, and H. Bessler. 2011. Inflammation and colorectal cancer: does aspirin affect the interaction between cancer and immune cells? Inflammation 34(1): 22–8.CrossRefPubMed
15.
16.
Zurück zum Zitat Toso, C., J.A. Emamaullee, S. Merani, and A.M. Shapiro. 2008. The role of macrophage migration inhibitory factor on glucose metabolism and diabetes. Diabetologia 51(11): 1937–46.CrossRefPubMed Toso, C., J.A. Emamaullee, S. Merani, and A.M. Shapiro. 2008. The role of macrophage migration inhibitory factor on glucose metabolism and diabetes. Diabetologia 51(11): 1937–46.CrossRefPubMed
17.
Zurück zum Zitat Tang, S., X.Y. Shen, H.Q. Huang, S.W. Xu, Y. Yu, C.H. Zhou, et al. 2011. Cryptotanshinone suppressed inflammatory cytokines secretion in RAW264.7 macrophages through inhibition of the NF-kappaB and MAPK signaling pathways. Inflammation 34(2): 111–8.CrossRefPubMed Tang, S., X.Y. Shen, H.Q. Huang, S.W. Xu, Y. Yu, C.H. Zhou, et al. 2011. Cryptotanshinone suppressed inflammatory cytokines secretion in RAW264.7 macrophages through inhibition of the NF-kappaB and MAPK signaling pathways. Inflammation 34(2): 111–8.CrossRefPubMed
18.
Zurück zum Zitat Ahn, C.B., W.K. Jung, S.J. Park, Y.T. Kim, W.S. Kim, and J.Y. Je. 2015. Gallic acid-g-chitosan modulates inflammatory responses in LPS-stimulated RAW264.7 cells via NF-kappaB, AP-1, and MAPK pathways. Inflammation. Ahn, C.B., W.K. Jung, S.J. Park, Y.T. Kim, W.S. Kim, and J.Y. Je. 2015. Gallic acid-g-chitosan modulates inflammatory responses in LPS-stimulated RAW264.7 cells via NF-kappaB, AP-1, and MAPK pathways. Inflammation.
19.
Zurück zum Zitat Fengyang, L., F. Yunhe, L. Bo, L. Zhicheng, L. Depeng, L. Dejie, et al. 2012. Stevioside suppressed inflammatory cytokine secretion by downregulation of NF-kappaB and MAPK signaling pathways in LPS-stimulated RAW264.7 cells. Inflammation 35(5): 1669–75.CrossRefPubMed Fengyang, L., F. Yunhe, L. Bo, L. Zhicheng, L. Depeng, L. Dejie, et al. 2012. Stevioside suppressed inflammatory cytokine secretion by downregulation of NF-kappaB and MAPK signaling pathways in LPS-stimulated RAW264.7 cells. Inflammation 35(5): 1669–75.CrossRefPubMed
20.
Zurück zum Zitat Hinds Jr., T.D., S. Ramakrishnan, H.A. Cash, L.A. Stechschulte, G. Heinrich, S.M. Najjar, et al. 2010. Discovery of glucocorticoid receptor-beta in mice with a role in metabolism. Molecular Endocrinology 24(9): 1715–27.CrossRefPubMedPubMedCentral Hinds Jr., T.D., S. Ramakrishnan, H.A. Cash, L.A. Stechschulte, G. Heinrich, S.M. Najjar, et al. 2010. Discovery of glucocorticoid receptor-beta in mice with a role in metabolism. Molecular Endocrinology 24(9): 1715–27.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Zhu, F., W. Yue, and Y. Wang. 2014. The nuclear factor kappa B (NF-kappaB) activation is required for phagocytosis of staphylococcus aureus by RAW 264.7 cells. Experimental Cell Research 327(2): 256–63.CrossRefPubMed Zhu, F., W. Yue, and Y. Wang. 2014. The nuclear factor kappa B (NF-kappaB) activation is required for phagocytosis of staphylococcus aureus by RAW 264.7 cells. Experimental Cell Research 327(2): 256–63.CrossRefPubMed
23.
Zurück zum Zitat Kim, N.H., Y. Son, S.O. Jeong, J. Moon Hur, H. Soo Bang, K.N. Lee, et al. 2010. Tetrahydroabietic acid, a reduced abietic acid, inhibits the production of inflammatory mediators in RAW264.7 macrophages activated with lipopolysaccharide. Journal of Clinical Biochemistry and Nutrition 46(2): 119–25.CrossRefPubMedPubMedCentral Kim, N.H., Y. Son, S.O. Jeong, J. Moon Hur, H. Soo Bang, K.N. Lee, et al. 2010. Tetrahydroabietic acid, a reduced abietic acid, inhibits the production of inflammatory mediators in RAW264.7 macrophages activated with lipopolysaccharide. Journal of Clinical Biochemistry and Nutrition 46(2): 119–25.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Pariante, C.M., B.D. Pearce, T.L. Pisell, C.I. Sanchez, C. Po, C. Su, et al. 1999. The proinflammatory cytokine, interleukin-1alpha, reduces glucocorticoid receptor translocation and function. Endocrinology 140(9): 4359–66.PubMed Pariante, C.M., B.D. Pearce, T.L. Pisell, C.I. Sanchez, C. Po, C. Su, et al. 1999. The proinflammatory cytokine, interleukin-1alpha, reduces glucocorticoid receptor translocation and function. Endocrinology 140(9): 4359–66.PubMed
25.
Zurück zum Zitat Lim, S., E. Bae, H.S. Kim, T.A. Kim, K. Byun, B. Kim, et al. 2012. TRAF6 mediates IL-1beta/LPS-induced suppression of TGF-beta signaling through its interaction with the type III TGF-beta receptor. PLoS One 7(3): e32705.CrossRefPubMedPubMedCentral Lim, S., E. Bae, H.S. Kim, T.A. Kim, K. Byun, B. Kim, et al. 2012. TRAF6 mediates IL-1beta/LPS-induced suppression of TGF-beta signaling through its interaction with the type III TGF-beta receptor. PLoS One 7(3): e32705.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Clark, A.R. 2007. Anti-inflammatory functions of glucocorticoid-induced genes. Molecular and Cellular Endocrinology 275(1–2): 79–97.CrossRefPubMed Clark, A.R. 2007. Anti-inflammatory functions of glucocorticoid-induced genes. Molecular and Cellular Endocrinology 275(1–2): 79–97.CrossRefPubMed
27.
Zurück zum Zitat Lewis-Tuffin, L.J., and J.A. Cidlowski. 2006. The physiology of human glucocorticoid receptor beta (hGRbeta) and glucocorticoid resistance. Annals of the New York Academy of Sciences 1069: 1–9.CrossRefPubMed Lewis-Tuffin, L.J., and J.A. Cidlowski. 2006. The physiology of human glucocorticoid receptor beta (hGRbeta) and glucocorticoid resistance. Annals of the New York Academy of Sciences 1069: 1–9.CrossRefPubMed
28.
Zurück zum Zitat Sethu, S., P.N. Pushparaj, and A.J. Melendez. 2010. Phospholipase D1 mediates TNFalpha-induced inflammation in a murine model of TNFalpha-induced peritonitis. PLoS One 5(5): e10506.CrossRefPubMedPubMedCentral Sethu, S., P.N. Pushparaj, and A.J. Melendez. 2010. Phospholipase D1 mediates TNFalpha-induced inflammation in a murine model of TNFalpha-induced peritonitis. PLoS One 5(5): e10506.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Daftarian, P.M., A. Kumar, M. Kryworuchko, and F. Diaz-Mitoma. 1996. IL-10 production is enhanced in human T cells by IL-12 and IL-6 and in monocytes by tumor necrosis factor-alpha. Journal of Immunology 157(1): 12–20. Daftarian, P.M., A. Kumar, M. Kryworuchko, and F. Diaz-Mitoma. 1996. IL-10 production is enhanced in human T cells by IL-12 and IL-6 and in monocytes by tumor necrosis factor-alpha. Journal of Immunology 157(1): 12–20.
30.
Zurück zum Zitat Sullivan, D.E., M. Ferris, H. Nguyen, E. Abboud, and A.R. Brody. 2009. TNF-alpha induces TGF-beta1 expression in lung fibroblasts at the transcriptional level via AP-1 activation. Journal of Cellular and Molecular Medicine 13(8B): 1866–76.CrossRefPubMedPubMedCentral Sullivan, D.E., M. Ferris, H. Nguyen, E. Abboud, and A.R. Brody. 2009. TNF-alpha induces TGF-beta1 expression in lung fibroblasts at the transcriptional level via AP-1 activation. Journal of Cellular and Molecular Medicine 13(8B): 1866–76.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Aderem, A., and D.M. Underhill. 1999. Mechanisms of phagocytosis in macrophages. Annual Review of Immunology 17: 593–623.CrossRefPubMed Aderem, A., and D.M. Underhill. 1999. Mechanisms of phagocytosis in macrophages. Annual Review of Immunology 17: 593–623.CrossRefPubMed
32.
Zurück zum Zitat Platt, N., H. Suzuki, Y. Kurihara, T. Kodama, and S. Gordon. 1996. Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proceedings of the National Academy of Sciences of the United States of America 93(22): 12456–60.CrossRefPubMedPubMedCentral Platt, N., H. Suzuki, Y. Kurihara, T. Kodama, and S. Gordon. 1996. Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proceedings of the National Academy of Sciences of the United States of America 93(22): 12456–60.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Zhou, F., Y. Pan, Z. Huang, Y. Jia, X. Zhao, Y. Chen, et al. 2013. Visfatin induces cholesterol accumulation in macrophages through up-regulation of scavenger receptor-A and CD36. Cell Stress & Chaperones 18(5): 643–52.CrossRef Zhou, F., Y. Pan, Z. Huang, Y. Jia, X. Zhao, Y. Chen, et al. 2013. Visfatin induces cholesterol accumulation in macrophages through up-regulation of scavenger receptor-A and CD36. Cell Stress & Chaperones 18(5): 643–52.CrossRef
34.
Zurück zum Zitat Smoak, K.A., and J.A. Cidlowski. 2004. Mechanisms of glucocorticoid receptor signaling during inflammation. Mechanisms of Ageing and Development 125(10–11): 697–706.CrossRefPubMed Smoak, K.A., and J.A. Cidlowski. 2004. Mechanisms of glucocorticoid receptor signaling during inflammation. Mechanisms of Ageing and Development 125(10–11): 697–706.CrossRefPubMed
35.
Zurück zum Zitat Flavell, R.A., S. Sanjabi, S.H. Wrzesinski, and P. Licona-Limon. 2010. The polarization of immune cells in the tumour environment by TGFbeta. Nature Reviews Immunology 10(8): 554–67.CrossRefPubMed Flavell, R.A., S. Sanjabi, S.H. Wrzesinski, and P. Licona-Limon. 2010. The polarization of immune cells in the tumour environment by TGFbeta. Nature Reviews Immunology 10(8): 554–67.CrossRefPubMed
36.
Zurück zum Zitat Kastan, M.B., and J. Bartek. 2004. Cell-cycle checkpoints and cancer. Nature 432(7015): 316–23.CrossRefPubMed Kastan, M.B., and J. Bartek. 2004. Cell-cycle checkpoints and cancer. Nature 432(7015): 316–23.CrossRefPubMed
37.
Zurück zum Zitat Gilmore, T.D. 2006. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25(51): 6680–4.CrossRefPubMed Gilmore, T.D. 2006. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25(51): 6680–4.CrossRefPubMed
38.
Zurück zum Zitat Cuadrado, A., and A.R. Nebreda. 2010. Mechanisms and functions of p38 MAPK signalling. Biochemical Journal 429(3): 403–17.CrossRefPubMed Cuadrado, A., and A.R. Nebreda. 2010. Mechanisms and functions of p38 MAPK signalling. Biochemical Journal 429(3): 403–17.CrossRefPubMed
39.
Zurück zum Zitat Mercau, M.E., F. Astort, E.F. Giordanino, C. Martinez Calejman, R. Sanchez, L. Caldareri, et al. 2014. Involvement of PI3K/Akt and p38 MAPK in the induction of COX-2 expression by bacterial lipopolysaccharide in murine adrenocortical cells. Molecular and Cellular Endocrinology 384(1–2): 43–51.CrossRefPubMed Mercau, M.E., F. Astort, E.F. Giordanino, C. Martinez Calejman, R. Sanchez, L. Caldareri, et al. 2014. Involvement of PI3K/Akt and p38 MAPK in the induction of COX-2 expression by bacterial lipopolysaccharide in murine adrenocortical cells. Molecular and Cellular Endocrinology 384(1–2): 43–51.CrossRefPubMed
40.
Zurück zum Zitat An, H., H. Xu, Y. Yu, M. Zhang, R. Qi, X. Yan, et al. 2002. Up-regulation of TLR9 gene expression by LPS in mouse macrophages via activation of NF-kappaB, ERK and p38 MAPK signal pathways. Immunology Letters 81(3): 165–9.CrossRefPubMed An, H., H. Xu, Y. Yu, M. Zhang, R. Qi, X. Yan, et al. 2002. Up-regulation of TLR9 gene expression by LPS in mouse macrophages via activation of NF-kappaB, ERK and p38 MAPK signal pathways. Immunology Letters 81(3): 165–9.CrossRefPubMed
41.
Zurück zum Zitat Mantovani, A., S. Sozzani, M. Locati, P. Allavena, and A. Sica. 2002. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology 23(11): 549–55.CrossRefPubMed Mantovani, A., S. Sozzani, M. Locati, P. Allavena, and A. Sica. 2002. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology 23(11): 549–55.CrossRefPubMed
42.
Zurück zum Zitat Lewis, C.E., and J.W. Pollard. 2006. Distinct role of macrophages in different tumor microenvironments. Cancer Research 66(2): 605–12.CrossRefPubMed Lewis, C.E., and J.W. Pollard. 2006. Distinct role of macrophages in different tumor microenvironments. Cancer Research 66(2): 605–12.CrossRefPubMed
43.
Zurück zum Zitat Lewis, C., and C. Murdoch. 2005. Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. American Journal of Pathology 167(3): 627–35.CrossRefPubMedPubMedCentral Lewis, C., and C. Murdoch. 2005. Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. American Journal of Pathology 167(3): 627–35.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Iannitti, T., A. Graham, and S. Dolan. 2012. Increased central and peripheral inflammation and inflammatory hyperalgesia in Zucker rat model of leptin receptor deficiency and genetic obesity. Experimental Physiology 97(11): 1236–45.CrossRefPubMed Iannitti, T., A. Graham, and S. Dolan. 2012. Increased central and peripheral inflammation and inflammatory hyperalgesia in Zucker rat model of leptin receptor deficiency and genetic obesity. Experimental Physiology 97(11): 1236–45.CrossRefPubMed
45.
Zurück zum Zitat Kosacka, J., M. Kern, N. Kloting, S. Paeschke, A. Rudich, Y. Haim, et al. 2015. Autophagy in adipose tissue of patients with obesity and type 2 diabetes. Molecular and Cellular Endocrinology 409: 21–32.CrossRefPubMed Kosacka, J., M. Kern, N. Kloting, S. Paeschke, A. Rudich, Y. Haim, et al. 2015. Autophagy in adipose tissue of patients with obesity and type 2 diabetes. Molecular and Cellular Endocrinology 409: 21–32.CrossRefPubMed
Metadaten
Titel
Angiopoietin-Like Protein 7 Promotes an Inflammatory Phenotype in RAW264.7 Macrophages Through the P38 MAPK Signaling Pathway
verfasst von
Tao Qian
Kun Wang
Jiesheng Cui
Yiduo He
Zaiqing Yang
Publikationsdatum
14.03.2016
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2016
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0324-4

Weitere Artikel der Ausgabe 3/2016

Inflammation 3/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.