Skip to main content
Erschienen in: Clinical and Experimental Nephrology 1/2013

01.02.2013 | Original Article

Angiotensin II suppresses adenosine monophosphate-activated protein kinase of podocytes via angiotensin II type 1 receptor and mitogen-activated protein kinase signaling

verfasst von: Ji-Young Choi, Tae-Sun Ha, Hye-Young Park, Hee-Yul Ahn

Erschienen in: Clinical and Experimental Nephrology | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Abstract

Background

Adenosine monophosphate (AMP)-activated protein kinase (AMPK), as a sensor of cellular energy status, has been known to play an important role in the pathophysiology of diabetes and its complications. As AMPK is also expressed in podocytes, it is possible that podocyte AMPK would be an important contributing factor in the development of diabetic proteinuria. We investigated the roles of AMPK in the pathological changes of podocytes induced by angiotensin II (Ang II), a major injury inducer in diabetic proteinuria.

Methods

Mouse podocytes were incubated in media containing various concentrations of Ang II and AMPK-modulating agents. The changes of AMPKα were analyzed by confocal imaging and Western blotting in response to Ang II.

Results

Ang II changed the localization of AMPKα from peripheral cytoplasm into internal cytoplasm and peri- and intranuclear areas in podocytes. Ang II also reduced AMPKα (Thr172) phosphorylation in time- and dose-sensitive manners. In particular, 10−7 M Ang II reduced phospho-AMPKα significantly and continuously at 6, 24, and 48 h. AMPK activators, metformin and 5-aminoimidazole-4-carboxamide-1β-riboside, restored the suppressed AMPKα (Thr172) phosphorylation. Losartan, an Ang II type 1 receptor antagonist, also recovered the suppression and the mal-localization of AMPKα, which were induced by Ang II. PD98059, a mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor, also restored the AMPKα (Thr172) phosphorylation suppressed by Ang II.

Conclusion

We suggest that Ang II induces the relocation and suppression of podocyte AMPKα via Ang II type 1 receptor and MAPK signaling pathway, which would be an important mechanism in Ang II-induced podocyte injury.
Literatur
1.
Zurück zum Zitat Aros C, Remuzzi G. The renin–angiotensin system in progression, remission and regression of chronic nephropathies. J Hypertens. 2002;20:S45–53.CrossRef Aros C, Remuzzi G. The renin–angiotensin system in progression, remission and regression of chronic nephropathies. J Hypertens. 2002;20:S45–53.CrossRef
2.
Zurück zum Zitat Remuzzi G, Benigni A, Remuzzi A. Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest. 2006;116:288–96.CrossRefPubMed Remuzzi G, Benigni A, Remuzzi A. Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest. 2006;116:288–96.CrossRefPubMed
3.
Zurück zum Zitat Wolf G. Angiotensin II as a mediator of tubulointerstitial injury. Nephrol Dial Transplant. 2000;15:61–3.CrossRefPubMed Wolf G. Angiotensin II as a mediator of tubulointerstitial injury. Nephrol Dial Transplant. 2000;15:61–3.CrossRefPubMed
4.
Zurück zum Zitat Luft FC. Proinflammatory effects of angiotensin II and endothelin: targets for progression of cardiovascular and renal disease. Curr Opin Nephrol Hypertens. 2002;11:59–66.CrossRefPubMed Luft FC. Proinflammatory effects of angiotensin II and endothelin: targets for progression of cardiovascular and renal disease. Curr Opin Nephrol Hypertens. 2002;11:59–66.CrossRefPubMed
5.
Zurück zum Zitat Benigni A, Tomasoni S, Gagliardini E, Zoja C, Grunkemeyer JA, Kalluri R, et al. Blocking angiotensin II synthesis/activity preserves glomerular nephrin in rats with severe nephrosis. J Am Soc Nephrol. 2001;12:941–8.PubMed Benigni A, Tomasoni S, Gagliardini E, Zoja C, Grunkemeyer JA, Kalluri R, et al. Blocking angiotensin II synthesis/activity preserves glomerular nephrin in rats with severe nephrosis. J Am Soc Nephrol. 2001;12:941–8.PubMed
6.
Zurück zum Zitat Bonnet F, Cooper ME, Kawachi H, Allen TJ, Boner G, Cao Z. Irbesartan normalises the deficiency in glomerular nephrin expression in a model of diabetes and hypertension. Diabetologia. 2001;44:874–7.CrossRefPubMed Bonnet F, Cooper ME, Kawachi H, Allen TJ, Boner G, Cao Z. Irbesartan normalises the deficiency in glomerular nephrin expression in a model of diabetes and hypertension. Diabetologia. 2001;44:874–7.CrossRefPubMed
7.
Zurück zum Zitat Hardie DG, Carling D. The AMP-activated protein kinase—fuel gauge of the mammalian cell? Eur J Biochem. 1997;246:259–73.CrossRefPubMed Hardie DG, Carling D. The AMP-activated protein kinase—fuel gauge of the mammalian cell? Eur J Biochem. 1997;246:259–73.CrossRefPubMed
8.
Zurück zum Zitat Hardie DG. The AMP-activated protein kinase pathway—new players upstream and downstream. J Cell Sci. 2004;117:5479–87.CrossRefPubMed Hardie DG. The AMP-activated protein kinase pathway—new players upstream and downstream. J Cell Sci. 2004;117:5479–87.CrossRefPubMed
10.
Zurück zum Zitat Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev. 2007;8:774–85.CrossRef Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev. 2007;8:774–85.CrossRef
11.
Zurück zum Zitat Fraser S, Mount P, Hill R, Levidiotis V, Katsis F, Stapleton D, et al. Regulation of the energy sensor AMP-activated protein kinase in the kidney by dietary salt intake and osmolality. Am J Physiol Renal Physiol. 2005;288:F578–86.CrossRefPubMed Fraser S, Mount P, Hill R, Levidiotis V, Katsis F, Stapleton D, et al. Regulation of the energy sensor AMP-activated protein kinase in the kidney by dietary salt intake and osmolality. Am J Physiol Renal Physiol. 2005;288:F578–86.CrossRefPubMed
12.
Zurück zum Zitat Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell BJ, Teh T, et al. Mammalian AMP-activated protein kinase subfamily. J Biol Chem. 1996;271:611–4.CrossRefPubMed Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell BJ, Teh T, et al. Mammalian AMP-activated protein kinase subfamily. J Biol Chem. 1996;271:611–4.CrossRefPubMed
13.
Zurück zum Zitat Sharma K, Ramachandrarao S, Qiu G, Usui HK, Zhu Y, Dunn SR, et al. Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest. 2008;118:1645–56.PubMed Sharma K, Ramachandrarao S, Qiu G, Usui HK, Zhu Y, Dunn SR, et al. Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest. 2008;118:1645–56.PubMed
14.
Zurück zum Zitat Hallows KR, Mount PF, Pastor-Soler NM, Power DA. Role of the energy sensor AMP-activated protein kinase in renal physiology and disease. Am J Physiol Renal Physiol. 2010;298:F1067–77.CrossRefPubMed Hallows KR, Mount PF, Pastor-Soler NM, Power DA. Role of the energy sensor AMP-activated protein kinase in renal physiology and disease. Am J Physiol Renal Physiol. 2010;298:F1067–77.CrossRefPubMed
15.
Zurück zum Zitat Mundel P, Reiser J, Zúñiga Mejía Borja A, Pavenstädt H, Davidson GR, Kriz W, et al. Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines. Exp Cell Res. 1997;236:248–58.CrossRefPubMed Mundel P, Reiser J, Zúñiga Mejía Borja A, Pavenstädt H, Davidson GR, Kriz W, et al. Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines. Exp Cell Res. 1997;236:248–58.CrossRefPubMed
16.
Zurück zum Zitat Ha T-S. High glucose and advanced glycosylation endproducts increased podocytes permeability via PI3K/Akt signaling. J Mol Med. 2010;88:391–400.CrossRefPubMed Ha T-S. High glucose and advanced glycosylation endproducts increased podocytes permeability via PI3K/Akt signaling. J Mol Med. 2010;88:391–400.CrossRefPubMed
17.
Zurück zum Zitat Nagata D, Takeda R, Sata M, Satonaka H, Suzuki E, Nagano T, et al. AMP-activated protein kinases inhibits angiotensin II-stimulated vascular smooth muscle cell proliferation. Circulation. 2004;110:444–51.CrossRefPubMed Nagata D, Takeda R, Sata M, Satonaka H, Suzuki E, Nagano T, et al. AMP-activated protein kinases inhibits angiotensin II-stimulated vascular smooth muscle cell proliferation. Circulation. 2004;110:444–51.CrossRefPubMed
18.
Zurück zum Zitat Hattori Y, Akimoto K, Nishikimi T, Matsuoka H, Kasai K. Activation of AMP-activated protein kinase enhances angiotensin II-induced proliferation in cardiac fibroblasts. Hypertension. 2006;47:265–70.CrossRefPubMed Hattori Y, Akimoto K, Nishikimi T, Matsuoka H, Kasai K. Activation of AMP-activated protein kinase enhances angiotensin II-induced proliferation in cardiac fibroblasts. Hypertension. 2006;47:265–70.CrossRefPubMed
19.
Zurück zum Zitat Stuck BJ, Lenski M, Bohm M, Laufs U. Metabolic switch and hypertrophy of cardiomyocytes following treatment with angiotensin II are prevented by AMP-activated protein kinase. J Biol Chem. 2008;283:32562–9.CrossRefPubMed Stuck BJ, Lenski M, Bohm M, Laufs U. Metabolic switch and hypertrophy of cardiomyocytes following treatment with angiotensin II are prevented by AMP-activated protein kinase. J Biol Chem. 2008;283:32562–9.CrossRefPubMed
20.
Zurück zum Zitat Lee M-J, Feliers D, Mariappan MM. A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. Am J Physiol Renal Physiol. 2007;292:F617–27.CrossRefPubMed Lee M-J, Feliers D, Mariappan MM. A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. Am J Physiol Renal Physiol. 2007;292:F617–27.CrossRefPubMed
21.
Zurück zum Zitat Guo Z, Zhao Z. Effect of N-acetylcysteine on plasma adiponectin and renal adiponectin receptors in streptozotocin-induced diabetic rats. Eur J Pharmacol. 2007;558:208–13.CrossRefPubMed Guo Z, Zhao Z. Effect of N-acetylcysteine on plasma adiponectin and renal adiponectin receptors in streptozotocin-induced diabetic rats. Eur J Pharmacol. 2007;558:208–13.CrossRefPubMed
22.
Zurück zum Zitat Cammisotto PG, Bendayan M. Adiponectin stimulates phosphorylation of AMP-activated protein kinase α in renal glomeruli. J Mol Histol. 2008;39:579–84.CrossRefPubMed Cammisotto PG, Bendayan M. Adiponectin stimulates phosphorylation of AMP-activated protein kinase α in renal glomeruli. J Mol Histol. 2008;39:579–84.CrossRefPubMed
23.
Zurück zum Zitat Piwkowska A, Rogacka D, Jankowski M, Dominiczak MH, Stepiński JK, Angielski S. Metformin induces suppression of NAD(P)H oxidase activity in podocytes. Biochem Biophys Res Commun. 2010;393:268–73.CrossRefPubMed Piwkowska A, Rogacka D, Jankowski M, Dominiczak MH, Stepiński JK, Angielski S. Metformin induces suppression of NAD(P)H oxidase activity in podocytes. Biochem Biophys Res Commun. 2010;393:268–73.CrossRefPubMed
24.
Zurück zum Zitat Eid AA, Ford BM, Block K, Kasinath BS, Gorin Y, Ghosh-Choudhury G et al. AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J Biol Chem. 2010;285:37503–12.CrossRefPubMed Eid AA, Ford BM, Block K, Kasinath BS, Gorin Y, Ghosh-Choudhury G et al. AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J Biol Chem. 2010;285:37503–12.CrossRefPubMed
25.
Zurück zum Zitat Lodha S, Dani D, Mehta R, Bhaskaran M, Reddy K, Ding G, et al. Angiotensin II-induced mesangial cell apoptosis: role of oxidative stress. Mol Med. 2002;8:830–40.PubMed Lodha S, Dani D, Mehta R, Bhaskaran M, Reddy K, Ding G, et al. Angiotensin II-induced mesangial cell apoptosis: role of oxidative stress. Mol Med. 2002;8:830–40.PubMed
26.
Zurück zum Zitat Bhaskaran M, Reddy K, Radhakrishanan N, Franki N, Ding G, Singhal PC. Angiotensin II induces apoptosis in renal proximal tubular cells. Am J Physiol Renal Physiol. 2003;284:F955–65.PubMed Bhaskaran M, Reddy K, Radhakrishanan N, Franki N, Ding G, Singhal PC. Angiotensin II induces apoptosis in renal proximal tubular cells. Am J Physiol Renal Physiol. 2003;284:F955–65.PubMed
27.
Zurück zum Zitat Wolf G. Role of reactive oxygen species in angiotensin II-mediated renal growth, differentiation, and apoptosis. Antioxid Redox Signal. 2005;7:1337–45.CrossRefPubMed Wolf G. Role of reactive oxygen species in angiotensin II-mediated renal growth, differentiation, and apoptosis. Antioxid Redox Signal. 2005;7:1337–45.CrossRefPubMed
28.
Zurück zum Zitat Turnley AM, Stapleton D, Mann RJ, Witters LA, Kemp BE, Bartlett PF. Cellular distribution and developmental expression of AMP-activated protein kinase isoforms in mouse central nervous system. J Neurochem. 1999;72:1707–16.CrossRefPubMed Turnley AM, Stapleton D, Mann RJ, Witters LA, Kemp BE, Bartlett PF. Cellular distribution and developmental expression of AMP-activated protein kinase isoforms in mouse central nervous system. J Neurochem. 1999;72:1707–16.CrossRefPubMed
29.
Zurück zum Zitat Zhang H, Ding J, Fan Q, Liu S. TRPC6 up-regulation in Ang II-induced podocyte apoptosis might result from ERK activation and NF-kappaB translocation. Exp Biol Med (Maywood). 2009;234:1029–36.CrossRef Zhang H, Ding J, Fan Q, Liu S. TRPC6 up-regulation in Ang II-induced podocyte apoptosis might result from ERK activation and NF-kappaB translocation. Exp Biol Med (Maywood). 2009;234:1029–36.CrossRef
Metadaten
Titel
Angiotensin II suppresses adenosine monophosphate-activated protein kinase of podocytes via angiotensin II type 1 receptor and mitogen-activated protein kinase signaling
verfasst von
Ji-Young Choi
Tae-Sun Ha
Hye-Young Park
Hee-Yul Ahn
Publikationsdatum
01.02.2013
Verlag
Springer Japan
Erschienen in
Clinical and Experimental Nephrology / Ausgabe 1/2013
Print ISSN: 1342-1751
Elektronische ISSN: 1437-7799
DOI
https://doi.org/10.1007/s10157-012-0649-8

Weitere Artikel der Ausgabe 1/2013

Clinical and Experimental Nephrology 1/2013 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.