Skip to main content
Erschienen in: Pediatric Surgery International 3/2018

27.10.2017 | Original Article

Anti-oxidants correct disturbance of redox enzymes in the hearts of rat fetuses with congenital diaphragmatic hernia

verfasst von: Rosa Aras-López, L. Almeida, V. Andreu-Fernández, J. Tovar, L. Martínez

Erschienen in: Pediatric Surgery International | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

Aim

To evaluate if the redox system is unbalanced in the hearts of nitrofen-induced congenital diaphragmatic hernia  (CDH) animals and to study the possible preventive effects of two anti-oxidant treatments, apocynin and epigallocatechin-3-gallate (EGCG).

Methods

Adult rats were divided into four groups. Group 1: rats received only vehicle on day E9.5. Group 2: rats received 100 mg nitrofen on day E9.5. Group 3: 1 month before mating rats received apocynin 1.5 mM and, when pregnant, 100 mg nitrofen on day E9.5. Group 4: same than group 3 but with EGCG 30 mg/kg. All fetuses were recovered at term and the hearts were processed. Nox activity and mRNA levels of Nox1, Nox2, Nox4, SOD1, SOD2, SOD3, catalase, and GPX1 were analyzed. Nox, SOD, and Catalase activity and H2O2 production were also evaluated.

Results

Nox activity, H2O2 production and Nox1, Nox2, and Nox4 mRNA levels were increased in the hearts of fetuses with CDH. There were no changes in SOD1 levels, whereas those of SOD2, SOD3, catalase, and GPX1 mRNA were decreased. Apocynin and EGCG treatments attenuated the increment of Nox and SOD activities and H2O2 production was only decreased by apocynin.

Conclusion

These findings suggest a possible preventive effect on the abnormal redox metabolism of anti-oxidant treatments in the hearts from rat fetuses with CDH. If the same occurs in humans, it could represent a potential tool in future prenatal treatment.
Literatur
1.
Zurück zum Zitat Burgos CM, Frenckner B (2017) Addressing the hidden mortality in CDH: a population-based study. J Pediatr Surg 52:522–525CrossRefPubMed Burgos CM, Frenckner B (2017) Addressing the hidden mortality in CDH: a population-based study. J Pediatr Surg 52:522–525CrossRefPubMed
3.
Zurück zum Zitat Snoek KG, Reiss IK, Greenough A et al (2016) Standardized postnatal management of infants with congenital diaphragmatic hernia in Europe: The CDH EURO consortium consensus—2015 update. Neonatology 110:66–74CrossRefPubMed Snoek KG, Reiss IK, Greenough A et al (2016) Standardized postnatal management of infants with congenital diaphragmatic hernia in Europe: The CDH EURO consortium consensus—2015 update. Neonatology 110:66–74CrossRefPubMed
4.
Zurück zum Zitat Yamataka T, Puri P (1997) Pulmonary artery structural changes in pulmonary hypertension complicating congenital diaphragmatic hernia. J Pediatr Surg 32:387–390CrossRefPubMed Yamataka T, Puri P (1997) Pulmonary artery structural changes in pulmonary hypertension complicating congenital diaphragmatic hernia. J Pediatr Surg 32:387–390CrossRefPubMed
5.
Zurück zum Zitat Umeda S, Miyagawa S, Fukushima S et al (2016) Enhanced pulmonary vascular and alveolar development via prenatal administration of a slow-release synthetic prostacyclin agonist in rat fetal lung hypoplasia. PLoS One 11:e0161334CrossRefPubMedPubMedCentral Umeda S, Miyagawa S, Fukushima S et al (2016) Enhanced pulmonary vascular and alveolar development via prenatal administration of a slow-release synthetic prostacyclin agonist in rat fetal lung hypoplasia. PLoS One 11:e0161334CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Menon SC, Tani LY, Weng HY et al (2013) Clinical characteristics and outcomes of patients with cardiac defects and congenital diaphragmatic hernia. J Pediatr 162:114–119 (e112) CrossRefPubMed Menon SC, Tani LY, Weng HY et al (2013) Clinical characteristics and outcomes of patients with cardiac defects and congenital diaphragmatic hernia. J Pediatr 162:114–119 (e112) CrossRefPubMed
7.
Zurück zum Zitat Yamoto M, Inamura N, Terui K et al (2016) Echocardiographic predictors of poor prognosis in congenital diaphragmatic hernia. J Pediatr Surg 51:1926–1930CrossRefPubMed Yamoto M, Inamura N, Terui K et al (2016) Echocardiographic predictors of poor prognosis in congenital diaphragmatic hernia. J Pediatr Surg 51:1926–1930CrossRefPubMed
8.
Zurück zum Zitat Migliazza L, Xia H, Alvarez JI et al (1999) Heart hypoplasia in experimental congenital diaphragmatic hernia. J Pediatr Surg 34:706–710CrossRefPubMed Migliazza L, Xia H, Alvarez JI et al (1999) Heart hypoplasia in experimental congenital diaphragmatic hernia. J Pediatr Surg 34:706–710CrossRefPubMed
9.
Zurück zum Zitat Siebert JR, Haas JE, Beckwith JB (1984) Left ventricular hypoplasia in congenital diaphragmatic hernia. J Pediatr Surg 19:567–571CrossRefPubMed Siebert JR, Haas JE, Beckwith JB (1984) Left ventricular hypoplasia in congenital diaphragmatic hernia. J Pediatr Surg 19:567–571CrossRefPubMed
10.
Zurück zum Zitat Wang X, Hai C (2016) Novel insights into redox system and the mechanism of redox regulation. Mol Biol Rep 43:607–628CrossRefPubMed Wang X, Hai C (2016) Novel insights into redox system and the mechanism of redox regulation. Mol Biol Rep 43:607–628CrossRefPubMed
11.
Zurück zum Zitat Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313CrossRefPubMed Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313CrossRefPubMed
12.
Zurück zum Zitat Dennis KE, Aschner JL, Milatovic D et al (2009) NADPH oxidases and reactive oxygen species at different stages of chronic hypoxia-induced pulmonary hypertension in newborn piglets. Am J Physiol Lung Cell Mol Physiol 297:L596-607CrossRefPubMed Dennis KE, Aschner JL, Milatovic D et al (2009) NADPH oxidases and reactive oxygen species at different stages of chronic hypoxia-induced pulmonary hypertension in newborn piglets. Am J Physiol Lung Cell Mol Physiol 297:L596-607CrossRefPubMed
13.
Zurück zum Zitat Fresquet F, Pourageaud F, Leblais V et al (2006) Role of reactive oxygen species and gp91phox in endothelial dysfunction of pulmonary arteries induced by chronic hypoxia. Br J Pharmacol 148:714–723CrossRefPubMedPubMedCentral Fresquet F, Pourageaud F, Leblais V et al (2006) Role of reactive oxygen species and gp91phox in endothelial dysfunction of pulmonary arteries induced by chronic hypoxia. Br J Pharmacol 148:714–723CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Seta F, Rahmani M, Turner PV et al (2011) Pulmonary oxidative stress is increased in cyclooxygenase-2 knockdown mice with mild pulmonary hypertension induced by monocrotaline. PLoS One 6:e23439CrossRefPubMedPubMedCentral Seta F, Rahmani M, Turner PV et al (2011) Pulmonary oxidative stress is increased in cyclooxygenase-2 knockdown mice with mild pulmonary hypertension induced by monocrotaline. PLoS One 6:e23439CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Eisner V, Criollo A, Quiroga C et al (2006) Hyperosmotic stress-dependent NFkappaB activation is regulated by reactive oxygen species and IGF-1 in cultured cardiomyocytes. FEBS Lett 580:4495–4500CrossRefPubMed Eisner V, Criollo A, Quiroga C et al (2006) Hyperosmotic stress-dependent NFkappaB activation is regulated by reactive oxygen species and IGF-1 in cultured cardiomyocytes. FEBS Lett 580:4495–4500CrossRefPubMed
16.
Zurück zum Zitat Li YG, Zhu W, Tao JP et al (2013) Resveratrol protects cardiomyocytes from oxidative stress through SIRT1 and mitochondrial biogenesis signaling pathways. Biochem Biophys Res Commun 438:270–276CrossRefPubMed Li YG, Zhu W, Tao JP et al (2013) Resveratrol protects cardiomyocytes from oxidative stress through SIRT1 and mitochondrial biogenesis signaling pathways. Biochem Biophys Res Commun 438:270–276CrossRefPubMed
17.
Zurück zum Zitat Gonzalez-Reyes S, Martinez L, Martinez-Calonge W et al (2006) Effects of antioxidant vitamins on molecular regulators involved in lung hypoplasia induced by nitrofen. J Pediatr Surg 41:1446–1452CrossRefPubMed Gonzalez-Reyes S, Martinez L, Martinez-Calonge W et al (2006) Effects of antioxidant vitamins on molecular regulators involved in lung hypoplasia induced by nitrofen. J Pediatr Surg 41:1446–1452CrossRefPubMed
18.
Zurück zum Zitat Gonzalez-Reyes S, Martinez L, Martinez-Calonge W et al (2006) Effects of nitrofen and vitamins A, C and E on maturation of cultured human H441 pneumocytes. Biol Neonatol 90:9–16CrossRef Gonzalez-Reyes S, Martinez L, Martinez-Calonge W et al (2006) Effects of nitrofen and vitamins A, C and E on maturation of cultured human H441 pneumocytes. Biol Neonatol 90:9–16CrossRef
19.
Zurück zum Zitat Gonzalez-Reyes S, Martinez L, Tovar JA (2005) Effects of prenatal vitamins A, E, and C on the hypoplastic hearts of fetal rats with diaphragmatic hernia. J Pediatr Surg 40:1269–1274CrossRefPubMed Gonzalez-Reyes S, Martinez L, Tovar JA (2005) Effects of prenatal vitamins A, E, and C on the hypoplastic hearts of fetal rats with diaphragmatic hernia. J Pediatr Surg 40:1269–1274CrossRefPubMed
20.
Zurück zum Zitat Islam S, Narra V, Cote GM et al (1999) Prenatal vitamin E treatment improves lung growth in fetal rats with congenital diaphragmatic hernia. J Pediatr Surg 34:172–176CrossRefPubMed Islam S, Narra V, Cote GM et al (1999) Prenatal vitamin E treatment improves lung growth in fetal rats with congenital diaphragmatic hernia. J Pediatr Surg 34:172–176CrossRefPubMed
21.
Zurück zum Zitat Schnitzer JJ (2004) Control and regulation of pulmonary hypoplasia associated with congenital diaphragmatic hernia. Semin Pediatr Surg 13:37–43CrossRefPubMed Schnitzer JJ (2004) Control and regulation of pulmonary hypoplasia associated with congenital diaphragmatic hernia. Semin Pediatr Surg 13:37–43CrossRefPubMed
22.
Zurück zum Zitat Fisher JC, Kling DE, Kinane TB et al (2002) Oxidation-reduction (redox) controls fetal hypoplastic lung growth. J Surg Res 106:287–291CrossRefPubMed Fisher JC, Kling DE, Kinane TB et al (2002) Oxidation-reduction (redox) controls fetal hypoplastic lung growth. J Surg Res 106:287–291CrossRefPubMed
23.
Zurück zum Zitat Acker SN, Seedorf GJ, Abman SH et al (2015) Altered pulmonary artery endothelial-smooth muscle cell interactions in experimental congenital diaphragmatic hernia. Pediatr Res 77:511–519CrossRefPubMedPubMedCentral Acker SN, Seedorf GJ, Abman SH et al (2015) Altered pulmonary artery endothelial-smooth muscle cell interactions in experimental congenital diaphragmatic hernia. Pediatr Res 77:511–519CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Gosemann JH, Friedmacher F, Hunziker M et al (2013) Increased activation of NADPH oxidase 4 in the pulmonary vasculature in experimental diaphragmatic hernia. Pediatr Surg Int 29:3–8CrossRefPubMed Gosemann JH, Friedmacher F, Hunziker M et al (2013) Increased activation of NADPH oxidase 4 in the pulmonary vasculature in experimental diaphragmatic hernia. Pediatr Surg Int 29:3–8CrossRefPubMed
25.
Zurück zum Zitat Wilcox DT, Irish MS, Holm BA et al (1996) Pulmonary parenchymal abnormalities in congenital diaphragmatic hernia. Clin Perinatol 23:771–779PubMed Wilcox DT, Irish MS, Holm BA et al (1996) Pulmonary parenchymal abnormalities in congenital diaphragmatic hernia. Clin Perinatol 23:771–779PubMed
26.
Zurück zum Zitat Aras-Lopez R, Tovar JA, Martinez L (2016) Possible role of increased oxidative stress in pulmonary hypertension in experimental diaphragmatic hernia. Pediatr Surg Int 32:141–145CrossRefPubMed Aras-Lopez R, Tovar JA, Martinez L (2016) Possible role of increased oxidative stress in pulmonary hypertension in experimental diaphragmatic hernia. Pediatr Surg Int 32:141–145CrossRefPubMed
27.
Zurück zum Zitat Stolk J, Hiltermann TJ, Dijkman JH et al (1994) Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am J Respir Cell Mol Biol 11:95–102CrossRefPubMed Stolk J, Hiltermann TJ, Dijkman JH et al (1994) Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am J Respir Cell Mol Biol 11:95–102CrossRefPubMed
28.
Zurück zum Zitat Yang CS, Maliakal P, Meng X (2002) Inhibition of carcinogenesis by tea. Annu Rev Pharmacol Toxicol 42:25–54CrossRefPubMed Yang CS, Maliakal P, Meng X (2002) Inhibition of carcinogenesis by tea. Annu Rev Pharmacol Toxicol 42:25–54CrossRefPubMed
30.
Zurück zum Zitat Tannuri U (2001) Heart hypoplasia in an animal model of congenital diaphragmatic hernia. Rev Hosp Clin Fac Med Sao Paulo 56:173–178CrossRefPubMed Tannuri U (2001) Heart hypoplasia in an animal model of congenital diaphragmatic hernia. Rev Hosp Clin Fac Med Sao Paulo 56:173–178CrossRefPubMed
31.
Zurück zum Zitat Luong C, Rey-Perra J, Vadivel A et al (2011) Antenatal sildenafil treatment attenuates pulmonary hypertension in experimental congenital diaphragmatic hernia. Circulation 123:2120–2131CrossRefPubMed Luong C, Rey-Perra J, Vadivel A et al (2011) Antenatal sildenafil treatment attenuates pulmonary hypertension in experimental congenital diaphragmatic hernia. Circulation 123:2120–2131CrossRefPubMed
32.
33.
Zurück zum Zitat Kalyanaraman B (2013) Teaching the basics of redox biology to medical and graduate students: oxidants, antioxidants and disease mechanisms. Redox Biol 1:244–257CrossRefPubMedPubMedCentral Kalyanaraman B (2013) Teaching the basics of redox biology to medical and graduate students: oxidants, antioxidants and disease mechanisms. Redox Biol 1:244–257CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028CrossRef Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028CrossRef
35.
Zurück zum Zitat Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84CrossRefPubMed Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84CrossRefPubMed
36.
Zurück zum Zitat Agarwal A, Gupta S, Sekhon L et al (2008) Redox considerations in female reproductive function and assisted reproduction: from molecular mechanisms to health implications. Antioxid Redox Signal 10:1375–1403CrossRefPubMed Agarwal A, Gupta S, Sekhon L et al (2008) Redox considerations in female reproductive function and assisted reproduction: from molecular mechanisms to health implications. Antioxid Redox Signal 10:1375–1403CrossRefPubMed
37.
Zurück zum Zitat Maltepe E, Saugstad OD (2009) Oxygen in health and disease: regulation of oxygen homeostasis-clinical implications. Pediatr Res 65:261–268CrossRefPubMed Maltepe E, Saugstad OD (2009) Oxygen in health and disease: regulation of oxygen homeostasis-clinical implications. Pediatr Res 65:261–268CrossRefPubMed
38.
39.
Zurück zum Zitat Bowers R, Cool C, Murphy RC et al (2004) Oxidative stress in severe pulmonary hypertension. Am J Respir Crit Care Med 169:764–769CrossRefPubMed Bowers R, Cool C, Murphy RC et al (2004) Oxidative stress in severe pulmonary hypertension. Am J Respir Crit Care Med 169:764–769CrossRefPubMed
40.
Zurück zum Zitat Cracowski JL, Cracowski C, Bessard G et al (2001) Increased lipid peroxidation in patients with pulmonary hypertension. Am J Respir Crit Care Med 164:1038–1042CrossRefPubMed Cracowski JL, Cracowski C, Bessard G et al (2001) Increased lipid peroxidation in patients with pulmonary hypertension. Am J Respir Crit Care Med 164:1038–1042CrossRefPubMed
41.
42.
Zurück zum Zitat Fulton DJR, Li X, Bordan Z et al (2017) Reactive oxygen and nitrogen species in the development of pulmonary hypertension. Antioxidants (Basel) 6(3):54CrossRef Fulton DJR, Li X, Bordan Z et al (2017) Reactive oxygen and nitrogen species in the development of pulmonary hypertension. Antioxidants (Basel) 6(3):54CrossRef
43.
Zurück zum Zitat Rhoades RA, Packer CS, Meiss RA (1988) Pulmonary vascular smooth muscle contractility. Effect of free radicals. Chest 93:94S-95SCrossRefPubMed Rhoades RA, Packer CS, Meiss RA (1988) Pulmonary vascular smooth muscle contractility. Effect of free radicals. Chest 93:94S-95SCrossRefPubMed
44.
45.
Zurück zum Zitat Tanaka LY, Laurindo FRM (2017) Vascular remodeling: a redox-modulated mechanism of vessel caliber regulation. Free Radic Biol Med 109:11–21CrossRefPubMed Tanaka LY, Laurindo FRM (2017) Vascular remodeling: a redox-modulated mechanism of vessel caliber regulation. Free Radic Biol Med 109:11–21CrossRefPubMed
46.
Zurück zum Zitat Wang G, Zhang N, Wei YF et al (2015) The impact of high-salt exposure on cardiovascular development in the early chick embryo. J Exp Biol 218:3468–3477CrossRefPubMed Wang G, Zhang N, Wei YF et al (2015) The impact of high-salt exposure on cardiovascular development in the early chick embryo. J Exp Biol 218:3468–3477CrossRefPubMed
47.
Zurück zum Zitat Kojda G, Kottenberg K (1999) Regulation of basal myocardial function by NO. Cardiovasc Res 41:514–523CrossRefPubMed Kojda G, Kottenberg K (1999) Regulation of basal myocardial function by NO. Cardiovasc Res 41:514–523CrossRefPubMed
48.
Zurück zum Zitat Paravicini TM, Gulluyan LM, Dusting GJ et al (2002) Increased NADPH oxidase activity, gp91phox expression, and endothelium-dependent vasorelaxation during neointima formation in rabbits. Circ Res 91:54–61CrossRefPubMed Paravicini TM, Gulluyan LM, Dusting GJ et al (2002) Increased NADPH oxidase activity, gp91phox expression, and endothelium-dependent vasorelaxation during neointima formation in rabbits. Circ Res 91:54–61CrossRefPubMed
50.
Zurück zum Zitat Baumgart K, Simkova V, Wagner F et al (2009) Effect of SOD-1 over-expression on myocardial function during resuscitated murine septic shock. Intensive Care Med 35:344–349CrossRefPubMed Baumgart K, Simkova V, Wagner F et al (2009) Effect of SOD-1 over-expression on myocardial function during resuscitated murine septic shock. Intensive Care Med 35:344–349CrossRefPubMed
51.
Zurück zum Zitat Virdis A, Gesi M, Taddei S (2016) Impact of apocynin on vascular disease in hypertension. Vascul Pharmacol 87:1–5CrossRefPubMed Virdis A, Gesi M, Taddei S (2016) Impact of apocynin on vascular disease in hypertension. Vascul Pharmacol 87:1–5CrossRefPubMed
52.
Zurück zum Zitat Wedgwood S, Lakshminrusimha S, Farrow KN et al (2012) Apocynin improves oxygenation and increases eNOS in persistent pulmonary hypertension of the newborn. Am J Physiol Lung Cell Mol Physiol 302:L616-626CrossRef Wedgwood S, Lakshminrusimha S, Farrow KN et al (2012) Apocynin improves oxygenation and increases eNOS in persistent pulmonary hypertension of the newborn. Am J Physiol Lung Cell Mol Physiol 302:L616-626CrossRef
53.
Zurück zum Zitat Zhu TT, Zhang WF, Luo P et al (2017) Epigallocatechin-3-gallate ameliorates hypoxia-induced pulmonary vascular remodeling by promoting mitofusin-2-mediated mitochondrial fusion. Eur J Pharmacol 809:42–51CrossRefPubMed Zhu TT, Zhang WF, Luo P et al (2017) Epigallocatechin-3-gallate ameliorates hypoxia-induced pulmonary vascular remodeling by promoting mitofusin-2-mediated mitochondrial fusion. Eur J Pharmacol 809:42–51CrossRefPubMed
54.
Zurück zum Zitat Chowdhury A, Sarkar J, Chakraborti T et al (2015) Role of Spm-Cer-S1P signalling pathway in MMP-2 mediated U46619-induced proliferation of pulmonary artery smooth muscle cells: protective role of epigallocatechin-3-gallate. Cell Biochem Funct 33:463–477CrossRefPubMed Chowdhury A, Sarkar J, Chakraborti T et al (2015) Role of Spm-Cer-S1P signalling pathway in MMP-2 mediated U46619-induced proliferation of pulmonary artery smooth muscle cells: protective role of epigallocatechin-3-gallate. Cell Biochem Funct 33:463–477CrossRefPubMed
55.
Zurück zum Zitat Garbers DL, Dubois SK (1999) The molecular basis of hypertension. Annu Rev Biochem 68:127–155CrossRefPubMed Garbers DL, Dubois SK (1999) The molecular basis of hypertension. Annu Rev Biochem 68:127–155CrossRefPubMed
56.
Zurück zum Zitat Hughes MN (1999) Relationships between nitric oxide, nitroxyl ion, nitrosonium cation and peroxynitrite. Biochim Biophys Acta 1411:263–272CrossRefPubMed Hughes MN (1999) Relationships between nitric oxide, nitroxyl ion, nitrosonium cation and peroxynitrite. Biochim Biophys Acta 1411:263–272CrossRefPubMed
57.
Zurück zum Zitat Vijfhuize S, Schaible T, Kraemer U et al (2012) Management of pulmonary hypertension in neonates with congenital diaphragmatic hernia. Eur J Pediatr Surg 22:374–383CrossRefPubMed Vijfhuize S, Schaible T, Kraemer U et al (2012) Management of pulmonary hypertension in neonates with congenital diaphragmatic hernia. Eur J Pediatr Surg 22:374–383CrossRefPubMed
Metadaten
Titel
Anti-oxidants correct disturbance of redox enzymes in the hearts of rat fetuses with congenital diaphragmatic hernia
verfasst von
Rosa Aras-López
L. Almeida
V. Andreu-Fernández
J. Tovar
L. Martínez
Publikationsdatum
27.10.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Surgery International / Ausgabe 3/2018
Print ISSN: 0179-0358
Elektronische ISSN: 1437-9813
DOI
https://doi.org/10.1007/s00383-017-4201-5

Weitere Artikel der Ausgabe 3/2018

Pediatric Surgery International 3/2018 Zur Ausgabe

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.