Skip to main content
Erschienen in: Advances in Therapy 1/2021

Open Access 05.11.2020 | Original Research

Anticoagulation Favors Thrombus Recanalization and Survival in Patients With Liver Cirrhosis and Portal Vein Thrombosis: Results of a Meta-Analysis

verfasst von: Le Wang, Xiaozhong Guo, Xiangbo Xu, Valerio De Stefano, Aurelie Plessier, Carlos Noronha Ferreira, Xingshun Qi

Erschienen in: Advances in Therapy | Ausgabe 1/2021

Abstract

Introduction

Benefit and risk of anticoagulation in cirrhotic patients with portal vein thrombosis (PVT) remain controversial, especially in those with asymptomatic PVT and in non-liver transplant candidates. Furthermore, the predictors of portal vein recanalization and bleeding events after anticoagulation are critical for making clinical decisions, but still unclear. We conducted a meta-analysis to investigate the outcomes of anticoagulation for PVT in liver cirrhosis and explore the predictors of portal vein recanalization and bleeding events after anticoagulation.

Methods

All studies regarding anticoagulation for PVT in liver cirrhosis were searched via PubMed, EMBASE, and Cochrane Library databases. Thrombotic outcomes, bleeding events, and survival were compared between anticoagulation and non-anticoagulation groups. Predictors of portal vein recanalization and bleeding events were pooled. Risk ratios (RRs) or mean differences (MDs) with 95% confidence intervals (CIs) were calculated.

Results

Thirty-three studies including 1696 cirrhotic patients with PVT were included. Anticoagulation significantly increased portal vein recanalization (RR = 2.61; 95% CI 1.99–3.43; P < 0.00001) and overall survival (RR = 1.11; 95% CI 1.03–1.21; P = 0.01) and decreased thrombus progression (RR = 0.26; 95% CI 0.14–0.49; P < 0.0001). Anticoagulation did not significantly influence overall bleeding (RR = 0.78; 95% CI 0.47–1.30; P = 0.34). Early initiation of anticoagulation (RR = 1.58; 95% CI 1.21–2.07; P = 0.0007) significantly increased portal vein recanalization. Child-Pugh class B and C (RR = 0.77; 95% CI 0.62–0.95; P = 0.02) and higher MELD score (MD = − 1.48; 95% CI − 2.20–0.76; P < 0.0001) were significantly associated with decreased portal vein recanalization. No predictor significantly associated with bleeding events was identified.

Conclusions

Early initiation of anticoagulation should be supported in liver cirrhosis with PVT. Predictors of portal vein recanalization should be taken into consideration to identify those who may not benefit from anticoagulation.

Registration

The work was registered in PROSPERO with registration no. CRD42020157142.
Key Summary Points
Why carry out this study?
Benefit and risk of anticoagulation and predictors of portal vein recanalization and bleeding events in cirrhotic patients with portal vein thrombosis remain controversial.
What was learned from the study?
Anticoagulation can increase the rate of portal vein recanalization, but decrease the rate of thrombus progression in patients with liver cirrhosis and portal vein thrombosis.
Anticoagulation may improve the survival of patients with liver cirrhosis and portal vein thrombosis.
Early initiation of anticoagulation increases portal vein recanalization, but Child-Pugh class B and C and a higher model for end-stage liver disease score decrease portal vein recanalization.

Digital Features

This article is published with digital features, including a summary slide, to facilitate understanding of the article. To view digital features for this article go to https://​doi.​org/​10.​6084/​m9.​figshare.​13123214.

Introduction

Portal vein thrombosis (PVT) is associated with a variety of disorders, including liver cirrhosis, malignancy, intra-abdominal infection, and abdominal surgery [1]. PVT is commonly observed in liver cirrhosis with a prevalence between 10 and 25% [2]. PVT can be asymptomatic in most cases, but may be associated with negative outcomes, such as intestinal ischemia [3], severe complications of portal hypertension [4], and increased mortality [5].
The Baveno VI consensus and the American College of Gastroenterology (ACG) clinical guideline recommend anticoagulation primarily for PVT in candidates for liver transplantation (LT) and symptomatic PVT in cirrhotic patients [6, 7]. By comparison, the indications for anticoagulation are extended to general patients with liver cirrhosis and PVT according to the European Association for the Study of the Liver (EASL) clinical guideline [8]. However, as known, gastroesophageal variceal bleeding (GEVB) is a common manifestation of decompensated cirrhosis. Due to the fear that use of anticoagulants may further increase the risk of bleeding, most clinicians still prefer to postpone or avoid initiating anticoagulant therapy in cirrhotic patients with PVT, especially in those with asymptomatic PVT and non-LT candidates. On the other hand, transient PVT in liver cirrhosis that refers to spontaneous resolution of PVT in the absence of any antithrombotic therapy has been increasingly recognized, which further increases the complexity of the decision for anticoagulation in these patients [9].
A meta-analysis by our group in 2015 found that anticoagulation was effective for recanalization of PVT in cirrhotic patients [10]. An updated meta-analysis by Loffredo et al. in 2017 confirmed the effectiveness of anticoagulant therapy over no intervention in recanalizing PVT in cirrhotic patients [11]. Despite these findings, which patients may or may not benefit from anticoagulant therapy is still unclear [12]. Indications for anticoagulant therapy in patients with liver cirrhosis who develop PVT need to be clarified. Notably, there has been a remarkable increase in the number of recently published studies involving anticoagulation for PVT in liver cirrhosis since the updated meta-analysis by Loffredo et al. was published. Thus, it would be useful to perform a critical analysis on this topic.
This systematic review and meta-analysis has four major objectives. The first is to report the rates of portal vein recanalization and bleeding in cirrhotic patients with PVT receiving anticoagulation. The second is to compare the rates of portal vein recanalization, bleeding, and survival between cirrhotic patients with PVT who received and did not receive anticoagulation. The third is to analyze the characteristics of cirrhotic patients with PVT who obtained portal vein recanalization from anticoagulation. The fourth is to explore the predictors of portal vein recanalization and bleeding events after anticoagulation.

Methods

The systematic review and meta-analysis was conducted according to the PRISMA checklist as shown in Supplementary Table 1.
This article is based on previously published studies and does not involve any new studies of human or animal subjects performed by any of the authors.

Registration

The work was registered in PROSPERO with registration no. CRD42020157142.

Literature Source

All published papers were searched via the PubMed, EMBASE, and Cochrane Library databases. The last search was conducted on March 4, 2020.

Search Strategy

The search items are shown in Appendix.

Eligibility Criteria

All clinical studies that assessed the effect and/or bleeding risk of anticoagulation for PVT in cirrhotic patients and/or the predictors of portal vein recanalization and/or bleeding events after anticoagulation for PVT were included. Publication language, date, and status were not limited.

Exclusion Criteria

Exclusion criteria were as follows: (1) duplicates; (2) case reports, letters, comments, and/or editorials; (3) reviews and/or meta-analyses; (4) guidelines, consensus, or reports; (5) experimental or animal studies; (6) irrelevant studies that did not evaluate the efficacy or safety of anticoagulation in cirrhotic patients with PVT; (7) studies in which only non-cirrhotic PVT or malignant PVT was included; (8) studies in which PVT developed after splenectomy, splenic arterial embolization, transjugular intrahepatic portosystemic shunt (TIPS), LT, or other major surgical interventions; (9) studies in which anticoagulation was not given; (10) studies in which anticoagulation was given for the prevention of PVT; (11) studies in which detailed data were lacking; (12) studies in which fewer than ten cirrhotic patients with PVT receiving anticoagulation were enrolled.

Data Extraction

Characteristics of included studies and patients were extracted, including first author, publication year, region, enrollment period, study design, study population, features of PVT, exclusion of hepatocellular carcinoma (HCC), exclusion of cavernous transformation of portal vein (CTPV), exclusion of isolated thrombosis within the superior mesenteric vein (SMV) or splenic vein (SV), exclusion of patients receiving antiplatelet treatment, exclusion of patients receiving thrombolytic treatment, interval between diagnosis of PVT and initiation of anticoagulation, baseline gastroesophageal varices, follow-up duration, and type and dose of anticoagulants. Rates of portal vein recanalization, thrombus progression, re-thrombosis, bleeding events, including overall bleeding, major bleeding, upper gastrointestinal bleeding (UGIB), GEVB, and deaths due to bleeding events, and survival in anticoagulation and non-anticoagulation groups were also extracted. In addition, the characteristics of cirrhotic patients with PVT who received anticoagulation were reviewed, and the predictors of portal vein recanalization and bleeding events after anticoagulation were extracted.

Definitions

Overall recanalization included complete and partial recanalization. Complete recanalization was defined as complete resolution of previously detected thrombus. Because the definition of partial recanalization was very inconsistent among the included studies or unclear in some studies, this outcome was not evaluated in the present work.
Thrombus progression was considered if there was a significant increase in thrombus lumen occupancy or thrombus extension to unaffected segments of the splenoportomesenteric axis.
Major bleeding was defined as fatal bleeding, symptomatic bleeding in a critical location or organ, a fall in hemoglobin level ≥ 2 g/dl, or a requirement of red blood cell transfusion ≥ 2 units.
UGIB mainly included bleeding caused by ulcers, GEVB, and portal hypertensive gastropathy.

Study Quality

The study quality was assessed by the Newcastle-Ottawa Scale (NOS) criteria for cohort studies [13]. Three major parts are assessed: (1) selection (score 0–4), (2) comparability (score 0–2), and (3) outcome (score 0–3). The maximum score is 9. A score of 0–3, 4–6, and 7–9 represents low, moderate, and high quality, respectively.

Statistical Analysis

We performed the meta-analyses by using random-effect models in Review Manager 5.3 (Cochrane Collaboration, Nordic Cochrane Centre, Copenhagen), Stats Direct 2.8.0 (StatsDirect Ltd., Sale, Cheshire, UK), and STATA 12.0 (Stata Corp, College Station, TX). Pooled proportions and risk ratios (RRs) with 95% confidence intervals (CIs) were calculated for categorical variables. Mean differences (MDs) with 95% CIs were calculated for continuous variables. Cochrane Q test and the I2 statistics were employed to assess the heterogeneity, and P < 0.1 or I2 > 50% was considered as a statistically significant heterogeneity. Meta-regression and subgroup analyses were employed to explore the sources of heterogeneity. In the meta-regression analyses, publication year, region, study design, study quality, exclusion of HCC, exclusion of CTPV, exclusion of isolated thrombosis within SMV or SV, exclusion of patients receiving antiplatelet treatment, exclusion of patients receiving thrombolytic treatment, and type of anticoagulants were used as covariates. Subgroup analyses were also performed in terms of the variables mentioned above. Sensitivity analyses were performed to assess the impact of each individual study on the stability of statistical results by removing studies one by one from a meta-analysis. Publication bias was evaluated with the Egger test, and P < 0.1 was considered as a statistically significant publication bias. We also drew the scattered plots and performed the Spearman correlation analysis in the IBM SPSS 26.0 (IBM Corp., Armonk, NY, USA) to explore the correlation between patient characteristics and portal vein recanalization rate after anticoagulation. Coefficients, which are denoted as rs, were calculated. A two-sided P < 0.05 indicates a statistical significance.

Results

Included Studies

A total of 33 studies including 1696 patients with liver cirrhosis and PVT were eligible (Fig. 1). Notably, six studies evaluated the efficacy of anticoagulant therapy for PVT in liver cirrhosis, but they were finally excluded. This was mainly because they included patients undergoing splenectomy [1416], splenic arterial embolization [17], or TIPS [18, 19].
Main characteristics of studies are summarized in Table 1. The sample size ranged from 16 to 182. Nineteen studies were published as full texts [14, 2037] and 14 as abstracts [3851]. They were published between 2005 and 2019. Twenty of them were performed in Europe [2125, 30, 3236, 3840, 42, 44, 46, 47, 49, 50]. Fifteen studies were of prospective nature [2225, 28, 30, 31, 36, 38, 39, 41, 44, 45, 47, 48]. Eleven studies were comparative cohort studies with a control group in which anticoagulation was not given [14, 21, 22, 25, 27, 34, 36, 40, 42, 46, 48]. As for the type of anticoagulants, low-molecular-weight heparin (LMWH) alone was given in six studies [23, 28, 29, 31, 35, 40], vitamin K antagonists (VKAs) alone in three studies [14, 26, 27], fondaparinux alone in two studies [47, 49], direct-acting oral anticoagulants (DOACs) alone in one study [20], LMWH followed by VKAs in three studies [20, 22, 32], and LMWH in combination with antithrombin in one study [45].
Table 1
Characteristics of studies
First author (year)
Publication form
Region
Enrollment period
Study design
Population
Number of patients
Follow-up duration
Type and dose of anticoagulants
Francoz (2005)
Full text
Clichy
France
1996.1–2001.12
Pro
Comparative cohort
Cirrhosis
Non-neoplastic PVT
AT: 19
No AT: 10
NA
Nadroparin 5700 U/day followed by acenocoumarol (Target INR: 2–3)
Amitrano (2010)
Full text
Naples
Italy
2005.6–2006.12
Pro
Single arm cohort
Cirrhosis
PVT
AT: 28
NA
Enoxaparin 200 U/kg/day
Butera (2010)
Abstract
Piedmont
Italy
2007.5–2009.4
Pro
Single arm cohort
Cirrhosis
Non-neoplastic PVT
Esophageal varices
AT: 16
NA
LWMH (n = 7); Warfarin (n = 4); LMWH followed by warfarin (n = 5)
Bento (2011)
Abstract
Madrid
Spain
2004–2009
Pro
Single arm cohort
Cirrhosis
Chronic PVT
AT: 28
6 months
Therapeutic dose of enoxaparin for 15 days followed by either prophylactic dose (40 mg/day) of LMWH or acenocoumarol (Target INR: 2–3)
Delgado (2012)
Full text
Barcelona
Spain
2003.6–2010.9
Pro
Single arm cohort
Cirrhosis
Acute or sub-acute non-neoplastic PVT
AT: 55
19 (1–68) months
LMWH (n = 26); VKAs (n = 8); LMWH followed by VKAs (n = 21)
Senzolo (2012)
Full text
Padua
Italy
2007.1–2008.1
Pro
Comparative cohort
Cirrhosis
PVT
AT: 33 (2 patients were lost to follow-up)
No AT: 21
22.53 ± 8.5 months
Nadroparin 95 antiXa U/kg third daily, 3800 antiXa U daily after complete recanalization
Caracciolo (2013)
Abstract
Rome
Italy
NA
Retro
Comparative cohort
Cirrhosis
Partial PVT
Excluding active esophageal variceal bleeding and high-risk esophageal varices
AT: 12
No AT: 14
6–12 months
LWMH
Takatori (2013)
Abstract
Kanazawa
Japan
2008.11–2012.8
Pro
Single arm cohort
Cirrhosis
PVT
AT: 28
NA
Danaparoid 1250 U twice daily (n = 9); Danaparoid 1250 U twice daily together with antithrombin 1500 U (n = 19)
Werner (2013)
Full text
Rochester
USA
2005.1–2011.11
Retro
Single arm cohort
Cirrhosis
Non-neoplastic PVT
Excluding recent history of gastrointestinal bleeding
AT: 28
NA
Warfarin 1 mg/day (Target INR: 2–3)
Chung (2014)
Full text
Seoul
Korea
2003.4–2014.6
Retro
Comparative cohort
Cirrhosis
Non-neoplastic PVT
AT: 14
No AT: 14
NA
Warfarin 2.7 mg/day (Mean)
Risso (2014)
Abstract
Turin
Italy
2005–2011
Retro
Comparative cohort
Cirrhosis
Non-neoplastic PVT
AT: 50
No AT: 20
NA
NA
Cheruvathur (2015)
Abstract
Trivandrum
India
2010.1–2014.12
Retro
Single arm cohort
Cirrhosis
PVT
AT: 46
No
Enoxaparin followed by warfarin (n = 29); Fondaparinux followed by warfarin (n = 17)
Cui (2015)
Full text
Shandong
China
NA
Pro
Single arm cohort
Hepatitis B virus related cirrhosis
Acute PVT
AT: 65
NA
Enoxaparin 1.5 mg/kg/day (n = 34); 1 mg/kg twice daily (n = 31)
Gheorghe (2015)
Abstract
Bucharest
Romania
NA
Pro
Single arm cohort
Cirrhosis
PVT
AT: 48 (6 patients were lost to follow-up)
NA
LMWH (n = 19); Acenocoumarol (n = 35)
Inao (2015)
Abstract
Moroyama-Machi
Japan
NA
Pro
Single arm cohort
Cirrhosis
PVT
AT: 39
NA
Danaparoid 2500 U/day combined with antithrombin 1500 U/day
Chen (2016)
Full text
Xi'an
China
2002.1–2014.6
Retro
Comparative cohort
Cirrhosis
PVT
AT: 30
No AT: 36
33.2 ± 29.2 months in AT group;
25.9 ± 23 months in no AT group
Warfarin 2.5 mg/day (Target INR: 2–3)
Sbrancia (2016)
Abstract
Perugia
Italy
2008.2–2015.3
Retro
Comparative cohort
Cirrhosis
Non-neoplastic PVT
AT: 16
No AT: 12
NA
LMWH or warfarin
Tonon (2016)
Abstract
Padova
Italy
2010–2014
Pro
Single arm cohort
Cirrhosis
Acute non-neoplastic PVT
AT: 42
NA
Fondaparinux: adjusted to body weight and on platelet count, ranging from 2.5 to 7.5 mg/die
Fujiyama (2017)
Full text
Tokyo
Japan
2007.7–2016.9
Retro
Single arm cohort
Cirrhosis
Non-neoplastic PVT
AT: 63
NA
Danaparoid 2500 U/day
Artaza (2018)
Full text
Toledo
Spain
2009.3–2015.9
Pro
Single arm cohort
Cirrhosis
PVT
AT: 32
28.4 (3–65) months
Enoxaparin (n = 29); VKAs (Target INR: 2–3) (n = 3)
Kwon (2018)
Full text
Seoul
Korea
2013.1–2016.8
Pro
Single arm cohort
Cirrhosis
Non-neoplastic PVT
Excluding major bleeding during the last 3 months
AT: 89 (2 patients were lost to follow-up)
Until 2017.5
Dalteparin 200 U/kg once daily during the first 4 weeks, reduction to 150 U/kg per day (n = 82); Enoxaparin 1 mg/kg twice daily (n = 9)
La Mura (2018)
Full text
Milan
Italy
2003–2015
Retro
Single arm cohort
Cirrhosis
PVT
AT: 63
NA
LMWH followed by VKAs (Target INR: 2–3)
Nagaoki (2018)
Full text
Hiroshima
Japan
2011.12–2016.4
Retro
Single arm cohort
Cirrhosis
Non-neoplastic PVT
AT: 50
6 months
LMWH 2500 U/day for 2 weeks followed by warfarin (Target INR: 1.5–2.0) (n = 30)
LMWH 2500 U/day for 2 weeks followed by edoxaban 60 mg once daily (n = 20)
Scheiner (2018)
Full text
Vienna
Austria
NA
Retro
Comparative cohort
Cirrhosis
Non-neoplastic PVT
AT: 16
No AT: 35
44.1 (14–79.1) months
LMWH or phenprocoumon
Tiwari (2018)
Abstract
Chennai
India
NA
Pro
Comparative cohort
Cirrhosis
Non-neoplastic PVT
AT: 25
No AT: 20
12 (0–30) months
LMWH (n = 9); Heparin (n = 16)
Bergere (2019)
Full text
Lyon
France
2003.6–2018.5
Retro
Single arm cohort
Cirrhosis
Non-neoplastic PVT
AT: 40
NA
LMWH followed by VKAs (Target INR: 2–2.5) (n = 32); LMWH (n = 8)
Noronha Ferreira (2019)
Full text
Lisbon
Portugal
2002.1–2017.12
Pro
Comparative cohort
Cirrhosis
PVT
AT: 35 (2 patients were lost to follow-up)
No AT: 32 (11 patients were lost to follow-up)
25.5 (1–146) months
LMWH or warfarin (Target INR: 2–3)
Hayama (2019)
Abstract
Tokyo
Japan
2014–2019
Retro
Single arm cohort
Cirrhosis
PVT
AT: 42
28 days
LMWH or LMWH combined with antithrombin
Hayashi (2019)
Full text
Ishikawa
Japan
2008.11–2018.9
Retro
Single arm cohort
Cirrhosis
PVT
AT: 52
14 days
Danaparoid or danaparoid combined with antithrombin
Pettinari (2019)
Full text
Bologna
Italy
2008.1–2016.3
Retro
Comparative cohort
Cirrhosis
Non-neoplastic PVT
AT: 81
No AT: 101
19 (3–94) months
LMWH (n = 56); Fondaparinux (n = 15); VKAs (n = 10)
Rodriguez-Castro (2019)
Full text
Bologna
Italy
2007.1–2015.1
Retro
Single arm cohort
Cirrhosis
PVT
AT: 65
12 months
LMWH
Senzolo (2019)
Abstract
Bologna
Italy
NA
Retro
Single arm cohort
Cirrhosis
Non-neoplastic PVT
AT: 40
36 months
Fondaparinux
Tarantinoi (2019)
Abstract
Ancona
Italy
2000–2018
Retro
Single arm cohort
Cirrhosis
PVT
AT: 91
Median: 15 months
LMWH (n = 63); VKAs (n = 28)
Pro prospective, Retro retrospective, PVT portal vein thrombosis, AT anticoagulation therapy, INR international standardized ratio, LMWH low-molecular-weight heparin, VKAs vitamin K antagonists, NA not available
Main characteristics of patients are summarized in Supplementary Table 2. Ten studies clearly excluded patients with HCC [14, 21, 23, 25, 28, 30, 32, 35, 38, 40], nine excluded patients with CTPV [14, 23, 24, 26, 28, 30, 33, 40, 47], five excluded patients with isolated thrombosis within SMV or SV [14, 25, 30, 35, 36], three excluded patients receiving antiplatelet treatment [25, 28, 35], and one excluded patients receiving thrombolytic treatment [14].

Study Quality

The NOS score ranged from 4 to 9 points. Twenty-six studies were considered to be of moderate quality, and seven were of high quality [14, 21, 25, 27, 36, 40, 48] (Supplementary Table 3).

Overall Portal Vein Recanalization

Twenty-nine studies reported the rate of overall portal vein recanalization after anticoagulation, and the pooled rate was 71.5% (95% CI 66.0–76.7%) (Supplementary Fig. 1). There was a statistically significant heterogeneity (I2 = 77.4%; P < 0.0001). Meta-regression analysis found that the heterogeneity might be related to the publication year (Supplementary Table 4). In subgroup analyses of studies excluding HCC, excluding isolated thrombosis within SMV or SV, excluding patients receiving antiplatelet treatment, using LMWH alone, using VKAs alone, and using fondaparinux alone, the heterogeneity became not statistically significant (Supplementary Table 5). In sensitivity analyses, the pooled rates of overall portal vein recanalization were comparable after eliminating individual studies one by one, and the heterogeneity remained statistically significant (Supplementary Table 6).
Seven studies compared the rate of overall portal vein recanalization between patients who received and did not receive anticoagulation. Meta-analysis demonstrated that anticoagulation significantly increased the rate of overall portal vein recanalization (RR = 2.61; 95% CI 1.99–3.43; P < 0.00001). There was no statistically significant heterogeneity among studies (I2 = 0%; P = 0.66) (Fig. 2a).

Complete Portal Vein Recanalization

Twenty-seven studies reported the rate of complete portal vein recanalization after anticoagulation, and the pooled rate was 40.8% (95% CI 35.2–46.5%). There was a statistically significant heterogeneity (I2 = 75.1%; P < 0.0001). Meta-regression analysis found that the heterogeneity might be related to the exclusion of CTPV (Supplementary Table 4). In subgroup analyses of studies performed in Asia and studies using VKAs alone, the heterogeneity became not statistically significant (Supplementary Table 5). In sensitivity analyses, the pooled rates of complete portal vein recanalization were comparable after eliminating individual studies one by one, and the heterogeneity remained statistically significant (Supplementary Table 6).
Six studies compared the rate of complete portal vein recanalization between patients who received and did not receive anticoagulation. Meta-analysis demonstrated that anticoagulation significantly increased the rate of complete portal vein recanalization (RR = 2.14; 95% CI 1.30–3.50; P = 0.003). There was no statistically significant heterogeneity among studies (I2 = 46%; P = 0.10) (Fig. 2b).

Thrombus Progression

Twenty-three studies reported the rate of thrombus progression after anticoagulation, and the pooled rate was 6.9% (95% CI 3.1–12%). There was a statistically significant heterogeneity (I2 = 84.9%; P < 0.0001). Meta-regression analysis did not find any source of heterogeneity (Supplementary Table 4). In subgroup analyses of comparative cohort studies and high-quality studies, the heterogeneity became not statistically significant (Supplementary Table 7). In sensitivity analyses, the pooled rates of thrombus progression were comparable after eliminating individual studies one by one, and the heterogeneity remained statistically significant (Supplementary Table 6).
Four studies compared the rate of thrombus progression between patients who received and did not receive anticoagulation. Meta-analysis demonstrated that anticoagulation significantly decreased the rate of thrombus progression (RR = 0.26; 95% CI 0.14–0.49; P < 0.0001). There was no statistically significant heterogeneity among studies (I2 = 1%; P = 0.39) (Fig. 2c).

Re-Thrombosis

Nine studies reported the rate of re-thrombosis after stopping anticoagulation, and the pooled rate was 46.7% (95% CI 37.7–69.3%). There was no statistically significant heterogeneity (I2 = 36%; P = 0.1306).
No data reported the rate of re-thrombosis between patients who stopped and did not stop anticoagulation.

Overall Bleeding

Twenty-four studies reported the rate of overall bleeding after anticoagulation, and the pooled rate was 10.3% (95% CI 6.4–15.0%). There was a statistically significant heterogeneity (I2 = 79.8%; P < 0.0001). Meta-regression analysis found that the heterogeneity might be related to the publication year (Supplementary Table 4). In subgroup analyses of studies excluding patients receiving antiplatelet treatment, the heterogeneity became not statistically significant (Supplementary Table 7). In sensitivity analyses, the pooled rates of overall bleeding were comparable after eliminating individual studies one by one, and the heterogeneity remained statistically significant (Supplementary Table 6).
Four studies compared the rate of overall bleeding between patients who received and did not receive anticoagulation. Meta-analysis demonstrated that anticoagulation did not significantly increase the rate of overall bleeding (RR = 0.78; 95% CI 0.47–1.30; P = 0.34). There was no statistically significant heterogeneity among studies (I2 = 0%; P = 0.45) (Fig. 3a).

Major Bleeding

Nineteen studies reported the rate of major bleeding after anticoagulation, and the pooled rate was 2.8% (95% CI 1.4–4.6%). There was a statistically significant heterogeneity (I2 = 43.3%; P = 0.0235). Meta-regression analysis did not find any source of heterogeneity (Supplementary Table 4). In subgroup analyses of prospective studies, comparative cohort studies, high-quality studies, and studies published before 2015, performed in Asia, excluding CTPV, using LMWH alone, using VKAs alone, using fondaparinux alone, and using LMWH followed by VKAs, the heterogeneity became not statistically significant (Supplementary Table 8). Sensitivity analyses suggested that the heterogeneity might be attributed to the study by La Mura (2018) (Supplementary Table 6).
No data reported the rate of major bleeding between patients who received and did not receive anticoagulation.

UGIB

Eighteen studies reported the rate of UGIB after anticoagulation, and the pooled rate was 3.2% (95% CI 1.7–5.1%). There was a statistically significant heterogeneity (I2 = 38.0%; P = 0.0524). Meta-regression analysis did not find any source of heterogeneity (Supplementary Table 4). In subgroup analyses of prospective studies, comparative cohort studies, high-quality studies, and studies published before 2015, performed in Asia, performed in Europe, excluding HCC, not excluding CTPV, excluding isolated thrombosis within SMV or SV, excluding patients receiving antiplatelet treatment, using LMWH alone, using VKAs alone, and using LMWH followed by VKAs, the heterogeneity became not statistically significant (Supplementary Table 8). Sensitivity analyses suggested that the heterogeneity might be attributed to the studies by Cui (2015), Fujiyama (2017), Bergere (2019), or Pettinari (2019) (Supplementary Table 6).
Five studies compared the rate of UGIB between patients who received and did not receive anticoagulation. Meta-analysis demonstrated that anticoagulation significantly decreased the rate of UGIB (RR = 0.29; 95% CI 0.14–0.61; P = 0.001). There was no statistically significant heterogeneity among studies (I2 = 0%; P = 0.75) (Fig. 3b).

GEVB

Seventeen studies reported the rate of GEVB after anticoagulation, and the pooled rate was 2.0% (95% CI 1.0–3.3%). There was no statistically significant heterogeneity (I2 = 0%; P = 0.7966).
Four studies compared the rate of GEVB between patients who received and did not receive anticoagulation. Meta-analysis demonstrated that anticoagulation significantly decreased the rate of GEVB (RR = 0.26; 95% CI 0.11–0.65; P = 0.004). There was no statistically significant heterogeneity among studies (I2 = 0%; P = 0.74) (Fig. 3c).

Death due to Bleeding Events

Twenty-five studies reported the rate of death due to bleeding events after anticoagulation, and the pooled rate was 0.7% (95% CI 0.3–1.3%). There was no statistically significant heterogeneity (I2 = 0%; P > 0.9999).
Five studies compared the rate of death due to bleeding events between patients who received and did not receive anticoagulation. Meta-analysis demonstrated that anticoagulation did not significantly influence the rate of death due to bleeding events (RR = 0.26; 95% CI 0.05–1.52; P = 0.14). There was no statistically significant heterogeneity among studies (I2 = 0%; P = 0.93) (Fig. 3d).

Overall Survival

Six studies compared the overall survival rate between patients who received and did not receive anticoagulation. Meta-analysis demonstrated that anticoagulation significantly increased the overall survival rate (RR = 1.11; 95% CI 1.03–1.21; P = 0.01). There was no statistically significant heterogeneity among studies (I2 = 0%; P = 0.47) (Fig. 4a).

One-Year Survival

Two studies compared the 1-year survival rate between patients who received and did not receive anticoagulation. Meta-analysis demonstrated that anticoagulation did not significantly increase the 1-year survival rate (RR = 1.19; 95% CI 0.65–2.20; P = 0.57). There was a statistically significant heterogeneity among studies (I2 = 92%; P = 0.0006) (Fig. 4b).

Three-Year Survival

Two studies compared the 3-year survival rate between patients who received and did not receive anticoagulation. Meta-analysis demonstrated that anticoagulation did not significantly increase the 3-year survival rate (RR = 1.21; 95% CI 0.78–1.87; P = 0.40). There was a statistically significant heterogeneity among studies (I2 = 71%; P = 0.06) (Fig. 4c).

Five-Year Survival

Two studies compared the 5-year survival rate between patients who received and did not receive anticoagulation. Meta-analysis demonstrated that anticoagulation did not significantly increase the 5-year survival rate (RR = 1.08; 95% CI 0.97–1.21; P = 0.16). There was no statistically significant heterogeneity among studies (I2 = 0%; P = 0.66) (Fig. 4d).

Trend in Portal Vein Recanalization Rate After Anticoagulation According to the Patient Characteristics

In the scattered plots, with an increase in the proportions of symptomatic PVT (abdominal pain and fever, new or worsening ascites, and GEVB), thrombus extension to SMV and/or SV, complete PVT, Child-Pugh class B and C, and HCC, platelet count, and serum creatinine (sCr) level, there is a decreasing trend in overall and complete portal vein recanalization rates (Supplementary Fig. 2). Spearman correlation analysis found that only HCC significantly correlated with a lower rate of complete portal vein recanalization (P = 0.037, rs = − 0.90). We did not find any factor that significantly correlated with overall portal vein recanalization rate.

Predictors of Portal Vein Recanalization

Eight studies reported the predictors of portal vein recanalization after anticoagulation. The predictors evaluated included age, gender, previous portal hypertensive bleeding, ascites, hepatic encephalopathy, HCC, thrombophilia, isolated splenic vein thrombosis, isolated superior mesenteric vein thrombosis, complete PVT, CTPV, platelet count, sCr level, international normalized ratio, Child-Pugh class and score, model for end-stage liver disease (MELD) score, interval between PVT diagnosis and initiation of anticoagulation, and duration of anticoagulation. Meta-analyses demonstrated that early initiation of anticoagulation (RR = 1.58; 95% CI 1.21–2.07; P = 0.0007) and shorter duration of anticoagulation (≤ 6 months versus > 6 months) (OR = 1.53; 95% CI 1.09–2.16; P = 0.02) significantly increased portal vein recanalization. Child-Pugh class B and C (RR = 0.77; 95% CI 0.62–0.95; P = 0.02) and higher MELD score (MD = − 1.48; 95% CI − 2.20–0.76; P < 0.0001) were significantly associated with decreased portal vein recanalization (Table 2).
Table 2
Predictors of portal vein recanalization and bleeding events: results of meta-analyses
Predictors
No. studies
Effect size (95% CI)
P value
Heterogeneity
I2
P value
Predictors of portal vein recanalization: results of meta-analyses
 Child-Pugh class (B and C vs. A)
3
RR = 0.77 (0.62, 0.95)
0.020
0%
0.66
 Interval between PVT diagnosis and initiation of anticoagulation (early vs. late)
6
RR = 1.58 (1.21, 2.07)
0.0007
30%
0.21
  ≤ 14 days vs. > 14 days
1
RR = 1.79 (1.00, 3.18)
0.050
  ≤ 1 month vs. > 1 month
1
RR = 1.13 (0.73, 1.72)
0.590
  ≤ 3 months vs. > 3 months
1
RR = 1.49 (1.10, 2.02)
0.010
  ≤ 6 months vs. > 6 months
3
RR = 2.11 (1.29, 3.45)
0.003
10%
0.33
 Duration of anticoagulation (≤ 6 months)
2
RR = 1.53 (1.09, 2.16)
0.010
0%
0.35
 Gender (male)
8
RR = 1.14 (0.91, 1.43)
0.250
54%
0.03
 Previous portal hypertensive bleeding
2
RR = 0.66 (0.42, 1.04)
0.070
57%
0.13
 Ascites
4
RR = 1.01 (0.78, 1.30)
0.950
47%
0.13
 Hepatic encephalopathy
3
RR = 0.92 (0.68, 1.25)
0.600
0%
0.96
 Hepatocellular carcinoma
3
RR = 0.89 (0.70, 1.13)
0.340
0%
0.97
 Thrombophilia
2
RR = 0.77 (0.16, 3.72)
0.750
85%
0.01
 Cavernous transformation of portal vein
2
RR = 0.49 (0.21, 1.15)
0.100
0%
0.56
 Isolated splenic vein thrombosis
2
RR = 1.27 (0.90, 1.78)
0.170
0%
0.68
 Isolated superior mesenteric vein thrombosis
2
RR = 0.92 (0.68, 1.25)
0.600
0%
0.32
 Complete PVT
3
RR = 0.80 (0.59, 1.09)
0.150
0%
0.99
 Age (years)
5
MD = 1.84 (− 1.96, 5.63)
0.340
29%
0.23
 Child-Pugh Score
2
MD = − 0.44 (− 2.29, 1.41)
0.640
73%
0.05
 MELD score
3
MD = − 1.48 (− 2.20, − 0.76)
 < 0.0001
0%
0.64
 Platelet count (109/l)
5
MD = 7.24 (− 2.52, 17.00)
0.150
54%
0.07
 Serum creatinine (mg/dl)
3
MD = 0.06 (0.00, 0.12)
0.050
8%
0.34
 International normalized ratio
4
MD = − 0.04 (− 0.08, 0.00)
0.080
42%
0.16
Predictors of bleeding events: results of meta-analyses
 Type of anticoagulants (LMWH vs. VKAs)
2
RR = 2.30 (0.20, 26.43)
0.510
65%
0.51
 Child-Pugh Score
2
MD = − 0.22 (− 1.15, 0.72)
0.650
0%
0.42
 MELD score
2
MD = − 0.19 (− 1.5, 1.12)
0.780
0%
0.14
 Platelet count (109/l)
2
MD = − 33.71 (− 98.18, 30.76)
0.310
85%
0.01
 Duration of anticoagulation (months)
2
MD = − 0.40 (− 15.21, 14.41)
0.960
54%
0.14
Bolditalics indicate P value <0.05
RR risk ratio, MD mean difference, CI confidence interval, PVT portal vein thrombosis, MELD model for end-stage liver disease, LMWH low-molecular-weight heparin, VKAs vitamin K antagonists

Predictors of Bleeding Events

Two studies reported the predictors of bleeding events after anticoagulation. The predictors evaluated included type of anticoagulants (LMWH versus VKAs), Child-Pugh score, MELD score, platelet count, and duration of anticoagulation. Meta-analyses did not identify any predictor significantly associated with bleeding events after anticoagulation (Table 2).

Discussion

Compared to the previous meta-analysis [11], our meta-analysis has several new findings. First, the pooled re-thrombosis rate after stopping anticoagulation was 46.7%, suggesting the necessity of long-term anticoagulation in these patients. Second, we observed a significant benefit of anticoagulant therapy on the improvement of overall survival. Certainly, further validation is warranted. It remains uncertain about whether such an improvement is attributed to anticoagulation itself or portal vein recanalization as a response to anticoagulant therapy. Survival rate seems to be higher in patients achieving complete and partial portal vein recanalization than non-responders [29, 31, 32]. Third and most importantly, we were able to identify a series of predictors for portal vein recanalization, which may be useful to identify patients who are the most likely to benefit from anticoagulation.
Moreover, our meta-analysis has excluded the studies in which patients underwent splenectomy, splenic arterial embolization, TIPS, LT, and other major surgical interventions. Notably, such patients are different from cirrhotic patients with PVT who do not undergo any interventional procedure, since these procedures themselves can affect the progression of PVT and potentially confound the outcomes [52]. All relevant studies with and without a control group were included to calculate the rates of portal vein recanalization and bleeding. In addition, bleeding risk was classified as overall bleeding, major bleeding, UGIB, GEVB, and deaths due to bleeding events.
We found that among cirrhotic patients with PVT receiving anticoagulation, major bleeding accounted for less than a third of overall bleeding events. In other words, a majority of bleeding events in patients with liver cirrhosis and PVT while on anticoagulation are mild and may not require interruption of anticoagulant therapy. Due to a small number of bleeding events, we did not identify any factor associated with bleeding complications. In contrast to the traditional belief that anticoagulation increases bleeding risk in patients with portal hypertension, our meta-analysis indicated that anticoagulation was protective against UGIB and GEVB. A possible explanation for this phenomenon is that anticoagulant therapy may improve portal vein recanalization and then reduce portal vein pressure, thereby preventing bleeding from rupture of varicose veins and portal hypertensive gastropathy. Additionally, it should not be neglected that patients with active or recent GEVB and high-risk gastroesophageal varices were excluded in nearly all studies and that thorough screening for esophageal and/or gastric varices and prophylaxis of GEVB with either endoscopic band ligation or non-selective beta blockers were done prior to initiating anticoagulation.
The choice of anticoagulant drugs is inconsistent among the practice guidelines. The ACG guideline recommends unfractionated heparin and LMWH for the treatment of PVT in liver cirrhosis [6]. The Baveno VI consensus suggests that LMWH and VKAs appear to be equally effective in cirrhotic patients with PVT [7]. According to our subgroup analyses regarding the choices of anticoagulation regimes, overall recanalization rate was the highest in DOACs alone, followed by VKAs alone, fondaparinux alone, LMWH alone, LMWH in combination with antithrombin, and LMWH in continuation to VKAs; thrombus progression rate was the highest in LMWH in continuation to VKAs, followed by LMWH in combination with antithrombin, LMWH alone, DOACs alone, and VKA alone; bleeding rate was the highest in LMWH in continuation to VKAs, followed by fondaparinux alone, VKAs alone, and LMWH alone. Collectively, DOACs seemed to be more effective compared to LMWH and VKAs, which was consistent with the findings in non-cirrhotic PVT patients [53]. However, a higher rate of recanalization obtained by DOACs has been reported in only a single study [20]. In addition, the safety of DOACs is unclear in patients with advanced or decompensated cirrhosis [54]. Therefore, such a conclusion needs to be validated by a head-to-head randomized comparison. Except for clinical outcomes, the selection of anticoagulants should be also weighed according to the cost of drugs used, need of subcutaneous injection for LMWHs, and regular monitoring of INR in VKAs.
We found that the severity of PVT and underlying liver cirrhosis, inclusion of HCC, timing of initiation, and duration of anticoagulation might affect the benefits of anticoagulant therapy for PVT in liver cirrhosis. Completely occlusive PVT and thrombus extension to the SMV or SV seem to be associated with a lower portal vein recanalization rate. Compensated cirrhosis is associated with a higher portal vein recanalization rate; by comparison, patients with Child-Pugh class B and C and higher MELD score have a lower portal vein recanalization rate. Advanced liver cirrhosis has an aggravation of portal hypertension and a higher probability of using non-selective beta-blockers, thereby reducing the portal vein blood flow velocity which may contribute to the development and progression of PVT [55, 56]. In addition, patients with advanced cirrhosis are more prone to the risk of thrombotic events and resistance to anticoagulation [57]. Advanced cirrhosis is associated with a reduction of hepatic folate storage and a suppression in its metabolic activation by hepatocytes, thereby causing secondary hyperhomocysteinemia, which is thought to contribute to thrombotic events [58]. Also, we found that the inclusion of HCC might affect portal vein recanalization. Although we excluded the studies involving only malignant PVT, some included studies still had a proportion of HCC patients, in whom the possibility of malignant PVT could not be completely excluded. Additionally, hypercoagulable state and tumor compression on the portal vein in HCC patients might lead to a low rate of portal vein recanalization. There seems to be an impact of a delay in starting anticoagulation on the recanalization of PVT in patients with and without cirrhosis [59, 60]. Our meta-analysis confirmed that early initiation of anticoagulation increased portal vein recanalization. In addition, subgroup analysis found that complete portal vein recanalization rate seemed to be higher in studies excluding CTPV than those not excluding CTPV [49.3% (95% CI 38.3%–60.4%) versus 37.5% (95% CI 31.2%–43.9%)].
The recommended duration of anticoagulation for PVT in liver cirrhosis differs among the guidelines. The American Association for the Study of Liver Diseases guideline recommends anticoagulation for at least 3 months for all patients with acute PVT and long-term anticoagulation for patients with concomitant mesenteric vein thrombosis or those with permanent thrombotic risk factors [61]. The EASL and ACG guidelines recommend anticoagulation for at least 6 months in cirrhotic patients with PVT and consider lifelong anticoagulation in patients with thrombosis extending to SMV, those with a history suggestive of intestinal ischemia, or LT candidates [6, 8]. Counter-intuitively, our meta-analysis found that a shorter duration of anticoagulation (≤ 6 months versus > 6 months) significantly increased the rate of portal vein recanalization. This finding should be cautiously interpreted, because only two studies provided the relevant data. Additionally, both studies were observational in which continuing the use of anticoagulants was often dependent upon the dynamic assessment of PVT outcomes. In other words, anticoagulation would be more likely to be stopped earlier, if portal vein recanalization was achieved; by contrast, anticoagulation would be continued, if a thrombus remained unchanged. On the other hand, the duration of anticoagulation should also be based on the risk of re-thrombosis after stopping anticoagulation. However, this issue could not be evaluated, because the relevant data were lacking.
Our study has several limitations. (1) No randomized controlled trial has been identified yet, suggesting that the quality of evidence is relatively poor. (2) The characteristics of the study population, especially severity of cirrhosis, degree and extension of PVT, and CTPV, may affect the portal vein recanalization rates. Such data were heterogeneous among the included studies and were not reported in many studies. (3) Some studies did not exclude patients with HCC at baseline or during follow-up. (4) Some studies did not clarify the use of antiplatelet or thrombolytic therapy during anticoagulation. (5) Some studies did not clarify the type of anticoagulants. (6) The follow-up duration after anticoagulation varied among studies.

Conclusion

When the candidates for anticoagulation are carefully selected under adequate prophylaxis of variceal bleeding, anticoagulation is effective and safe for the treatment of PVT in cirrhosis. Additionally, anticoagulation may have a beneficial effect on survival in cirrhotic patients with PVT, but this impact of anticoagulation on survival should be further evaluated after adjusting for the severity of liver cirrhosis. Early initiation of anticoagulation can contribute to an increase in the rate of PVT recanalization. Child-Pugh class B and C and higher MELD score may be associated with lower recanalization rates of PVT. It may be useful to integrate these predictors into a scoring system to identify patients with liver cirrhosis and PVT who will not benefit from anticoagulant therapy.

Acnowledgements

Funding

No funding or sponsorship was received for this study or publication of this article.

Authorship

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this manuscript, take responsibility for the integrity of the work as a whole, and have given final approval for the version to be published.

Authorship Contributions

Conceptualization: Xingshun Qi; Methodology: Le Wang and Xingshun Qi; Validation: Xiaozhong Guo and Xingshun Qi; Formal analysis: Le Wang, Xiangbo Xu, and Xingshun Qi; Investigation: Le Wang, Xiangbo Xu, and Xingshun Qi; Data curation: Le Wang, Xiangbo Xu, and Xingshun Qi; Writing–original draft: Le Wang, Xiaozhong Guo, Xiangbo Xu, and Xingshun Qi; Writing–review and editing: Le Wang, Xiaozhong Guo, Xiangbo Xu, Valerio De Stefano, Aurelie Plessier, Carlos Noronha Ferreira, and Xingshun Qi; Supervision: Xingshun Qi; Project administration: Xingshun Qi. All authors have made an intellectual contribution to the manuscript and approved the submission.

Disclosures

Le Wang, Xiaozhong Guo, Xiangbo Xu, Valerio De Stefano, Aurelie Plessier, Carlos Noronha Ferreira, and Xingshun Qi have nothing to disclose.

Compliance with Ethics Guidelines

This article is based on previously published studies and does not involve any new studies of human or animal subjects performed by any of the authors.

Data Availability

Full datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. Additional data are available in the supplementary materials.
Open AccessThis article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by-nc/​4.​0/​.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

© Springer Medizin

Bis 11. April 2024 bestellen und im ersten Jahr 50 % sparen!

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

© Springer Medizin

Bis 11. April 2024 bestellen und im ersten Jahr 50 % sparen!

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

© Springer Medizin

Bis 11. April 2024 bestellen und im ersten Jahr 50 % sparen!

Literatur
1.
Zurück zum Zitat Intagliata NM, Caldwell SH, Tripodi A. Diagnosis, development, and treatment of portal vein thrombosis in patients with and without cirrhosis. Gastroenterology. 2019;156:1582–99.PubMedCrossRef Intagliata NM, Caldwell SH, Tripodi A. Diagnosis, development, and treatment of portal vein thrombosis in patients with and without cirrhosis. Gastroenterology. 2019;156:1582–99.PubMedCrossRef
2.
Zurück zum Zitat Nery F, Chevret S, Condat B, et al. Causes and consequences of portal vein thrombosis in 1243 patients with cirrhosis: results of a longitudinal study. Hepatology. 2015;61:660–7.PubMedCrossRef Nery F, Chevret S, Condat B, et al. Causes and consequences of portal vein thrombosis in 1243 patients with cirrhosis: results of a longitudinal study. Hepatology. 2015;61:660–7.PubMedCrossRef
3.
Zurück zum Zitat Wang L, Xu X, Hou Y, Shao X, Guo X, Qi X. Acute mesenteric vein thrombosis after endoscopic injection sclerotherapy for esophageal varices in a patient with liver cirrhosis. Drug Discov Therap. 2019;13:118–21.CrossRef Wang L, Xu X, Hou Y, Shao X, Guo X, Qi X. Acute mesenteric vein thrombosis after endoscopic injection sclerotherapy for esophageal varices in a patient with liver cirrhosis. Drug Discov Therap. 2019;13:118–21.CrossRef
4.
Zurück zum Zitat Ponziani FR, Zocco MA, Senzolo M, Pompili M, Gasbarrini A, Avolio AW. Portal vein thrombosis and liver transplantation: implications for waiting list period, surgical approach, early and late follow-up. Transplant Rev (Orlando). 2014;28:92–101.CrossRef Ponziani FR, Zocco MA, Senzolo M, Pompili M, Gasbarrini A, Avolio AW. Portal vein thrombosis and liver transplantation: implications for waiting list period, surgical approach, early and late follow-up. Transplant Rev (Orlando). 2014;28:92–101.CrossRef
5.
Zurück zum Zitat Stine JG. Portal vein thrombosis, mortality and hepatic decompensation in patients with cirrhosis: a meta-analysis. World J Hepatol. 2015;7:2774.PubMedPubMedCentralCrossRef Stine JG. Portal vein thrombosis, mortality and hepatic decompensation in patients with cirrhosis: a meta-analysis. World J Hepatol. 2015;7:2774.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Simonetto DA, Singal AK, Garcia-Tsao G, Caldwell SH, Ahn J, Kamath PS. ACG clinical guideline: disorders of the hepatic and mesenteric circulation. Am J Gastroenterol. 2020;115:18–40.PubMedCrossRef Simonetto DA, Singal AK, Garcia-Tsao G, Caldwell SH, Ahn J, Kamath PS. ACG clinical guideline: disorders of the hepatic and mesenteric circulation. Am J Gastroenterol. 2020;115:18–40.PubMedCrossRef
7.
Zurück zum Zitat de Franchis R. Expanding consensus in portal hypertension: report of the Baveno VI consensus workshop: stratifying risk and individualizing care for portal hypertension. J Hepatol. 2015;63:743–52.PubMedCrossRef de Franchis R. Expanding consensus in portal hypertension: report of the Baveno VI consensus workshop: stratifying risk and individualizing care for portal hypertension. J Hepatol. 2015;63:743–52.PubMedCrossRef
8.
Zurück zum Zitat EASL Clinical Practice Guidelines. Vascular diseases of the liver. J Hepatol. 2016;64:179–202.CrossRef EASL Clinical Practice Guidelines. Vascular diseases of the liver. J Hepatol. 2016;64:179–202.CrossRef
10.
Zurück zum Zitat Qi X, De Stefano V, Li H, Dai J, Guo X, Fan D. Anticoagulation for the treatment of portal vein thrombosis in liver cirrhosis: a systematic review and meta-analysis of observational studies. Eur J Intern Med. 2015;26:23–9.PubMedCrossRef Qi X, De Stefano V, Li H, Dai J, Guo X, Fan D. Anticoagulation for the treatment of portal vein thrombosis in liver cirrhosis: a systematic review and meta-analysis of observational studies. Eur J Intern Med. 2015;26:23–9.PubMedCrossRef
11.
Zurück zum Zitat Loffredo L, Pastori D, Farcomeni A, Violi F. Effects of anticoagulants in patients with cirrhosis and portal vein thrombosis: a systematic review and meta-analysis. Gastroenterology. 2017;153(480–7):e1. Loffredo L, Pastori D, Farcomeni A, Violi F. Effects of anticoagulants in patients with cirrhosis and portal vein thrombosis: a systematic review and meta-analysis. Gastroenterology. 2017;153(480–7):e1.
12.
Zurück zum Zitat Naymagon L. Venous thrombosis of the liver: current and emerging concepts in management. Transl Res. 2020 Naymagon L. Venous thrombosis of the liver: current and emerging concepts in management. Transl Res. 2020
13.
Zurück zum Zitat Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.CrossRefPubMed Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.CrossRefPubMed
14.
Zurück zum Zitat Chen H, Liu L, Qi X, et al. Efficacy and safety of anticoagulation in more advanced portal vein thrombosis in patients with liver cirrhosis. Eur J Gastroenterol Hepatol. 2016;28:82–9.PubMedCrossRef Chen H, Liu L, Qi X, et al. Efficacy and safety of anticoagulation in more advanced portal vein thrombosis in patients with liver cirrhosis. Eur J Gastroenterol Hepatol. 2016;28:82–9.PubMedCrossRef
15.
Zurück zum Zitat Hanafy AS, Abd-Elsalam S, Dawoud MM. Randomized controlled trial of rivaroxaban versus warfarin in the management of acute non-neoplastic portal vein thrombosis. Vascul Pharmacol. 2019;113:86–91.PubMedCrossRef Hanafy AS, Abd-Elsalam S, Dawoud MM. Randomized controlled trial of rivaroxaban versus warfarin in the management of acute non-neoplastic portal vein thrombosis. Vascul Pharmacol. 2019;113:86–91.PubMedCrossRef
16.
Zurück zum Zitat Hidaka H, Kokubu S, Sato T, et al. Antithrombin III for portal vein thrombosis in patients with liver disease: a randomized, double-blind, controlled trial. Hepatol Res. 2018;48:E107–16.PubMedCrossRef Hidaka H, Kokubu S, Sato T, et al. Antithrombin III for portal vein thrombosis in patients with liver disease: a randomized, double-blind, controlled trial. Hepatol Res. 2018;48:E107–16.PubMedCrossRef
17.
Zurück zum Zitat Cai M, Zhu K, Huang W, et al. Portal vein thrombosis after partial splenic embolization in liver cirrhosis: efficacy of anticoagulation and long-term follow-up. J Vasc Interv Radiol. 2013;24:1808–16.PubMedCrossRef Cai M, Zhu K, Huang W, et al. Portal vein thrombosis after partial splenic embolization in liver cirrhosis: efficacy of anticoagulation and long-term follow-up. J Vasc Interv Radiol. 2013;24:1808–16.PubMedCrossRef
18.
Zurück zum Zitat Wan YM, Li YH, Wu HM, et al. Portal vein thrombosis before and after transjugular intrahepatic portosystemic shunt placement: an observational study (STROBE compliant). Medicine (Baltimore). 2017;96:e8498.CrossRef Wan YM, Li YH, Wu HM, et al. Portal vein thrombosis before and after transjugular intrahepatic portosystemic shunt placement: an observational study (STROBE compliant). Medicine (Baltimore). 2017;96:e8498.CrossRef
19.
Zurück zum Zitat Wang Z, Jiang MS, Zhang HL, et al. Is Post-TIPS anticoagulation therapy necessary in patients with cirrhosis and portal vein thrombosis? A randomized controlled trial. Wang Z, Jiang MS, Zhang HL, et al. Is Post-TIPS anticoagulation therapy necessary in patients with cirrhosis and portal vein thrombosis? A randomized controlled trial.
20.
Zurück zum Zitat Nagaoki Y, Aikata H, Daijyo K, et al. Efficacy and safety of edoxaban for treatment of portal vein thrombosis following danaparoid sodium in patients with liver cirrhosis. Hepatol Res. 2018;48:51–8.PubMedCrossRef Nagaoki Y, Aikata H, Daijyo K, et al. Efficacy and safety of edoxaban for treatment of portal vein thrombosis following danaparoid sodium in patients with liver cirrhosis. Hepatol Res. 2018;48:51–8.PubMedCrossRef
21.
Zurück zum Zitat Scheiner B, Stammet PR, Pokorny S, et al. Anticoagulation in non-malignant portal vein thrombosis is safe and improves hepatic function. Wien Klin Wochenschr. 2018;130:446–55.PubMedPubMedCentralCrossRef Scheiner B, Stammet PR, Pokorny S, et al. Anticoagulation in non-malignant portal vein thrombosis is safe and improves hepatic function. Wien Klin Wochenschr. 2018;130:446–55.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Francoz C, Belghiti J, Vilgrain V, et al. Splanchnic vein thrombosis in candidates for liver transplantation: Usefulness of screening and anticoagulation. Gut. 2005;54:691–7.PubMedPubMedCentralCrossRef Francoz C, Belghiti J, Vilgrain V, et al. Splanchnic vein thrombosis in candidates for liver transplantation: Usefulness of screening and anticoagulation. Gut. 2005;54:691–7.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Amitrano L, Guardascione MA, Menchise A, et al. Safety and efficacy of anticoagulation therapy with low molecular weight heparin for portal vein thrombosis in patients with liver cirrhosis. J Clin Gastroenterol. 2010;44:448–51.PubMed Amitrano L, Guardascione MA, Menchise A, et al. Safety and efficacy of anticoagulation therapy with low molecular weight heparin for portal vein thrombosis in patients with liver cirrhosis. J Clin Gastroenterol. 2010;44:448–51.PubMed
24.
Zurück zum Zitat Delgado MG, Seijo S, Yepes I, et al. Efficacy and safety of anticoagulation on patients with cirrhosis and portal vein thrombosis. Clin Gastroenterol Hepatol. 2012;10:776–83.PubMedCrossRef Delgado MG, Seijo S, Yepes I, et al. Efficacy and safety of anticoagulation on patients with cirrhosis and portal vein thrombosis. Clin Gastroenterol Hepatol. 2012;10:776–83.PubMedCrossRef
25.
Zurück zum Zitat Senzolo M, Rossetto V, et al. Prospective evaluation of anticoagulation and transjugular intrahepatic portosystemic shunt for the management of portal vein thrombosis in cirrhosis. Liver Int. 2012;32:919–27.PubMedCrossRef Senzolo M, Rossetto V, et al. Prospective evaluation of anticoagulation and transjugular intrahepatic portosystemic shunt for the management of portal vein thrombosis in cirrhosis. Liver Int. 2012;32:919–27.PubMedCrossRef
26.
Zurück zum Zitat Werner KT, Sando S, Carey EJ, et al. Portal vein thrombosis in patients with end stage liver disease awaiting liver transplantation: outcome of anticoagulation. Dig Dis Sci. 2013;58:1776–80.PubMedCrossRef Werner KT, Sando S, Carey EJ, et al. Portal vein thrombosis in patients with end stage liver disease awaiting liver transplantation: outcome of anticoagulation. Dig Dis Sci. 2013;58:1776–80.PubMedCrossRef
27.
Zurück zum Zitat Chung JW, Kim GH, Lee JH, et al. Safety, efficacy, and response predictors of anticoagulation for the treatment of nonmalignant portal-vein thrombosis in patients with cirrhosis: a propensity score matching analysis. Clin Mol Hepatol. 2014;20:384–91.PubMedPubMedCentralCrossRef Chung JW, Kim GH, Lee JH, et al. Safety, efficacy, and response predictors of anticoagulation for the treatment of nonmalignant portal-vein thrombosis in patients with cirrhosis: a propensity score matching analysis. Clin Mol Hepatol. 2014;20:384–91.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Cui SB, Shu RH, Yan SP, et al. Efficacy and safety of anticoagulation therapy with different doses of enoxaparin for portal vein thrombosis in cirrhotic patients with hepatitis B. Eur J Gastroenterol Hepatol. 2015;27:914–9.PubMedCrossRef Cui SB, Shu RH, Yan SP, et al. Efficacy and safety of anticoagulation therapy with different doses of enoxaparin for portal vein thrombosis in cirrhotic patients with hepatitis B. Eur J Gastroenterol Hepatol. 2015;27:914–9.PubMedCrossRef
29.
Zurück zum Zitat Fujiyama S, Saitoh S, Kawamura Y, et al. Portal vein thrombosis in liver cirrhosis: incidence, management, and outcome. BMC Gastroenterol. 2017;17:112.PubMedPubMedCentralCrossRef Fujiyama S, Saitoh S, Kawamura Y, et al. Portal vein thrombosis in liver cirrhosis: incidence, management, and outcome. BMC Gastroenterol. 2017;17:112.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Artaza T, Lopes M, Romero M, et al. Efficacy and safety of anticoagulation in non-malignant portal vein thrombosis in patients with liver cirrhosis. Gastroenterol Hepatol. 2018;41:611–7.PubMedCrossRef Artaza T, Lopes M, Romero M, et al. Efficacy and safety of anticoagulation in non-malignant portal vein thrombosis in patients with liver cirrhosis. Gastroenterol Hepatol. 2018;41:611–7.PubMedCrossRef
31.
Zurück zum Zitat Kwon J, Koh Y, Yu SJ, Yoon JH. Low-molecular-weight heparin treatment for portal vein thrombosis in liver cirrhosis: efficacy and the risk of hemorrhagic complications. Thromb Res. 2018;163:71–6.PubMedCrossRef Kwon J, Koh Y, Yu SJ, Yoon JH. Low-molecular-weight heparin treatment for portal vein thrombosis in liver cirrhosis: efficacy and the risk of hemorrhagic complications. Thromb Res. 2018;163:71–6.PubMedCrossRef
32.
Zurück zum Zitat La Mura V, Braham S, Tosetti G, et al. Harmful and beneficial effects of anticoagulants in patients with cirrhosis and portal vein thrombosis. Clin Gastroenterol Hepatol. 2018;16(1146–52):e4. La Mura V, Braham S, Tosetti G, et al. Harmful and beneficial effects of anticoagulants in patients with cirrhosis and portal vein thrombosis. Clin Gastroenterol Hepatol. 2018;16(1146–52):e4.
33.
Zurück zum Zitat Bergere M, Erard-Poinsot D, Boillot O, et al. Portal vein thrombosis and liver cirrhosis: long-term anticoagulation is effective and safe. Clin Res Hepatol Gastroenterol. 2019;43:395–402.PubMedCrossRef Bergere M, Erard-Poinsot D, Boillot O, et al. Portal vein thrombosis and liver cirrhosis: long-term anticoagulation is effective and safe. Clin Res Hepatol Gastroenterol. 2019;43:395–402.PubMedCrossRef
34.
Zurück zum Zitat Pettinari I, Vukotic R, Stefanescu H, et al. Clinical impact and safety of anticoagulants for portal vein thrombosis in cirrhosis. Am J Gastroenterol. 2019;114:258–66.PubMedCrossRef Pettinari I, Vukotic R, Stefanescu H, et al. Clinical impact and safety of anticoagulants for portal vein thrombosis in cirrhosis. Am J Gastroenterol. 2019;114:258–66.PubMedCrossRef
35.
Zurück zum Zitat Rodriguez-Castro KI, Vitale A, Fadin M, et al. A prediction model for successful anticoagulation in cirrhotic portal vein thrombosis. Eur J Gastroenterol Hepatol. 2019;31:34–42.PubMedCrossRef Rodriguez-Castro KI, Vitale A, Fadin M, et al. A prediction model for successful anticoagulation in cirrhotic portal vein thrombosis. Eur J Gastroenterol Hepatol. 2019;31:34–42.PubMedCrossRef
36.
Zurück zum Zitat Noronha Ferreira C, Reis D, Cortez-Pinto H, et al. Anticoagulation in cirrhosis and portal vein thrombosis is safe and improves prognosis in advanced cirrhosis. Dig Dis Sci. 2019;64:2671–83.PubMedCrossRef Noronha Ferreira C, Reis D, Cortez-Pinto H, et al. Anticoagulation in cirrhosis and portal vein thrombosis is safe and improves prognosis in advanced cirrhosis. Dig Dis Sci. 2019;64:2671–83.PubMedCrossRef
37.
Zurück zum Zitat Hayashi T, Takatori H, Horii R, et al. Danaparoid sodium-based anticoagulation therapy for portal vein thrombosis in cirrhosis patients. BMC Gastroenterol. 2019;19:217.PubMedPubMedCentralCrossRef Hayashi T, Takatori H, Horii R, et al. Danaparoid sodium-based anticoagulation therapy for portal vein thrombosis in cirrhosis patients. BMC Gastroenterol. 2019;19:217.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Bento L, Huerta AR, Pascual C, et al. Antithrombotic therapy in non-neoplastic chronic portal venous thrombosis in cirrhosis: recanalization and liver function evaluation. Blood. 2011;1:18. Bento L, Huerta AR, Pascual C, et al. Antithrombotic therapy in non-neoplastic chronic portal venous thrombosis in cirrhosis: recanalization and liver function evaluation. Blood. 2011;1:18.
39.
Zurück zum Zitat Butera G, Simone F, Iacò A, Calvaruso V, Di Marco V, Craxì A. Anticoagulant treatment for not neoplastic portal vein thrombosis in patients with liver cirrhosis and esophageal varices. Digest Liver Dis. 2010;42:S37.CrossRef Butera G, Simone F, Iacò A, Calvaruso V, Di Marco V, Craxì A. Anticoagulant treatment for not neoplastic portal vein thrombosis in patients with liver cirrhosis and esophageal varices. Digest Liver Dis. 2010;42:S37.CrossRef
40.
Zurück zum Zitat Caracciolo G, Garcovich M, Zocco MA, et al. Clinical outcome of partial portal vein thrombosis in cirrhotic patients: to observe or to treat? Digest Liver Dis. 2013;45:S171.CrossRef Caracciolo G, Garcovich M, Zocco MA, et al. Clinical outcome of partial portal vein thrombosis in cirrhotic patients: to observe or to treat? Digest Liver Dis. 2013;45:S171.CrossRef
41.
Zurück zum Zitat Takatori H, Hayashi T, Sunagozaka H, et al. Danaparoid sodium monotherapy for portal vein thrombosis in cirrhotic patients is as effective as combination therapy with antithrombin III. Hepatology. 2013;58:894A. Takatori H, Hayashi T, Sunagozaka H, et al. Danaparoid sodium monotherapy for portal vein thrombosis in cirrhotic patients is as effective as combination therapy with antithrombin III. Hepatology. 2013;58:894A.
42.
Zurück zum Zitat Risso A, Stradella D, Martini S, Rizzetto M, Salizzoni M. Liver transplantation in cirrhotic patients with portal vein thrombosis: a single centre experience. Digest Liver Dis. 2014;46:e40.CrossRef Risso A, Stradella D, Martini S, Rizzetto M, Salizzoni M. Liver transplantation in cirrhotic patients with portal vein thrombosis: a single centre experience. Digest Liver Dis. 2014;46:e40.CrossRef
43.
Zurück zum Zitat Cheruvathur P, Peter G, Mashhood V, Vinayakumar K, Sunil P. Portal vein thrombosis in patients with cirrhosis: outcome of anticoagulation. J Clin Exp Hepatol. 2015;5:S34–5.CrossRef Cheruvathur P, Peter G, Mashhood V, Vinayakumar K, Sunil P. Portal vein thrombosis in patients with cirrhosis: outcome of anticoagulation. J Clin Exp Hepatol. 2015;5:S34–5.CrossRef
44.
Zurück zum Zitat Gheorghe L, Iacob S, Ester C, Iacob R, Popescu I, Gheorghe C. Safety and efficacy of anticoagulation therapy for splanhnic vein thrombosis in patients with liver cirrhosis on the waiting list for liver transplantation. Gastroenterology. 2015;148:S1063.CrossRef Gheorghe L, Iacob S, Ester C, Iacob R, Popescu I, Gheorghe C. Safety and efficacy of anticoagulation therapy for splanhnic vein thrombosis in patients with liver cirrhosis on the waiting list for liver transplantation. Gastroenterology. 2015;148:S1063.CrossRef
45.
Zurück zum Zitat Inao M, Hirahara K, Sugawara K, Nakayama N, Imai Y, Mochida S. Usefulness of balloon-occluded retrograde obliteration (B-RTO) as a consolidation procedure after anticoagulation therapy in cirrhotic patients with portal vein thrombosis. Hepatology. 2015;62:935A. Inao M, Hirahara K, Sugawara K, Nakayama N, Imai Y, Mochida S. Usefulness of balloon-occluded retrograde obliteration (B-RTO) as a consolidation procedure after anticoagulation therapy in cirrhotic patients with portal vein thrombosis. Hepatology. 2015;62:935A.
46.
Zurück zum Zitat Sbrancia M, Antonelli E, Bassotti G, Clerici C, Morelli O. Anticoagulation therapy for non malignant portal vein thrombosis in cirrhotic patients: a safe treatment? Digest Liver Dis. 2016;48:e82.CrossRef Sbrancia M, Antonelli E, Bassotti G, Clerici C, Morelli O. Anticoagulation therapy for non malignant portal vein thrombosis in cirrhotic patients: a safe treatment? Digest Liver Dis. 2016;48:e82.CrossRef
47.
Zurück zum Zitat Tonon M, Piano S, Sacerdoti D, et al. Efficacy and safety of treatment of acute nonmalignant portal vein thrombosis with subcutaneous fondaparinux in patients with cirrhosis and marked thrombocytopenia. Digest Liver Dis. 2016;48:e25–6.CrossRef Tonon M, Piano S, Sacerdoti D, et al. Efficacy and safety of treatment of acute nonmalignant portal vein thrombosis with subcutaneous fondaparinux in patients with cirrhosis and marked thrombocytopenia. Digest Liver Dis. 2016;48:e25–6.CrossRef
48.
Zurück zum Zitat Tiwari LP, Venkateswaran AR, Rajkumar Solomon T, Mohamed KS, Kini R. Assessment of effect of anticoagulation for portal vein recanalization in non-tumoral portal vein thrombosis with cirrhosis. J Clin Exp Hepatol. 2018;8:S75–6.CrossRef Tiwari LP, Venkateswaran AR, Rajkumar Solomon T, Mohamed KS, Kini R. Assessment of effect of anticoagulation for portal vein recanalization in non-tumoral portal vein thrombosis with cirrhosis. J Clin Exp Hepatol. 2018;8:S75–6.CrossRef
49.
Zurück zum Zitat Senzolo M, Piano S, Sacerdoti D, et al. Fondaparinux vs low molecular weight heparin in the treatment of non malignant portal vein thrombosis in patients cirrhosis. Digest Liver Dis. 2019;51:e42.CrossRef Senzolo M, Piano S, Sacerdoti D, et al. Fondaparinux vs low molecular weight heparin in the treatment of non malignant portal vein thrombosis in patients cirrhosis. Digest Liver Dis. 2019;51:e42.CrossRef
50.
Zurück zum Zitat Tarantino G, Micucci G, Rupoli S, et al. Outcome of 119 cirrhotic patients with splanchnic thrombosis: a single center real-life experience. J Hepatol. 2019;70:e152.CrossRef Tarantino G, Micucci G, Rupoli S, et al. Outcome of 119 cirrhotic patients with splanchnic thrombosis: a single center real-life experience. J Hepatol. 2019;70:e152.CrossRef
51.
Zurück zum Zitat Hayama K, Kaneko K, Tanabe T, et al. The add-on effect of AT-III in thrombolytic therapy for portal vein thrombosis. Gastroenterology. 2019;156:1348.CrossRef Hayama K, Kaneko K, Tanabe T, et al. The add-on effect of AT-III in thrombolytic therapy for portal vein thrombosis. Gastroenterology. 2019;156:1348.CrossRef
52.
Zurück zum Zitat Qi X, Valla DC, Guo X. Anticoagulation for portal vein thrombosis in cirrhosis: selection of appropriate patients. Gastroenterology. 2018;154:760–1.PubMedCrossRef Qi X, Valla DC, Guo X. Anticoagulation for portal vein thrombosis in cirrhosis: selection of appropriate patients. Gastroenterology. 2018;154:760–1.PubMedCrossRef
53.
Zurück zum Zitat Naymagon L, Tremblay D, Zubizarreta N, et al. The efficacy and safety of direct oral anticoagulants in noncirrhotic portal vein thrombosis. Blood Adv. 2020;4:655–66.PubMedPubMedCentralCrossRef Naymagon L, Tremblay D, Zubizarreta N, et al. The efficacy and safety of direct oral anticoagulants in noncirrhotic portal vein thrombosis. Blood Adv. 2020;4:655–66.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Weinberg EM, Palecki J, Reddy KR. Direct-acting oral anticoagulants (DOACs) in cirrhosis and cirrhosis-associated portal vein thrombosis. Semin Liver Dis. 2019;39:195–208.PubMedCrossRef Weinberg EM, Palecki J, Reddy KR. Direct-acting oral anticoagulants (DOACs) in cirrhosis and cirrhosis-associated portal vein thrombosis. Semin Liver Dis. 2019;39:195–208.PubMedCrossRef
55.
Zurück zum Zitat Xu X, Guo X, De Stefano V, et al. Nonselective beta-blockers and development of portal vein thrombosis in liver cirrhosis: a systematic review and meta-analysis. Hep Intl. 2019;13:468–81.CrossRef Xu X, Guo X, De Stefano V, et al. Nonselective beta-blockers and development of portal vein thrombosis in liver cirrhosis: a systematic review and meta-analysis. Hep Intl. 2019;13:468–81.CrossRef
56.
Zurück zum Zitat Xu X, Xu S, Primignani M, et al. Nonselective β-blockers may progress the thrombosis of portal venous system in cirrhotic patients: a retrospective observational study. Adv Therapy. 2020;37:1452–63.CrossRef Xu X, Xu S, Primignani M, et al. Nonselective β-blockers may progress the thrombosis of portal venous system in cirrhotic patients: a retrospective observational study. Adv Therapy. 2020;37:1452–63.CrossRef
57.
Zurück zum Zitat Hemostatic balance in patients with liver cirrhosis: report of a consensus conference. Dig Liver Dis. 2016;48:455–467 Hemostatic balance in patients with liver cirrhosis: report of a consensus conference. Dig Liver Dis. 2016;48:455–467
58.
Zurück zum Zitat Ventura P, Rosa MC, Abbati G, et al. Hyperhomocysteinaemia in chronic liver diseases: role of disease stage, vitamin status and methylenetetrahydrofolate reductase genetics. Liver Int. 2005;25:49–56.PubMedCrossRef Ventura P, Rosa MC, Abbati G, et al. Hyperhomocysteinaemia in chronic liver diseases: role of disease stage, vitamin status and methylenetetrahydrofolate reductase genetics. Liver Int. 2005;25:49–56.PubMedCrossRef
59.
Zurück zum Zitat Turnes J, Garcia-Pagan JC, Gonzalez M, et al. Portal hypertension-related complications after acute portal vein thrombosis: impact of early anticoagulation. Clin Gastroenterol Hepatol. 2008;6:1412–7.PubMedCrossRef Turnes J, Garcia-Pagan JC, Gonzalez M, et al. Portal hypertension-related complications after acute portal vein thrombosis: impact of early anticoagulation. Clin Gastroenterol Hepatol. 2008;6:1412–7.PubMedCrossRef
60.
Zurück zum Zitat Francoz C, Valla D, Durand F. Portal vein thrombosis, cirrhosis, and liver transplantation. J Hepatol. 2012;57:203–12.PubMedCrossRef Francoz C, Valla D, Durand F. Portal vein thrombosis, cirrhosis, and liver transplantation. J Hepatol. 2012;57:203–12.PubMedCrossRef
61.
Zurück zum Zitat DeLeve LD, Valla DC, Garcia-Tsao G. Vascular disorders of the liver. Hepatology. 2009;49:1729–64.PubMedCrossRef DeLeve LD, Valla DC, Garcia-Tsao G. Vascular disorders of the liver. Hepatology. 2009;49:1729–64.PubMedCrossRef
Metadaten
Titel
Anticoagulation Favors Thrombus Recanalization and Survival in Patients With Liver Cirrhosis and Portal Vein Thrombosis: Results of a Meta-Analysis
verfasst von
Le Wang
Xiaozhong Guo
Xiangbo Xu
Valerio De Stefano
Aurelie Plessier
Carlos Noronha Ferreira
Xingshun Qi
Publikationsdatum
05.11.2020
Verlag
Springer Healthcare
Erschienen in
Advances in Therapy / Ausgabe 1/2021
Print ISSN: 0741-238X
Elektronische ISSN: 1865-8652
DOI
https://doi.org/10.1007/s12325-020-01550-4

Weitere Artikel der Ausgabe 1/2021

Advances in Therapy 1/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.