Skip to main content
Erschienen in:

01.03.2022 | Aortic Aneurysm

Deep Learning-based Automated Aortic Area and Distensibility Assessment: the Multi-Ethnic Study of Atherosclerosis (MESA)

verfasst von: Vivek P. Jani, Nadjia Kachenoura, Alban Redheuil, Gisela Teixido-Tura, Kevin Bouaou, Emilie Bollache, Elie Mousseaux, Alain De Cesare, Shelby Kutty, Colin O. Wu, David A. Bluemke, Joao A. C. Lima, Bharath Ambale-Venkatesh

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten

Abstract

This study details application of deep learning for automatic segmentation of the ascending and descending aorta from 2D phase-contrast cine magnetic resonance imaging for automatic aortic analysis on the large MESA cohort with assessment on an external cohort of thoracic aortic aneurysm (TAA) patients. This study includes images and corresponding analysis of the ascending and descending aorta at the pulmonary artery bifurcation from the MESA study. Train, validation, and internal test sets consisted of 1123 studies (24,282 images), 374 studies (8067 images), and 375 studies (8069 images), respectively. The external test set of TAAs consisted of 37 studies (3224 images). CNN performance was evaluated utilizing a dice coefficient and concordance correlation coefficients (CCC) of geometric parameters. Dice coefficients were as high as 97.55% (CI: 97.47–97.62%) and 93.56% (CI: 84.63–96.68%) on the internal and external test of TAAs, respectively. CCC for maximum and minimum and ascending aortic area were 0.969 and 0.950, respectively, on the internal test set and 0.997 and 0.995, respectively, for the external test. The absolute differences between manual and deep learning segmentations for ascending and descending aortic distensibility were 0.0194 × 10−4 ± 9.67 × 10−4 and 0.002 ± 0.001 mmHg−1, respectively, on the internal test set and 0.44 × 10−4 ± 20.4 × 10−4 and 0.002 ± 0.001 mmHg−1, respectively, on the external test set. We successfully developed a U-Net-based aortic segmentation and analysis algorithm in both MESA and in external cases of TAA.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Noda C, Ambale Venkatesh B, Ohyama Y, et al.: Reproducibility of functional aortic analysis using magnetic resonance imaging: the MESA. Eur Heart J Cardiovasc Imaging 2016; 17:909–917.CrossRef Noda C, Ambale Venkatesh B, Ohyama Y, et al.: Reproducibility of functional aortic analysis using magnetic resonance imaging: the MESA. Eur Heart J Cardiovasc Imaging 2016; 17:909–917.CrossRef
2.
Zurück zum Zitat Mattace-Raso FUS, Van Der Cammen TJM, Hofman A, et al.: Arterial stiffness and risk of coronary heart disease and stroke: The Rotterdam Study. Circulation 2006; 113:657–663.CrossRef Mattace-Raso FUS, Van Der Cammen TJM, Hofman A, et al.: Arterial stiffness and risk of coronary heart disease and stroke: The Rotterdam Study. Circulation 2006; 113:657–663.CrossRef
3.
Zurück zum Zitat Liu CY, Chen D, Bluemke DA, et al.: Evolution of aortic wall thickness and stiffness with atherosclerosis: Long-term follow up from the multi-ethnic study of atherosclerosis. Hypertension 2015; 65:1015–1019.CrossRef Liu CY, Chen D, Bluemke DA, et al.: Evolution of aortic wall thickness and stiffness with atherosclerosis: Long-term follow up from the multi-ethnic study of atherosclerosis. Hypertension 2015; 65:1015–1019.CrossRef
4.
Zurück zum Zitat Cavalcante JL, Lima JAC, Redheuil A, Al-Mallah MH: Aortic stiffness: Current understanding and future directions. J Am Coll Cardiol 2011; 57:1511–1522.CrossRef Cavalcante JL, Lima JAC, Redheuil A, Al-Mallah MH: Aortic stiffness: Current understanding and future directions. J Am Coll Cardiol 2011; 57:1511–1522.CrossRef
5.
Zurück zum Zitat Redheuil A, Wu CO, Kachenoura N, et al.: Proximal aortic distensibility is an independent predictor of all-cause mortality and incident CV events: The MESA study. J Am Coll Cardiol 2014; 64:2619–2629.CrossRef Redheuil A, Wu CO, Kachenoura N, et al.: Proximal aortic distensibility is an independent predictor of all-cause mortality and incident CV events: The MESA study. J Am Coll Cardiol 2014; 64:2619–2629.CrossRef
6.
Zurück zum Zitat Ohyama Y, Ambale-Venkatesh B, Noda C, et al.: Aortic Arch Pulse Wave Velocity Assessed by Magnetic Resonance Imaging as a Predictor of Incident Cardiovascular Events: The MESA (Multi-Ethnic Study of Atherosclerosis). Hypertension 2017; 70:524–530.CrossRef Ohyama Y, Ambale-Venkatesh B, Noda C, et al.: Aortic Arch Pulse Wave Velocity Assessed by Magnetic Resonance Imaging as a Predictor of Incident Cardiovascular Events: The MESA (Multi-Ethnic Study of Atherosclerosis). Hypertension 2017; 70:524–530.CrossRef
7.
Zurück zum Zitat Redheuil A, Yu WC, Wu CO, et al.: Reduced ascending aortic strain and distensibility: Earliest manifestations of vascular aging in humans. Hypertension 2010; 55:319–326.CrossRef Redheuil A, Yu WC, Wu CO, et al.: Reduced ascending aortic strain and distensibility: Earliest manifestations of vascular aging in humans. Hypertension 2010; 55:319–326.CrossRef
8.
Zurück zum Zitat Bello GA, Dawes TJW, Duan J, et al.: Deep-learning cardiac motion analysis for human survival prediction. Nat Mach Intell 2019; 1:95.CrossRef Bello GA, Dawes TJW, Duan J, et al.: Deep-learning cardiac motion analysis for human survival prediction. Nat Mach Intell 2019; 1:95.CrossRef
9.
Zurück zum Zitat Tao Q, Yan W, Wang Y, et al.: Deep Learning–based Method for Fully Automatic Quantification of Left Ventricle Function from Cine MR Images: A Multivendor, Multicenter Study. Radiology 2018; 290:81–88.CrossRef Tao Q, Yan W, Wang Y, et al.: Deep Learning–based Method for Fully Automatic Quantification of Left Ventricle Function from Cine MR Images: A Multivendor, Multicenter Study. Radiology 2018; 290:81–88.CrossRef
10.
Zurück zum Zitat Prevedello LM, Erdal BS, Ryu JL, et al.: Automated Critical Test Findings Identification and Online Notification System Using Artificial Intelligence in Imaging. Radiology 2017; 285:923–931.CrossRef Prevedello LM, Erdal BS, Ryu JL, et al.: Automated Critical Test Findings Identification and Online Notification System Using Artificial Intelligence in Imaging. Radiology 2017; 285:923–931.CrossRef
11.
Zurück zum Zitat Weston AD, Korfiatis P, Kline TL, et al.: Automated Abdominal Segmentation of CT Scans for Body Composition Analysis Using Deep Learning. Radiology 2018:181432. Weston AD, Korfiatis P, Kline TL, et al.: Automated Abdominal Segmentation of CT Scans for Body Composition Analysis Using Deep Learning. Radiology 2018:181432.
12.
Zurück zum Zitat Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB: Deep Learning MR Imaging–based Attenuation Correction for PET/MR Imaging. Radiology 2017; 286:676–684.CrossRef Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB: Deep Learning MR Imaging–based Attenuation Correction for PET/MR Imaging. Radiology 2017; 286:676–684.CrossRef
13.
Zurück zum Zitat Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S: Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network. IEEE Trans Med Imaging 2016; 35:1207–1216.CrossRef Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S: Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network. IEEE Trans Med Imaging 2016; 35:1207–1216.CrossRef
14.
Zurück zum Zitat Folsom AR, Diez Roux A V, O’Leary D, et al.: Multi-Ethnic Study of Atherosclerosis: Objectives and Design. Am J Epidemiol 2002; 156:871–881.CrossRef Folsom AR, Diez Roux A V, O’Leary D, et al.: Multi-Ethnic Study of Atherosclerosis: Objectives and Design. Am J Epidemiol 2002; 156:871–881.CrossRef
15.
Zurück zum Zitat Pascaner AF, Houriez S, Craiem D, et al.: Comprehensive assessment of local and regional aortic stiffness in patients with tricuspid or bicuspid aortic valve aortopathy using magnetic resonance imaging. Int J Cardiol 2021; 326:206–212.CrossRef Pascaner AF, Houriez S, Craiem D, et al.: Comprehensive assessment of local and regional aortic stiffness in patients with tricuspid or bicuspid aortic valve aortopathy using magnetic resonance imaging. Int J Cardiol 2021; 326:206–212.CrossRef
16.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T: U-net: Convolutional networks for biomedical image segmentation. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2015; 9351:234–241. Ronneberger O, Fischer P, Brox T: U-net: Convolutional networks for biomedical image segmentation. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2015; 9351:234–241.
17.
Zurück zum Zitat Dogui A, Redheuil A, Lefort M, et al.: Measurement of aortic arch pulse wave velocity in cardiovascular MR: comparison of transit time estimators and description of a new approach. J Magn Reson Imaging 2011; 33:1321–1329.CrossRef Dogui A, Redheuil A, Lefort M, et al.: Measurement of aortic arch pulse wave velocity in cardiovascular MR: comparison of transit time estimators and description of a new approach. J Magn Reson Imaging 2011; 33:1321–1329.CrossRef
18.
Zurück zum Zitat Noda C, Ambale Venkatesh B, Ohyama Y, et al.: Reproducibility of functional aortic analysis using magnetic resonance imaging: the MESA. Eur Hear J - Cardiovasc Imaging 2016; 17:909–917.CrossRef Noda C, Ambale Venkatesh B, Ohyama Y, et al.: Reproducibility of functional aortic analysis using magnetic resonance imaging: the MESA. Eur Hear J - Cardiovasc Imaging 2016; 17:909–917.CrossRef
19.
Zurück zum Zitat Kingma DP, Ba J: Adam: A method for stochastic optimization. arXiv Prepr arXiv14126980 2014. Kingma DP, Ba J: Adam: A method for stochastic optimization. arXiv Prepr arXiv14126980 2014.
20.
Zurück zum Zitat Abadi M, Barham P, Chen J, et al.: Tensorflow: A system for large-scale machine learning. In 12th {USENIX} Symp Oper Syst Des Implement ({OSDI} 16); 2016:265–283. Abadi M, Barham P, Chen J, et al.: Tensorflow: A system for large-scale machine learning. In 12th {USENIX} Symp Oper Syst Des Implement ({OSDI} 16); 2016:265–283.
22.
Zurück zum Zitat Van Rossum G, Drake Jr FL: Python Tutorial. Volume 620. Centrum voor Wiskunde en Informatica Amsterdam; 1995. Van Rossum G, Drake Jr FL: Python Tutorial. Volume 620. Centrum voor Wiskunde en Informatica Amsterdam; 1995.
23.
Zurück zum Zitat Dice LR: Measures of the amount of ecologic association between species. Ecology 1945; 26:297–302.CrossRef Dice LR: Measures of the amount of ecologic association between species. Ecology 1945; 26:297–302.CrossRef
24.
Zurück zum Zitat Sørensen T: A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biol Skr 1948; 5:1–34. Sørensen T: A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biol Skr 1948; 5:1–34.
25.
Zurück zum Zitat Steichen TJ, Cox NJ: A note on the concordance correlation coefficient. Stata J 2002; 2:183–189.CrossRef Steichen TJ, Cox NJ: A note on the concordance correlation coefficient. Stata J 2002; 2:183–189.CrossRef
26.
Zurück zum Zitat Bratt A, Kim J, Pollie M, et al.: Machine learning derived segmentation of phase velocity encoded cardiovascular magnetic resonance for fully automated aortic flow quantification. J Cardiovasc Magn Reson 2019; 21:1.CrossRef Bratt A, Kim J, Pollie M, et al.: Machine learning derived segmentation of phase velocity encoded cardiovascular magnetic resonance for fully automated aortic flow quantification. J Cardiovasc Magn Reson 2019; 21:1.CrossRef
27.
Zurück zum Zitat Bernard O, Lalande A, Zotti C, et al.: Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? IEEE Trans Med Imaging 2018; 37:2514–2525.CrossRef Bernard O, Lalande A, Zotti C, et al.: Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? IEEE Trans Med Imaging 2018; 37:2514–2525.CrossRef
28.
Zurück zum Zitat Biasiolli L, Hann E, Lukaschuk E, et al.: Automated localization and quality control of the aorta in cine CMR can significantly accelerate processing of the UK Biobank population data. PLoS One 2019; 14:e0212272. Biasiolli L, Hann E, Lukaschuk E, et al.: Automated localization and quality control of the aorta in cine CMR can significantly accelerate processing of the UK Biobank population data. PLoS One 2019; 14:e0212272.
Metadaten
Titel
Deep Learning-based Automated Aortic Area and Distensibility Assessment: the Multi-Ethnic Study of Atherosclerosis (MESA)
verfasst von
Vivek P. Jani
Nadjia Kachenoura
Alban Redheuil
Gisela Teixido-Tura
Kevin Bouaou
Emilie Bollache
Elie Mousseaux
Alain De Cesare
Shelby Kutty
Colin O. Wu
David A. Bluemke
Joao A. C. Lima
Bharath Ambale-Venkatesh
Publikationsdatum
01.03.2022
Verlag
Springer International Publishing
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 3/2022
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-021-00529-z

Neu im Fachgebiet Radiologie

Ab sofort gelten die neuen Verordnungsausnahmen für Lipidsenker

Freie Fahrt für Lipidsenker? Das nicht, doch mit niedrigerem Schwellenwert fürs Infarktrisiko und neuen Indikationen hat der G-BA die Verordnungs-Handbremse ein gutes Stück weit gelockert.

Abdominale CT bei Kindern: 40% mit Zufallsbefunden

Wird bei Kindern mit stumpfem Trauma eine CT des Bauchraums veranlasst, sind in rund 40% der Fälle Auffälligkeiten zu sehen, die nichts mit dem Trauma zu tun haben. Die allerwenigsten davon sind klinisch relevant.

Genügt die biparametrische MRT für die Prostatadiagnostik?

Die multiparametrische Magnetresonanztomografie hat einen festen Platz im Screening auf klinisch signifikante Prostatakarzinome. Ob auch ein biparametrisches Vorgehen ausreicht, ist in einer Metaanalyse untersucht worden.

Höhere Trefferquoten bei Brustkrebsscreening dank KI?

Künstliche Intelligenz unterstützt bei der Auswertung von Mammografie-Screenings und senkt somit den radiologischen Arbeitsaufwand. Wie wirken sich diese Technologien auf die Trefferquote und die Falsch-positiv-Rate aus? Das hat jetzt eine Studie aus Schweden untersucht.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.