Skip to main content
Erschienen in: Current Cardiovascular Imaging Reports 6/2018

01.06.2018 | Cardiac Computed Tomography (M Cheezum and B Chow, Section Editors)

Application of Artificial Intelligence in Coronary Computed Tomography Angiography

verfasst von: A. Selvarajah, M. Bennamoun, D. Playford, B. J. W Chow, Girish Dwivedi

Erschienen in: Current Cardiovascular Imaging Reports | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

This article summarizes the currently available published literature with regard to the applications of artificial intelligence in cardiac computed tomography angiography.

Recent Findings

Recent studies and emerging data demonstrate feasibility of artificial intelligence-based high-level image analysis and interpretation tools that will likely enable medical practitioners to achieve more accurate diagnosis of coronary artery disease. Emerging artificial intelligence-based computational modeling methods will assist with pre-operative planning for valve disease. Finally, early but significant work is also being performed in relation to real-time assessment of myocardial perfusion and fractional flow reserve using machine learning.

Summary

We anticipate that within the next 5 years, the level of artificial intelligence-driven automation for the analysis and interpretation of cardiac computed tomography angiography will be significantly higher than what is available today. It is also expected that the most productive applications of artificial intelligence in cardiac computed tomography angiography will involve deep learning, utilizing a combination of imaging data and adjunctive data mining to generate more accurate and personalized diagnoses and risk metrics.
Literatur
1.
Zurück zum Zitat Stuart R, Norvig P. Acting rationally: the rational agent approach, In: Artificial intelligence: a modern approach. 2nd ed. Upper Saddle River: Prentice Hall; 2003. Stuart R, Norvig P. Acting rationally: the rational agent approach, In: Artificial intelligence: a modern approach. 2nd ed. Upper Saddle River: Prentice Hall; 2003.
4.
Zurück zum Zitat Nixon MS, Aguado AS. Feature extraction & image processing for computer vision. Cambridge: Elsevier: Academic Press; 2012. Nixon MS, Aguado AS. Feature extraction & image processing for computer vision. Cambridge: Elsevier: Academic Press; 2012.
5.
Zurück zum Zitat • Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics. 2017;37:505–15. This review summarizes the recent applications and developments in machine learning methods with regard to medical imaging.CrossRefPubMed • Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics. 2017;37:505–15. This review summarizes the recent applications and developments in machine learning methods with regard to medical imaging.CrossRefPubMed
6.
Zurück zum Zitat Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol. 2017;10:257–73.CrossRefPubMed Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol. 2017;10:257–73.CrossRefPubMed
7.
Zurück zum Zitat •• LeCun Y, Bengio Y, Hinton G. Deep Learning. Nature. 2015;521:436–44. A seminal review on deep learning.CrossRefPubMed •• LeCun Y, Bengio Y, Hinton G. Deep Learning. Nature. 2015;521:436–44. A seminal review on deep learning.CrossRefPubMed
8.
Zurück zum Zitat Tong S, Chang E. Support vector machine active learning for image retrieval. Proceedings of the 9th ACM International Conference on Multimedia. 2001;107–118. Tong S, Chang E. Support vector machine active learning for image retrieval. Proceedings of the 9th ACM International Conference on Multimedia. 2001;107–118.
9.
Zurück zum Zitat Slomka PJ, Dey D, Sitek A, Motwani M, Berman DS, Germano G. Cardiac imaging: working towards fully-automated machine analysis & interpretation. Expert Rev Med Devices. 2017;14:197–212.CrossRefPubMedPubMedCentral Slomka PJ, Dey D, Sitek A, Motwani M, Berman DS, Germano G. Cardiac imaging: working towards fully-automated machine analysis & interpretation. Expert Rev Med Devices. 2017;14:197–212.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Suzuki K, Horiba I, Sugie N, Nanki M. Extraction of left ventricular contours from left ventriculograms by means of a neural edge detector. IEEE Trans Med Imaging. 2004;23:330–9.CrossRefPubMed Suzuki K, Horiba I, Sugie N, Nanki M. Extraction of left ventricular contours from left ventriculograms by means of a neural edge detector. IEEE Trans Med Imaging. 2004;23:330–9.CrossRefPubMed
11.
Zurück zum Zitat Li Z, Zhang X, Müller H, Zhang S. Large-scale retrieval for medical image analytics: a comprehensive review. Med Image Anal. 2018;43:66–84.CrossRefPubMed Li Z, Zhang X, Müller H, Zhang S. Large-scale retrieval for medical image analytics: a comprehensive review. Med Image Anal. 2018;43:66–84.CrossRefPubMed
12.
Zurück zum Zitat Taylor AJ, Cerqueira M, Hodgson JM, Mark D, Min J, O’Gara P, et al. ACCF/SCCT/ACR/AHA/ ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol. 2010;56:1864–94.CrossRefPubMed Taylor AJ, Cerqueira M, Hodgson JM, Mark D, Min J, O’Gara P, et al. ACCF/SCCT/ACR/AHA/ ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol. 2010;56:1864–94.CrossRefPubMed
13.
Zurück zum Zitat Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multi-center ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52(21):1724–32. https://doi.org/10.1016/j.jacc.2008.07.031.CrossRefPubMed Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multi-center ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52(21):1724–32. https://​doi.​org/​10.​1016/​j.​jacc.​2008.​07.​031.CrossRefPubMed
14.
Zurück zum Zitat Yan RT, Miller JM, Rochitte CE, Dewey M, Niinuma H, Clouse ME, et al. Predictors of inaccurate coronary arterial stenosis assessment by CT angiography. JACC Cardiovasc Imaging. 2013;6:963–72.CrossRefPubMedPubMedCentral Yan RT, Miller JM, Rochitte CE, Dewey M, Niinuma H, Clouse ME, et al. Predictors of inaccurate coronary arterial stenosis assessment by CT angiography. JACC Cardiovasc Imaging. 2013;6:963–72.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Fraser AG. A manifesto for cardiovascular imaging: addressing the human factor. EHJ Cardiovasc Imaging. 2017;18:1311–21.CrossRef Fraser AG. A manifesto for cardiovascular imaging: addressing the human factor. EHJ Cardiovasc Imaging. 2017;18:1311–21.CrossRef
16.
Zurück zum Zitat Kahneman D. Thinking, fast and slow. New York: Farrar, Straus, and Giroux; 2011. Kahneman D. Thinking, fast and slow. New York: Farrar, Straus, and Giroux; 2011.
17.
Zurück zum Zitat Ovrehus KA, Munkholm H, Bøttcher M, Bøtker HE, Nørgaard BL. Coronary computed tomographic angiography in patients suspected of coronary artery disease: impact of observer experience on diagnostic performance and interobserver reproducibility. J Cardiovasc Comput Tomogr. 2010;4:186–9.CrossRefPubMed Ovrehus KA, Munkholm H, Bøttcher M, Bøtker HE, Nørgaard BL. Coronary computed tomographic angiography in patients suspected of coronary artery disease: impact of observer experience on diagnostic performance and interobserver reproducibility. J Cardiovasc Comput Tomogr. 2010;4:186–9.CrossRefPubMed
18.
Zurück zum Zitat Sanchez-Martinez S, Duchateau N, Erdei T, Fraser AG, Bijnens BH, Piella G. Characterization of myocardial motion patterns by unsupervised multiple kernel learning. Med Image Anal. 2017;35:70–82.CrossRefPubMed Sanchez-Martinez S, Duchateau N, Erdei T, Fraser AG, Bijnens BH, Piella G. Characterization of myocardial motion patterns by unsupervised multiple kernel learning. Med Image Anal. 2017;35:70–82.CrossRefPubMed
19.
Zurück zum Zitat •• Poplin R, Varadarajan A, Blumer K, Liu Y, McConnell M, Corrado G, et al. Predicting cardiovascular risk factors from retinal fundus photographs using deep learning. Nat Biomed Eng. 2018. https://doi.org/10.1038/s41551-018-0195-0. This important paper reports new indicators of heart disease risk present in the pre-existing biobank images of retinas through the application of deep learning. •• Poplin R, Varadarajan A, Blumer K, Liu Y, McConnell M, Corrado G, et al. Predicting cardiovascular risk factors from retinal fundus photographs using deep learning. Nat Biomed Eng. 2018. https://​doi.​org/​10.​1038/​s41551-018-0195-0. This important paper reports new indicators of heart disease risk present in the pre-existing biobank images of retinas through the application of deep learning.
20.
Zurück zum Zitat Dey D, Achenbach S, Schuhbaeck A, Pflederer T, Nakazato R, Slomka PJ, et al. Comparison of quantitative atherosclerotic plaque burden from coronary CT angiography in patients with first acute coronary syndrome and stable coronary artery disease. J Cardiovasc Comput Tomogr. 2014;8:a368–74.CrossRef Dey D, Achenbach S, Schuhbaeck A, Pflederer T, Nakazato R, Slomka PJ, et al. Comparison of quantitative atherosclerotic plaque burden from coronary CT angiography in patients with first acute coronary syndrome and stable coronary artery disease. J Cardiovasc Comput Tomogr. 2014;8:a368–74.CrossRef
21.
Zurück zum Zitat Hell MM, Dey D, Marwan M, Achenbach S, Schmid J, Schuhbaeck A. Non-invasive prediction of hemodynamically significant coronary artery stenoses by contrast density difference in coronary CT angiography. Eur J Radiol. 2015;84:1502–8.CrossRefPubMed Hell MM, Dey D, Marwan M, Achenbach S, Schmid J, Schuhbaeck A. Non-invasive prediction of hemodynamically significant coronary artery stenoses by contrast density difference in coronary CT angiography. Eur J Radiol. 2015;84:1502–8.CrossRefPubMed
23.
Zurück zum Zitat Gaur S, Ovrehus KA, Dey D, Leipsic J, Bøtker HE, Jensen JM, et al. Coronary plaque quantification and fractional flow reserve by coronary computed tomography angiography identify ischaemia-causing lesions. Eur Heart J. 2016;7:1220–7.CrossRef Gaur S, Ovrehus KA, Dey D, Leipsic J, Bøtker HE, Jensen JM, et al. Coronary plaque quantification and fractional flow reserve by coronary computed tomography angiography identify ischaemia-causing lesions. Eur Heart J. 2016;7:1220–7.CrossRef
24.
Zurück zum Zitat Isgum I, Prokop M, Niemeijer M, Viergever MA, van Ginneken B. Automatic coronary calcium scoring in low-dose chest computed tomography. IEEE Trans Med Imaging. 2012;31:2322–34.CrossRefPubMed Isgum I, Prokop M, Niemeijer M, Viergever MA, van Ginneken B. Automatic coronary calcium scoring in low-dose chest computed tomography. IEEE Trans Med Imaging. 2012;31:2322–34.CrossRefPubMed
25.
Zurück zum Zitat • Wolterink JM, Leiner T, de Vos BD, van Hamersvelt RW, Viergever MA, Išgum I, et al. Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med Image Anal. 2016;34:123–36. The first study of its kind study that utilized the DL technique for the automatic identification of calcified plaques on cardiac computed tomography images.CrossRefPubMed • Wolterink JM, Leiner T, de Vos BD, van Hamersvelt RW, Viergever MA, Išgum I, et al. Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med Image Anal. 2016;34:123–36. The first study of its kind study that utilized the DL technique for the automatic identification of calcified plaques on cardiac computed tomography images.CrossRefPubMed
26.
Zurück zum Zitat Kang D, Dey D, Slomka PJ, Arsanjani R, Nakazato R, Ko H, et al. Structured learning algorithm for detection of nonobstructive and obstructive coronary plaque lesions from coronary CT angiography. J Med Imaging. 2015;2:014003.CrossRef Kang D, Dey D, Slomka PJ, Arsanjani R, Nakazato R, Ko H, et al. Structured learning algorithm for detection of nonobstructive and obstructive coronary plaque lesions from coronary CT angiography. J Med Imaging. 2015;2:014003.CrossRef
29.
Zurück zum Zitat Liang L, Kong F, Martin C, Pham T, Wang Q, Duncan J, et al. Machine learning-based 3-D geometry reconstruction and modeling of aortic valve deformation using 3-D computed tomography images. Int J Numer Method Biomed Eng. 2017;33:e2827. https://doi.org/10.1002/cnm.2827.CrossRef Liang L, Kong F, Martin C, Pham T, Wang Q, Duncan J, et al. Machine learning-based 3-D geometry reconstruction and modeling of aortic valve deformation using 3-D computed tomography images. Int J Numer Method Biomed Eng. 2017;33:e2827. https://​doi.​org/​10.​1002/​cnm.​2827.CrossRef
31.
Zurück zum Zitat • Itu L, Rapaka S, Passerini T, Georgescu B, Schwemmer C, Schoebinger M, et al. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol. 2016;121:42–52. An important study, which showed the feasibility of a machine learning-based model for predicting fractional flow reserve.CrossRefPubMed • Itu L, Rapaka S, Passerini T, Georgescu B, Schwemmer C, Schoebinger M, et al. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol. 2016;121:42–52. An important study, which showed the feasibility of a machine learning-based model for predicting fractional flow reserve.CrossRefPubMed
32.
Zurück zum Zitat •• Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 2016;38:500–7. A large study that demonstrated that all-cause mortality could be accurately predicted by the machine learning algorithms that combined image features from cardiac CT with clinical information.PubMedCentral •• Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 2016;38:500–7. A large study that demonstrated that all-cause mortality could be accurately predicted by the machine learning algorithms that combined image features from cardiac CT with clinical information.PubMedCentral
34.
36.
Zurück zum Zitat Fonseca CG, Backhaus M, Bluemke DA, Britten RD, Chung JD, Cowan BR, et al. The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics. 2011;27:2288–95.CrossRefPubMedPubMedCentral Fonseca CG, Backhaus M, Bluemke DA, Britten RD, Chung JD, Cowan BR, et al. The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics. 2011;27:2288–95.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Khan S, Rahmani H, Shah SAA, Bennamoun M. A guide to convolutional neural networks for computer vision. San Rafael: Morgan & Claypool publishers; 2018. Khan S, Rahmani H, Shah SAA, Bennamoun M. A guide to convolutional neural networks for computer vision. San Rafael: Morgan & Claypool publishers; 2018.
Metadaten
Titel
Application of Artificial Intelligence in Coronary Computed Tomography Angiography
verfasst von
A. Selvarajah
M. Bennamoun
D. Playford
B. J. W Chow
Girish Dwivedi
Publikationsdatum
01.06.2018
Verlag
Springer US
Erschienen in
Current Cardiovascular Imaging Reports / Ausgabe 6/2018
Print ISSN: 1941-9066
Elektronische ISSN: 1941-9074
DOI
https://doi.org/10.1007/s12410-018-9453-5

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.