Skip to main content
Erschienen in: Inflammation 1/2019

23.09.2018 | ORIGINAL ARTICLE

Application of Deacetylated Poly-N-Acetyl Glucosamine Nanoparticles for the Delivery of miR-126 for the Treatment of Cecal Ligation and Puncture-Induced Sepsis

verfasst von: Joy N. Jones Buie, Yue Zhou, Andrew J. Goodwin, James A. Cook, John Vournakis, Marina Demcheva, Ann-Marie Broome, Suraj Dixit, Perry V. Halushka, Hongkuan Fan

Erschienen in: Inflammation | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Sepsis is an acute inflammatory syndrome in response to infection. In some cases, excessive inflammation from sepsis results in endothelial dysfunction and subsequent increased vascular permeability leading to organ failure. We previously showed that treatment with endothelial progenitor cells, which highly express microRNA-126 (miR-126), improved survival in mice subjected to cecal ligation and puncture (CLP) sepsis. miRNAs are important regulators of gene expression and cell function, play a major role in endothelial homeostasis, and may represent an emerging therapeutic modality. However, delivery of miRNAs to cells in vitro and in vivo is challenging due to rapid degradation by ubiquitous RNases. Herein, we developed a nanoparticle delivery system separately combining deacetylated poly-N-acetyl glucosamine (DEAC-pGlcNAc) polymers with miRNA-126-3p and miRNA-126-5p and testing these combinations in vitro and in vivo. Our results demonstrate that DEAC-pGlcNAc polymers have an appropriate size and zeta potential for cellular uptake and when complexed, DEAC-pGlcNAc protects miRNA from RNase A degradation. Further, DEAC-pGlcNAc efficiently encapsulates miRNAs as evidenced by preventing their migration in an agarose gel. The DEAC-pGlcNAc-miRNA complexes were taken up by multiple cell types and the delivered miRNAs had biological effects on their targets in vitro including pERK and DLK-1. In addition, we found that delivery of DEAC-pGlcNAc alone or DEAC-pGlcNAc:miRNA-126-5p nanoparticles to septic animals significantly improved survival, preserved vascular integrity, and modulated cytokine production. These composite studies support the concept that DEAC-pGlcNAc nanoparticles are an effective platform for delivering miRNAs and that they may provide therapeutic benefit in sepsis.
Literatur
1.
Zurück zum Zitat Torio CM, Andrews RM. National inpatient hospital costs: the most expensive conditions by payer, 2011: Statistical Brief #160. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Rockville (MD), 2006. Torio CM, Andrews RM. National inpatient hospital costs: the most expensive conditions by payer, 2011: Statistical Brief #160. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Rockville (MD), 2006.
2.
Zurück zum Zitat Murphy, S.L., J. Xu, and K.D. Kochanek. 2013. Deaths: final data for 2010. National Vital Statistics Reports 61: 1–117.PubMed Murphy, S.L., J. Xu, and K.D. Kochanek. 2013. Deaths: final data for 2010. National Vital Statistics Reports 61: 1–117.PubMed
3.
Zurück zum Zitat Torio CM, Moore BJ. National inpatient hospital costs: the most expensive conditions by payer, 2013: Statistical Brief #204. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Rockville (MD), 2006. Torio CM, Moore BJ. National inpatient hospital costs: the most expensive conditions by payer, 2013: Statistical Brief #204. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Rockville (MD), 2006.
4.
Zurück zum Zitat Angus, D.C., and T. van der Poll. 2013. Severe sepsis and septic shock. The New England Journal of Medicine 369: 2063.CrossRefPubMed Angus, D.C., and T. van der Poll. 2013. Severe sepsis and septic shock. The New England Journal of Medicine 369: 2063.CrossRefPubMed
5.
Zurück zum Zitat Pratt, A.J., and I.J. MacRae. 2009. The RNA-induced silencing complex: a versatile gene-silencing machine. The Journal of Biological Chemistry 284: 17897–17901.CrossRefPubMedPubMedCentral Pratt, A.J., and I.J. MacRae. 2009. The RNA-induced silencing complex: a versatile gene-silencing machine. The Journal of Biological Chemistry 284: 17897–17901.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Neth, P., M. Nazari-Jahantigh, A. Schober, and C. Weber. 2013. MicroRNAs in flow-dependent vascular remodelling. Cardiovascular Research 99: 294–303.CrossRefPubMed Neth, P., M. Nazari-Jahantigh, A. Schober, and C. Weber. 2013. MicroRNAs in flow-dependent vascular remodelling. Cardiovascular Research 99: 294–303.CrossRefPubMed
7.
Zurück zum Zitat Chistiakov, D.A., A.N. Orekhov, and Y.V. Bobryshev. 2016. The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. Journal of Molecular and Cellular Cardiology 97: 47–55.CrossRefPubMed Chistiakov, D.A., A.N. Orekhov, and Y.V. Bobryshev. 2016. The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. Journal of Molecular and Cellular Cardiology 97: 47–55.CrossRefPubMed
8.
Zurück zum Zitat Wang, S., A.B. Aurora, B.A. Johnson, X. Qi, J. McAnally, J.A. Hill, J.A. Richardson, R. Bassel-Duby, and E.N. Olson. 2008. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Developmental Cell 15: 261–271.CrossRefPubMedPubMedCentral Wang, S., A.B. Aurora, B.A. Johnson, X. Qi, J. McAnally, J.A. Hill, J.A. Richardson, R. Bassel-Duby, and E.N. Olson. 2008. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Developmental Cell 15: 261–271.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Fish, J.E., M.M. Santoro, S.U. Morton, S. Yu, R.F. Yeh, J.D. Wythe, K.N. Ivey, B.G. Bruneau, D.Y.R. Stainier, and D. Srivastava. 2008. miR-126 regulates angiogenic signaling and vascular integrity. Developmental Cell 15: 272–284.CrossRefPubMedPubMedCentral Fish, J.E., M.M. Santoro, S.U. Morton, S. Yu, R.F. Yeh, J.D. Wythe, K.N. Ivey, B.G. Bruneau, D.Y.R. Stainier, and D. Srivastava. 2008. miR-126 regulates angiogenic signaling and vascular integrity. Developmental Cell 15: 272–284.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Kuhnert, F., M.R. Mancuso, J. Hampton, K. Stankunas, T. Asano, C.Z. Chen, and C.J. Kuo. 2008. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development 135: 3989–3993.CrossRefPubMed Kuhnert, F., M.R. Mancuso, J. Hampton, K. Stankunas, T. Asano, C.Z. Chen, and C.J. Kuo. 2008. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development 135: 3989–3993.CrossRefPubMed
11.
Zurück zum Zitat Tang, R., L. Pei, T. Bai, and J. Wang. 2016. Down-regulation of microRNA-126-5p contributes to overexpression of VEGFA in lipopolysaccharide-induced acute lung injury. Biotechnology Letters 38: 1277–1284.CrossRefPubMed Tang, R., L. Pei, T. Bai, and J. Wang. 2016. Down-regulation of microRNA-126-5p contributes to overexpression of VEGFA in lipopolysaccharide-induced acute lung injury. Biotechnology Letters 38: 1277–1284.CrossRefPubMed
12.
Zurück zum Zitat Fan, H., A.J. Goodwin, E. Chang, B. Zingarelli, K. Borg, S. Guan, P.V. Halushka, and J.A. Cook. 2014. Endothelial progenitor cells and a stromal cell-derived factor-1alpha analogue synergistically improve survival in sepsis. American Journal of Respiratory and Critical Care Medicine 189: 1509–1519.CrossRefPubMedPubMedCentral Fan, H., A.J. Goodwin, E. Chang, B. Zingarelli, K. Borg, S. Guan, P.V. Halushka, and J.A. Cook. 2014. Endothelial progenitor cells and a stromal cell-derived factor-1alpha analogue synergistically improve survival in sepsis. American Journal of Respiratory and Critical Care Medicine 189: 1509–1519.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Goodwin, A.J., C. Guo, J.A. Cook, B. Wolf, P.V. Halushka, and H. Fan. 2015. Plasma levels of microRNA are altered with the development of shock in human sepsis: an observational study. Critical Care 19: 440.CrossRefPubMedPubMedCentral Goodwin, A.J., C. Guo, J.A. Cook, B. Wolf, P.V. Halushka, and H. Fan. 2015. Plasma levels of microRNA are altered with the development of shock in human sepsis: an observational study. Critical Care 19: 440.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Zhou, Y., P. Li, A.J. Goodwin, J.A. Cook, P.V. Halushka, E. Chang, and H. Fan. 2018. Exosomes from endothelial progenitor cells improve the outcome of a murine model of sepsis. Molecular Therapy 26: 1375–1384.CrossRefPubMedPubMedCentral Zhou, Y., P. Li, A.J. Goodwin, J.A. Cook, P.V. Halushka, E. Chang, and H. Fan. 2018. Exosomes from endothelial progenitor cells improve the outcome of a murine model of sepsis. Molecular Therapy 26: 1375–1384.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Schober, A., M. Nazari-Jahantigh, Y. Wei, K. Bidzhekov, F. Gremse, J. Grommes, R.T.A. Megens, K. Heyll, H. Noels, M. Hristov, S. Wang, F. Kiessling, E.N. Olson, and C. Weber. 2014. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nature Medicine 20: 368–376.CrossRefPubMedPubMedCentral Schober, A., M. Nazari-Jahantigh, Y. Wei, K. Bidzhekov, F. Gremse, J. Grommes, R.T.A. Megens, K. Heyll, H. Noels, M. Hristov, S. Wang, F. Kiessling, E.N. Olson, and C. Weber. 2014. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nature Medicine 20: 368–376.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Juliano, R.L., R. Alam, V. Dixit, and H.M. Kang. 2009. Cell-targeting and cell-penetrating peptides for delivery of therapeutic and imaging agents. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology 1: 324–335.CrossRefPubMed Juliano, R.L., R. Alam, V. Dixit, and H.M. Kang. 2009. Cell-targeting and cell-penetrating peptides for delivery of therapeutic and imaging agents. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology 1: 324–335.CrossRefPubMed
17.
Zurück zum Zitat Vournakis JN, Finkielsztein S, Pariser ER, Helton M. Bicompatible poly-β-1→4-N-acetylglucosamine. Google Patents, 2004. Vournakis JN, Finkielsztein S, Pariser ER, Helton M. Bicompatible poly-β-1→4-N-acetylglucosamine. Google Patents, 2004.
18.
Zurück zum Zitat Lindner, H.B., A. Zhang, J. Eldridge, M. Demcheva, P. Tsichlis, A. Seth, et al. 2011. Anti-bacterial effects of poly-N-acetyl-glucosamine nanofibers in cutaneous wound healing: requirement for Akt1. PLoS One 6: e18996.CrossRefPubMedPubMedCentral Lindner, H.B., A. Zhang, J. Eldridge, M. Demcheva, P. Tsichlis, A. Seth, et al. 2011. Anti-bacterial effects of poly-N-acetyl-glucosamine nanofibers in cutaneous wound healing: requirement for Akt1. PLoS One 6: e18996.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Lindner, H.B., L.M. Felmly, M. Demcheva, A. Seth, R. Norris, A.D. Bradshaw, et al. 2015. pGlcNAc nanofiber treatment of cutaneous wounds stimulate increased tensile strength and reduced scarring via activation of Akt1. PLoS One 10: e0127876.CrossRefPubMedPubMedCentral Lindner, H.B., L.M. Felmly, M. Demcheva, A. Seth, R. Norris, A.D. Bradshaw, et al. 2015. pGlcNAc nanofiber treatment of cutaneous wounds stimulate increased tensile strength and reduced scarring via activation of Akt1. PLoS One 10: e0127876.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Kong, X.Y., Y.Q. Du, L. Li, J.Q. Liu, G.K. Wang, J.Q. Zhu, et al. 2010. Plasma miR-216a as a potential marker of pancreatic injury in a rat model of acute pancreatitis. World Journal of Gastroenterology : WJG 16: 4599–4604.CrossRefPubMed Kong, X.Y., Y.Q. Du, L. Li, J.Q. Liu, G.K. Wang, J.Q. Zhu, et al. 2010. Plasma miR-216a as a potential marker of pancreatic injury in a rat model of acute pancreatitis. World Journal of Gastroenterology : WJG 16: 4599–4604.CrossRefPubMed
21.
Zurück zum Zitat Zhou, F., X. Jia, Y. Yang, Q. Yang, C. Gao, S. Hu, Y. Zhao, Y. Fan, and X. Yuan. 2016. Nanofiber-mediated microRNA-126 delivery to vascular endothelial cells for blood vessel regeneration. Acta Biomaterialia 43: 303–313.CrossRefPubMed Zhou, F., X. Jia, Y. Yang, Q. Yang, C. Gao, S. Hu, Y. Zhao, Y. Fan, and X. Yuan. 2016. Nanofiber-mediated microRNA-126 delivery to vascular endothelial cells for blood vessel regeneration. Acta Biomaterialia 43: 303–313.CrossRefPubMed
23.
Zurück zum Zitat Bamrungsap, S., Z. Zhao, T. Chen, L. Wang, C. Li, T. Fu, and W. Tan. 2012. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine (London, England) 7: 1253–1271.CrossRef Bamrungsap, S., Z. Zhao, T. Chen, L. Wang, C. Li, T. Fu, and W. Tan. 2012. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine (London, England) 7: 1253–1271.CrossRef
24.
Zurück zum Zitat Narasimhan, P., J. Liu, Y.S. Song, J.L. Massengale, and P.H. Chan. 2009. VEGF stimulates the ERK 1/2 signaling pathway and apoptosis in cerebral endothelial cells after ischemic conditions. Stroke 40: 1467–1473.CrossRefPubMedPubMedCentral Narasimhan, P., J. Liu, Y.S. Song, J.L. Massengale, and P.H. Chan. 2009. VEGF stimulates the ERK 1/2 signaling pathway and apoptosis in cerebral endothelial cells after ischemic conditions. Stroke 40: 1467–1473.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Gavard, J., and J.S. Gutkind. 2006. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nature Cell Biology 8: 1223–1234.CrossRefPubMed Gavard, J., and J.S. Gutkind. 2006. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nature Cell Biology 8: 1223–1234.CrossRefPubMed
26.
Zurück zum Zitat Hao, D., W. Xiao, R. Liu, P. Kumar, Y. Li, P. Zhou, F. Guo, D.L. Farmer, K.S. Lam, F. Wang, and A. Wang. 2017. Discovery and characterization of a potent and specific peptide ligand targeting endothelial progenitor cells and endothelial cells for tissue regeneration. ACS Chemical Biology 12: 1075–1086.CrossRefPubMedPubMedCentral Hao, D., W. Xiao, R. Liu, P. Kumar, Y. Li, P. Zhou, F. Guo, D.L. Farmer, K.S. Lam, F. Wang, and A. Wang. 2017. Discovery and characterization of a potent and specific peptide ligand targeting endothelial progenitor cells and endothelial cells for tissue regeneration. ACS Chemical Biology 12: 1075–1086.CrossRefPubMedPubMedCentral
Metadaten
Titel
Application of Deacetylated Poly-N-Acetyl Glucosamine Nanoparticles for the Delivery of miR-126 for the Treatment of Cecal Ligation and Puncture-Induced Sepsis
verfasst von
Joy N. Jones Buie
Yue Zhou
Andrew J. Goodwin
James A. Cook
John Vournakis
Marina Demcheva
Ann-Marie Broome
Suraj Dixit
Perry V. Halushka
Hongkuan Fan
Publikationsdatum
23.09.2018
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0882-8

Weitere Artikel der Ausgabe 1/2019

Inflammation 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.