Skip to main content
Erschienen in: Strahlentherapie und Onkologie 6/2022

11.04.2022 | Original Article

Application of frozen Thiel-embalmed specimens for radiotherapy delineation guideline development: a method to create accurate MRI-enhanced CT datasets

verfasst von: Michael E. J. Stouthandel, Pim Pullens, Stephanie Bogaert, Max Schoepen, Carl Vangestel, Eric Achten, Liv Veldeman, Tom Van Hoof

Erschienen in: Strahlentherapie und Onkologie | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Thiel embalming followed by freezing in the desired position and acquiring CT + MRI scans is expected to be the ideal approach to obtain accurate, enhanced CT data for delineation guideline development. The effect of Thiel embalming and freezing on MRI image quality is not known. This study evaluates the above-described process to obtain enhanced CT datasets, focusing on the integration of MRI data obtained from frozen, Thiel-embalmed specimens.

Methods

Three Thiel-embalmed specimens were frozen in prone crawl position and MRI scanning protocols were evaluated based on contrast detail and structural conformity between 3D renderings from corresponding structures, segmented on corresponding MRI and CT scans. The measurement error of the dataset registration procedure was also assessed.

Results

Scanning protocol T1 VIBE FS enabled swift differentiation of soft tissues based on contrast detail, even allowing a fully detailed segmentation of the brachial plexus. Structural conformity between the reconstructed structures on CT and MRI was excellent, with nerves and blood vessels imported into the CT scan never intersecting with the bones. The mean measurement error for the image registration procedure was consistently in the submillimeter range (range 0.77–0.94 mm).

Conclusion

Based on the excellent MRI image quality and the submillimeter error margin, the procedure of scanning frozen Thiel-embalmed specimens in the treatment position to obtain enhanced CT scans is recommended. The procedure can be used to support the postulation of delineation guidelines, or for training deep learning algorithms, considering automated segmentations.
Literatur
1.
Zurück zum Zitat Darby S et al (2011) Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 378(9804):1707–1716PubMedCrossRef Darby S et al (2011) Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 378(9804):1707–1716PubMedCrossRef
2.
Zurück zum Zitat McGale P et al (2014) Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet 383(9935):2127–2135PubMedCrossRef McGale P et al (2014) Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet 383(9935):2127–2135PubMedCrossRef
4.
Zurück zum Zitat Deseyne P et al (2017) Whole breast and regional nodal irradiation in prone versus supine position in left sided breast cancer. Radiat Oncol 12(1):89PubMedPubMedCentralCrossRef Deseyne P et al (2017) Whole breast and regional nodal irradiation in prone versus supine position in left sided breast cancer. Radiat Oncol 12(1):89PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Darby SC et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368(11):987–998PubMedCrossRef Darby SC et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368(11):987–998PubMedCrossRef
6.
Zurück zum Zitat Grantzau T et al (2014) Risk of second primary lung cancer in women after radiotherapy for breast cancer. Radiother Oncol 111(3):366–373PubMedCrossRef Grantzau T et al (2014) Risk of second primary lung cancer in women after radiotherapy for breast cancer. Radiother Oncol 111(3):366–373PubMedCrossRef
7.
Zurück zum Zitat Verhoeven K et al (2015) Vessel based delineation guidelines for the elective lymph node regions in breast cancer radiation therapy—PROCAB guidelines. Radiother Oncol 114(1):11–16PubMedCrossRef Verhoeven K et al (2015) Vessel based delineation guidelines for the elective lymph node regions in breast cancer radiation therapy—PROCAB guidelines. Radiother Oncol 114(1):11–16PubMedCrossRef
8.
Zurück zum Zitat Offersen BV et al (2015) ESTRO consensus guideline on target volume delineation for elective radiation therapy of early stage breast cancer. Radiother Oncol 114(1):3–10PubMedCrossRef Offersen BV et al (2015) ESTRO consensus guideline on target volume delineation for elective radiation therapy of early stage breast cancer. Radiother Oncol 114(1):3–10PubMedCrossRef
9.
Zurück zum Zitat Chu JC et al (2000) Applications of simulator computed tomography number for photon dose calculations during radiotherapy treatment planning. Radiother Oncol 55(1):65–73PubMedCrossRef Chu JC et al (2000) Applications of simulator computed tomography number for photon dose calculations during radiotherapy treatment planning. Radiother Oncol 55(1):65–73PubMedCrossRef
10.
Zurück zum Zitat Huttenrauch P et al (2014) Target volume coverage and dose to organs at risk in prostate cancer patients. Dose calculation on daily cone-beam CT data sets. Strahlenther Onkol 190(3):310–316PubMedCrossRef Huttenrauch P et al (2014) Target volume coverage and dose to organs at risk in prostate cancer patients. Dose calculation on daily cone-beam CT data sets. Strahlenther Onkol 190(3):310–316PubMedCrossRef
11.
Zurück zum Zitat Low DA, Hogstrom KR (1994) Determination of the relative linear collision stopping power and linear scattering power of electron bolus material. Phys Med Biol 39(6):1063–1068PubMedCrossRef Low DA, Hogstrom KR (1994) Determination of the relative linear collision stopping power and linear scattering power of electron bolus material. Phys Med Biol 39(6):1063–1068PubMedCrossRef
13.
Zurück zum Zitat Stouthandel MEJ, Veldeman L, Van Hoof T (2019) Call for a multidisciplinary effort to map the lymphatic system with advanced medical imaging techniques: a review of the literature and suggestions for future anatomical research. Anat Rec 302(10):1681–1695CrossRef Stouthandel MEJ, Veldeman L, Van Hoof T (2019) Call for a multidisciplinary effort to map the lymphatic system with advanced medical imaging techniques: a review of the literature and suggestions for future anatomical research. Anat Rec 302(10):1681–1695CrossRef
14.
Zurück zum Zitat Van de Velde J et al (2013) An anatomically validated brachial plexus contouring method for intensity modulated radiation therapy planning. Int J Radiat Oncol Biol Phys 87(4):802–808PubMedCrossRef Van de Velde J et al (2013) An anatomically validated brachial plexus contouring method for intensity modulated radiation therapy planning. Int J Radiat Oncol Biol Phys 87(4):802–808PubMedCrossRef
15.
16.
Zurück zum Zitat Booth JT, Zavgorodni SF (1999) Set-up error & organ motion uncertainty: a review. Australas Phys Eng Sci Med 22(2):29–47PubMed Booth JT, Zavgorodni SF (1999) Set-up error & organ motion uncertainty: a review. Australas Phys Eng Sci Med 22(2):29–47PubMed
17.
Zurück zum Zitat Pan WR (2009) A novel approach to slow down putrefaction of unembalmed cadaveric tissue during lymphatic dissection: a preliminary study. Lymphat Res Biol 7(1):17–20PubMedCrossRef Pan WR (2009) A novel approach to slow down putrefaction of unembalmed cadaveric tissue during lymphatic dissection: a preliminary study. Lymphat Res Biol 7(1):17–20PubMedCrossRef
19.
Zurück zum Zitat Balta JY et al (2015) Human preservation techniques in anatomy: a 21st century medical education perspective. Clin Anat 28(6):725–734PubMedCrossRef Balta JY et al (2015) Human preservation techniques in anatomy: a 21st century medical education perspective. Clin Anat 28(6):725–734PubMedCrossRef
20.
Zurück zum Zitat Thiel W (1992) The preservation of the whole corpse with natural color. Ann Anat 174(3):185–195PubMedCrossRef Thiel W (1992) The preservation of the whole corpse with natural color. Ann Anat 174(3):185–195PubMedCrossRef
23.
Zurück zum Zitat Van Hoof T et al (2008) 3D computerized model for measuring strain and displacement of the brachial plexus following placement of reverse shoulder prosthesis. Anat Rec 291(9):1173–1185CrossRef Van Hoof T et al (2008) 3D computerized model for measuring strain and displacement of the brachial plexus following placement of reverse shoulder prosthesis. Anat Rec 291(9):1173–1185CrossRef
24.
Zurück zum Zitat De Crop A et al (2012) Correlation of contrast-detail analysis and clinical image quality assessment in chest radiography with a human cadaver study. Radiology 262(1):298–304PubMedCrossRef De Crop A et al (2012) Correlation of contrast-detail analysis and clinical image quality assessment in chest radiography with a human cadaver study. Radiology 262(1):298–304PubMedCrossRef
26.
Zurück zum Zitat Gueorguieva MJ et al (2014) MRI of Thiel-embalmed human cadavers. J Magn Reson Imaging 39(3):576–583PubMedCrossRef Gueorguieva MJ et al (2014) MRI of Thiel-embalmed human cadavers. J Magn Reson Imaging 39(3):576–583PubMedCrossRef
27.
Zurück zum Zitat Möller H (2006) Grundlagen der MRT. In: Rummeny EJ, Reimer P, Heindel W (eds) Ganzkörper-MR-Tomographie, 2nd edn. Thieme, Stuttgart, pp 2–23 Möller H (2006) Grundlagen der MRT. In: Rummeny EJ, Reimer P, Heindel W (eds) Ganzkörper-MR-Tomographie, 2nd edn. Thieme, Stuttgart, pp 2–23
28.
Zurück zum Zitat Zech WD et al (2015) Temperature dependence of postmortem MR quantification for soft tissue discrimination. Eur Radiol 25(8):2381–2389PubMedCrossRef Zech WD et al (2015) Temperature dependence of postmortem MR quantification for soft tissue discrimination. Eur Radiol 25(8):2381–2389PubMedCrossRef
29.
Zurück zum Zitat Kobayashi T et al (2010) Postmortem magnetic resonance imaging dealing with low temperature objects. Magn Reson Med Sci 9(3):101–108PubMedCrossRef Kobayashi T et al (2010) Postmortem magnetic resonance imaging dealing with low temperature objects. Magn Reson Med Sci 9(3):101–108PubMedCrossRef
30.
Zurück zum Zitat Ruder TD et al (2012) The influence of body temperature on image contrast in post mortem MRI. Eur J Radiol 81(6):1366–1370PubMedCrossRef Ruder TD et al (2012) The influence of body temperature on image contrast in post mortem MRI. Eur J Radiol 81(6):1366–1370PubMedCrossRef
31.
Zurück zum Zitat Butts K et al (2001) Temperature quantitation and mapping of frozen tissue. J Magn Reson Imaging 13(1):99–104PubMedCrossRef Butts K et al (2001) Temperature quantitation and mapping of frozen tissue. J Magn Reson Imaging 13(1):99–104PubMedCrossRef
32.
Zurück zum Zitat Wansapura JP et al (2005) In vivo MR thermometry of frozen tissue using R2* and signal intensity. Acad Radiol 12(9):1080–1084PubMedCrossRef Wansapura JP et al (2005) In vivo MR thermometry of frozen tissue using R2* and signal intensity. Acad Radiol 12(9):1080–1084PubMedCrossRef
33.
Zurück zum Zitat Kaye EA et al (2010) Consistency of signal intensity and T2* in frozen ex vivo heart muscle, kidney, and liver tissue. J Magn Reson Imaging 31(3):719–724PubMedPubMedCentralCrossRef Kaye EA et al (2010) Consistency of signal intensity and T2* in frozen ex vivo heart muscle, kidney, and liver tissue. J Magn Reson Imaging 31(3):719–724PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Perruisseau-Carrier A et al (2017) Comparison between isotropic linear-elastic law and isotropic hyperelastic law in the finite element modeling of the brachial plexus. Ann Chir Plast Esthet 62(6):664–668PubMedCrossRef Perruisseau-Carrier A et al (2017) Comparison between isotropic linear-elastic law and isotropic hyperelastic law in the finite element modeling of the brachial plexus. Ann Chir Plast Esthet 62(6):664–668PubMedCrossRef
35.
Zurück zum Zitat Raphael DT et al (2005) Frontal slab composite magnetic resonance neurography of the brachial plexus: implications for infraclavicular block approaches. Anesthesiology 103(6):1218–1224PubMedCrossRef Raphael DT et al (2005) Frontal slab composite magnetic resonance neurography of the brachial plexus: implications for infraclavicular block approaches. Anesthesiology 103(6):1218–1224PubMedCrossRef
36.
Zurück zum Zitat Elhawary H et al (2010) Multimodality non-rigid image registration for planning, targeting and monitoring during CT-guided percutaneous liver tumor cryoablation. Acad Radiol 17(11):1334–1344PubMedPubMedCentralCrossRef Elhawary H et al (2010) Multimodality non-rigid image registration for planning, targeting and monitoring during CT-guided percutaneous liver tumor cryoablation. Acad Radiol 17(11):1334–1344PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Vasquez Osorio EM et al (2012) Accurate CT∕MR vessel-guided nonrigid registration of largely deformed livers. Med Phys 39(5):2463–2477PubMedCrossRef Vasquez Osorio EM et al (2012) Accurate CT∕MR vessel-guided nonrigid registration of largely deformed livers. Med Phys 39(5):2463–2477PubMedCrossRef
38.
Zurück zum Zitat Voroney JP et al (2006) Prospective comparison of computed tomography and magnetic resonance imaging for liver cancer delineation using deformable image registration. Int J Radiat Oncol Biol Phys 66(3):780–791PubMedCrossRef Voroney JP et al (2006) Prospective comparison of computed tomography and magnetic resonance imaging for liver cancer delineation using deformable image registration. Int J Radiat Oncol Biol Phys 66(3):780–791PubMedCrossRef
39.
Zurück zum Zitat Hauler F et al (2016) Automatic quantification of multi-modal rigid registration accuracy using feature detectors. Phys Med Biol 61(14):5198–5214PubMedCrossRef Hauler F et al (2016) Automatic quantification of multi-modal rigid registration accuracy using feature detectors. Phys Med Biol 61(14):5198–5214PubMedCrossRef
40.
Zurück zum Zitat Pawiro SA et al (2011) Validation for 2D/3D registration I: a new gold standard data set. Med Phys 38(3):1481–1490PubMedCrossRef Pawiro SA et al (2011) Validation for 2D/3D registration I: a new gold standard data set. Med Phys 38(3):1481–1490PubMedCrossRef
41.
Zurück zum Zitat Castro Pena P et al (2009) Anatomical, clinical and radiological delineation of target volumes in breast cancer radiotherapy planning: individual variability, questions and answers. Br J Radiol 82(979):595–599PubMedCrossRef Castro Pena P et al (2009) Anatomical, clinical and radiological delineation of target volumes in breast cancer radiotherapy planning: individual variability, questions and answers. Br J Radiol 82(979):595–599PubMedCrossRef
42.
Zurück zum Zitat Ciardo D et al (2017) Variability in axillary lymph node delineation for breast cancer radiotherapy in presence of guidelines on a multi-institutional platform. Acta Oncol 56(8):1081–1088PubMedCrossRef Ciardo D et al (2017) Variability in axillary lymph node delineation for breast cancer radiotherapy in presence of guidelines on a multi-institutional platform. Acta Oncol 56(8):1081–1088PubMedCrossRef
43.
Zurück zum Zitat Vrtovec T et al (2020) Auto-segmentation of organs at risk for head and neck radiotherapy planning: from atlas-based to deep learning methods. Med Phys 47(9):e929–e950PubMedCrossRef Vrtovec T et al (2020) Auto-segmentation of organs at risk for head and neck radiotherapy planning: from atlas-based to deep learning methods. Med Phys 47(9):e929–e950PubMedCrossRef
44.
Zurück zum Zitat Zhong Y et al (2021) A Preliminary Experience of Implementing Deep-Learning Based Auto-Segmentation in Head and Neck Cancer: A Study on Real-World Clinical Cases. Front Oncol 11:638197PubMedPubMedCentralCrossRef Zhong Y et al (2021) A Preliminary Experience of Implementing Deep-Learning Based Auto-Segmentation in Head and Neck Cancer: A Study on Real-World Clinical Cases. Front Oncol 11:638197PubMedPubMedCentralCrossRef
Metadaten
Titel
Application of frozen Thiel-embalmed specimens for radiotherapy delineation guideline development: a method to create accurate MRI-enhanced CT datasets
verfasst von
Michael E. J. Stouthandel
Pim Pullens
Stephanie Bogaert
Max Schoepen
Carl Vangestel
Eric Achten
Liv Veldeman
Tom Van Hoof
Publikationsdatum
11.04.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Strahlentherapie und Onkologie / Ausgabe 6/2022
Print ISSN: 0179-7158
Elektronische ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-022-01928-z

Weitere Artikel der Ausgabe 6/2022

Strahlentherapie und Onkologie 6/2022 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.