Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 11/2022

22.04.2022 | Review Article

Applications of Generative Adversarial Networks (GANs) in Positron Emission Tomography (PET) imaging: A review

verfasst von: Ioannis D. Apostolopoulos, Nikolaos D. Papathanasiou, Dimitris J. Apostolopoulos, George S. Panayiotakis

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 11/2022

Einloggen, um Zugang zu erhalten

Abstract

Purpose

This paper reviews recent applications of Generative Adversarial Networks (GANs) in Positron Emission Tomography (PET) imaging. Recent advances in Deep Learning (DL) and GANs catalysed the research of their applications in medical imaging modalities. As a result, several unique GAN topologies have emerged and been assessed in an experimental environment over the last two years.

Methods

The present work extensively describes GAN architectures and their applications in PET imaging. The identification of relevant publications was performed via approved publication indexing websites and repositories. Web of Science, Scopus, and Google Scholar were the major sources of information.

Results

The research identified a hundred articles that address PET imaging applications such as attenuation correction, de-noising, scatter correction, removal of artefacts, image fusion, high-dose image estimation, super-resolution, segmentation, and cross-modality synthesis. These applications are presented and accompanied by the corresponding research works.

Conclusion

GANs are rapidly employed in PET imaging tasks. However, specific limitations must be eliminated to reach their full potential and gain the medical community's trust in everyday clinical practice.
Literatur
1.
Zurück zum Zitat Yinka-Banjo C, Ugot O-A. A review of generative adversarial networks and its application in cybersecurity. Artif Intell Rev. 2020;53:1721–36.CrossRef Yinka-Banjo C, Ugot O-A. A review of generative adversarial networks and its application in cybersecurity. Artif Intell Rev. 2020;53:1721–36.CrossRef
2.
Zurück zum Zitat Alqahtani H, Kavakli-Thorne M, Kumar G. Applications of Generative Adversarial Networks (GANs): An Updated Review. Arch Comput Methods Eng. 2021;28:525–52.CrossRef Alqahtani H, Kavakli-Thorne M, Kumar G. Applications of Generative Adversarial Networks (GANs): An Updated Review. Arch Comput Methods Eng. 2021;28:525–52.CrossRef
3.
Zurück zum Zitat Nensa F, Demircioglu A, Rischpler C. Artificial Intelligence in Nuclear Medicine. J Nucl Med. 2019;60:29S-37S.PubMedCrossRef Nensa F, Demircioglu A, Rischpler C. Artificial Intelligence in Nuclear Medicine. J Nucl Med. 2019;60:29S-37S.PubMedCrossRef
4.
Zurück zum Zitat Seifert R, Weber M, Kocakavuk E, Rischpler C, Kersting D. Artificial Intelligence and Machine Learning in Nuclear Medicine: Future Perspectives. Semin Nucl Med. 2021;51:170–7.PubMedCrossRef Seifert R, Weber M, Kocakavuk E, Rischpler C, Kersting D. Artificial Intelligence and Machine Learning in Nuclear Medicine: Future Perspectives. Semin Nucl Med. 2021;51:170–7.PubMedCrossRef
5.
Zurück zum Zitat Slomka PJ, Miller RJ, Isgum I, Dey D. Application and Translation of Artificial Intelligence to Cardiovascular Imaging in Nuclear Medicine and Noncontrast CT. Semin Nucl Med. 2020;50:357–66.PubMedCrossRef Slomka PJ, Miller RJ, Isgum I, Dey D. Application and Translation of Artificial Intelligence to Cardiovascular Imaging in Nuclear Medicine and Noncontrast CT. Semin Nucl Med. 2020;50:357–66.PubMedCrossRef
6.
Zurück zum Zitat Koshino K, Werner RA, Pomper MG, Bundschuh RA, Toriumi F, Higuchi T, et al. Narrative review of generative adversarial networks in medical and molecular imaging. Ann Transl Med. 2021;9:821–821.PubMedPubMedCentralCrossRef Koshino K, Werner RA, Pomper MG, Bundschuh RA, Toriumi F, Higuchi T, et al. Narrative review of generative adversarial networks in medical and molecular imaging. Ann Transl Med. 2021;9:821–821.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Cheng Z, Wen J, Huang G, Yan J. Applications of artificial intelligence in nuclear medicine image generation. Quant Imaging Med Surg. 2021;11:2792–822.PubMedPubMedCentralCrossRef Cheng Z, Wen J, Huang G, Yan J. Applications of artificial intelligence in nuclear medicine image generation. Quant Imaging Med Surg. 2021;11:2792–822.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Vey BL, Gichoya JW, Prater A, Hawkins CM. The Role of Generative Adversarial Networks in Radiation Reduction and Artifact Correction in Medical Imaging. J Am Coll Radiol. 2019;16:1273–8.PubMedCrossRef Vey BL, Gichoya JW, Prater A, Hawkins CM. The Role of Generative Adversarial Networks in Radiation Reduction and Artifact Correction in Medical Imaging. J Am Coll Radiol. 2019;16:1273–8.PubMedCrossRef
9.
Zurück zum Zitat Arabi H, AkhavanAllaf A, Sanaat A, Shiri I, Zaidi H. The promise of artificial intelligence and deep learning in PET and SPECT imaging. Phys Med. 2021;83:122–37.PubMedCrossRef Arabi H, AkhavanAllaf A, Sanaat A, Shiri I, Zaidi H. The promise of artificial intelligence and deep learning in PET and SPECT imaging. Phys Med. 2021;83:122–37.PubMedCrossRef
10.
Zurück zum Zitat Manjooran GP, Malakkaran AJ, Joseph A, Babu HM. M S M. A Review on Cross-modality Synthesis from MRI to PET. 2021 2nd Int Conf Secure Cyber Comput Commun ICSCCC [Internet]. Jalandhar, India: IEEE; 2021. p. 126–31. Available from: https://ieeexplore.ieee.org/document/9478170/. Accessed 13 Oct 2021. Manjooran GP, Malakkaran AJ, Joseph A, Babu HM. M S M. A Review on Cross-modality Synthesis from MRI to PET. 2021 2nd Int Conf Secure Cyber Comput Commun ICSCCC [Internet]. Jalandhar, India: IEEE; 2021. p. 126–31. Available from: https://​ieeexplore.​ieee.​org/​document/​9478170/​. Accessed 13 Oct 2021.
11.
Zurück zum Zitat Zaharchuk G. Next generation research applications for hybrid PET/MR and PET/CT imaging using deep learning. Eur J Nucl Med Mol Imaging. 2019;46:2700–7.PubMedPubMedCentralCrossRef Zaharchuk G. Next generation research applications for hybrid PET/MR and PET/CT imaging using deep learning. Eur J Nucl Med Mol Imaging. 2019;46:2700–7.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Zaharchuk G, Davidzon G. Artificial Intelligence for Optimization and Interpretation of PET/CT and PET/MR Images. Semin Nucl Med. 2021;51:134–42.PubMedCrossRef Zaharchuk G, Davidzon G. Artificial Intelligence for Optimization and Interpretation of PET/CT and PET/MR Images. Semin Nucl Med. 2021;51:134–42.PubMedCrossRef
13.
Zurück zum Zitat Wang T, Lei Y, Fu Y, Curran WJ, Liu T, Nye JA, et al. Machine learning in quantitative PET: A review of attenuation correction and low-count image reconstruction methods. Phys Med. 2020;76:294–306.PubMedPubMedCentralCrossRef Wang T, Lei Y, Fu Y, Curran WJ, Liu T, Nye JA, et al. Machine learning in quantitative PET: A review of attenuation correction and low-count image reconstruction methods. Phys Med. 2020;76:294–306.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Mirza M, Osindero S. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784. 2014. Mirza M, Osindero S. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784. 2014.
17.
Zurück zum Zitat Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision. 2017. pp. 2223–2232. Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision. 2017. pp. 2223–2232. 
18.
Zurück zum Zitat Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks. In: International conference on machine learning. PMLR; 2017. p. 214–23. Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks. In: International conference on machine learning. PMLR; 2017. p. 214–23.
19.
Zurück zum Zitat Apostolopoulos ID, Papathanasiou ND, Panayiotakis GS. Classification of lung nodule malignancy in computed tomography imaging utilising generative adversarial networks and semi-supervised transfer learning. Biocybern Biomed Eng. 2021;41:1243–57.CrossRef Apostolopoulos ID, Papathanasiou ND, Panayiotakis GS. Classification of lung nodule malignancy in computed tomography imaging utilising generative adversarial networks and semi-supervised transfer learning. Biocybern Biomed Eng. 2021;41:1243–57.CrossRef
21.
Zurück zum Zitat Kimura Y, Watanabe A, Yamada T, Watanabe S, Nagaoka T, Nemoto M, et al. AI approach of cycle-consistent generative adversarial networks to synthesise PET images to train computer-aided diagnosis algorithm for dementia. Ann Nucl Med. 2020;34:512–5.PubMedCrossRef Kimura Y, Watanabe A, Yamada T, Watanabe S, Nagaoka T, Nemoto M, et al. AI approach of cycle-consistent generative adversarial networks to synthesise PET images to train computer-aided diagnosis algorithm for dementia. Ann Nucl Med. 2020;34:512–5.PubMedCrossRef
22.
Zurück zum Zitat Komori S, Kimura Y, Hatano K, Kosugi T, Nishizawa S, Okada H, et al. Image-based deep-learning prediction of future FDG PET patterns in aging and dementia. J Nucl Med. 2019;60:1211. Komori S, Kimura Y, Hatano K, Kosugi T, Nishizawa S, Okada H, et al. Image-based deep-learning prediction of future FDG PET patterns in aging and dementia. J Nucl Med. 2019;60:1211.
23.
Zurück zum Zitat Kim HW, Lee HE, Lee S, Oh KT, Yun M, Yoo SK. Slice-selective learning for Alzheimer’s disease classification using a generative adversarial network: a feasibility study of external validation. Eur J Nucl Med Mol Imaging. 2020;47:2197–206.PubMedCrossRef Kim HW, Lee HE, Lee S, Oh KT, Yun M, Yoo SK. Slice-selective learning for Alzheimer’s disease classification using a generative adversarial network: a feasibility study of external validation. Eur J Nucl Med Mol Imaging. 2020;47:2197–206.PubMedCrossRef
24.
25.
Zurück zum Zitat Baydargil HB, Park J-S, Kang D-Y. Anomaly Analysis of Alzheimer’s Disease in PET Images Using an Unsupervised Adversarial Deep Learning Model. Appl Sci. 2021;11:2187.CrossRef Baydargil HB, Park J-S, Kang D-Y. Anomaly Analysis of Alzheimer’s Disease in PET Images Using an Unsupervised Adversarial Deep Learning Model. Appl Sci. 2021;11:2187.CrossRef
26.
27.
28.
Zurück zum Zitat Amyar A, Ruan S, Vera P, Decazes P, Modzelewski R. RADIOGAN:Deep Convolutional Conditional Generative Adversarial Network to Generate PET Images. 2020 7th Int Conf Bioinforma Res Appl [Internet]. Berlin Germany: ACM; 2020 [cited 2021 Nov 3]. p. 28–33. Available from: https://dl.acm.org/doi/https://doi.org/10.1145/3440067.3440073. Amyar A, Ruan S, Vera P, Decazes P, Modzelewski R. RADIOGAN:Deep Convolutional Conditional Generative Adversarial Network to Generate PET Images. 2020 7th Int Conf Bioinforma Res Appl [Internet]. Berlin Germany: ACM; 2020 [cited 2021 Nov 3]. p. 28–33. Available from: https://​dl.​acm.​org/​doi/​https://​doi.​org/​10.​1145/​3440067.​3440073.
29.
Zurück zum Zitat Kang H, Park J-S, Cho K, Kang D-Y. Visual and Quantitative Evaluation of Amyloid Brain PET Image Synthesis with Generative Adversarial Network. Appl Sci. 2020;10:2628.CrossRef Kang H, Park J-S, Cho K, Kang D-Y. Visual and Quantitative Evaluation of Amyloid Brain PET Image Synthesis with Generative Adversarial Network. Appl Sci. 2020;10:2628.CrossRef
30.
Zurück zum Zitat Bi L, Kim J, Kumar A, Feng D, Fulham M. Synthesis of Positron Emission Tomography (PET) Images via Multi-channel Generative Adversarial Networks (GANs). In: Cardoso MJ, Arbel T, Gao F, Kainz B, van Walsum T, Shi K, et al., editors. Mol Imaging Reconstr Anal Mov Body Organs Stroke Imaging Treat [Internet]. Cham: Springer International Publishing; 2017 [cited 2020 Feb 16]. p. 43–51. Available from: http://link.springer.com/https://doi.org/10.1007/978-3-319-67564-0_5. Bi L, Kim J, Kumar A, Feng D, Fulham M. Synthesis of Positron Emission Tomography (PET) Images via Multi-channel Generative Adversarial Networks (GANs). In: Cardoso MJ, Arbel T, Gao F, Kainz B, van Walsum T, Shi K, et al., editors. Mol Imaging Reconstr Anal Mov Body Organs Stroke Imaging Treat [Internet]. Cham: Springer International Publishing; 2017 [cited 2020 Feb 16]. p. 43–51. Available from: http://​link.​springer.​com/​https://​doi.​org/​10.​1007/​978-3-319-67564-0_​5.
31.
Zurück zum Zitat Cao K, Bi L, Feng D, Kim J. Improving PET-CT Image Segmentation via Deep Multi-modality Data Augmentation. In: Deeba F, Johnson P, Würfl T, Ye JC, editors. Mach Learn Med Image Reconstr [Internet]. Cham: Springer International Publishing; 2020 [cited 2021 Nov 5]. p. 145–52. Available from: http://link.springer.com/https://doi.org/10.1007/978-3-030-61598-7_14. Cao K, Bi L, Feng D, Kim J. Improving PET-CT Image Segmentation via Deep Multi-modality Data Augmentation. In: Deeba F, Johnson P, Würfl T, Ye JC, editors. Mach Learn Med Image Reconstr [Internet]. Cham: Springer International Publishing; 2020 [cited 2021 Nov 5]. p. 145–52. Available from: http://​link.​springer.​com/​https://​doi.​org/​10.​1007/​978-3-030-61598-7_​14.
32.
Zurück zum Zitat Arabi H, Zeng G, Zheng G, Zaidi H. Novel adversarial semantic structure deep learning for MRI-guided attenuation correction in brain PET/MRI. Eur J Nucl Med Mol Imaging. 2019;46:2746–59.PubMedCrossRef Arabi H, Zeng G, Zheng G, Zaidi H. Novel adversarial semantic structure deep learning for MRI-guided attenuation correction in brain PET/MRI. Eur J Nucl Med Mol Imaging. 2019;46:2746–59.PubMedCrossRef
33.
Zurück zum Zitat Armanious K, Hepp T, Küstner T, Dittmann H, Nikolaou K, La Fougère C, et al. Independent attenuation correction of whole body [18F]FDG-PET using a deep learning approach with Generative Adversarial Networks. EJNMMI Res. 2020;10:53.PubMedPubMedCentralCrossRef Armanious K, Hepp T, Küstner T, Dittmann H, Nikolaou K, La Fougère C, et al. Independent attenuation correction of whole body [18F]FDG-PET using a deep learning approach with Generative Adversarial Networks. EJNMMI Res. 2020;10:53.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Hu Z, Li Y, Zou S, Xue H, Sang Z, Liu X, et al. Obtaining PET/CT images from non-attenuation corrected PET images in a single PET system using Wasserstein generative adversarial networks. Phys Med Biol. 2020;65:215010.PubMedCrossRef Hu Z, Li Y, Zou S, Xue H, Sang Z, Liu X, et al. Obtaining PET/CT images from non-attenuation corrected PET images in a single PET system using Wasserstein generative adversarial networks. Phys Med Biol. 2020;65:215010.PubMedCrossRef
35.
Zurück zum Zitat Jiang C, Zhang X, Zhang N, Zhang Q, Zhou C, Yuan J, et al. Synthesising PET/MR (T1-weighted) images from non-attenuation-corrected PET images. Phys Med Biol. 2021;66:135006.CrossRef Jiang C, Zhang X, Zhang N, Zhang Q, Zhou C, Yuan J, et al. Synthesising PET/MR (T1-weighted) images from non-attenuation-corrected PET images. Phys Med Biol. 2021;66:135006.CrossRef
36.
Zurück zum Zitat Lei Y, Wang T, Dong X, Higgins K, Liu T, Curran WJ, et al. PET attenuation correction (AC) using non-AC PET-based synthetic CT. In: Bosmans H, Chen G-H, editors. Med Imaging 2020 Phys Med Imaging [Internet]. Houston, United States: SPIE; 2020 [cited 2021 Nov 5]. p. 154. Available from: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11312/2548468/PET-attenuation-correction-AC-using-non-AC-PET-based-synthetic/https://doi.org/10.1117/12.2548468.full. Lei Y, Wang T, Dong X, Higgins K, Liu T, Curran WJ, et al. PET attenuation correction (AC) using non-AC PET-based synthetic CT. In: Bosmans H, Chen G-H, editors. Med Imaging 2020 Phys Med Imaging [Internet]. Houston, United States: SPIE; 2020 [cited 2021 Nov 5]. p. 154. Available from: https://​www.​spiedigitallibra​ry.​org/​conference-proceedings-of-spie/​11312/​2548468/​PET-attenuation-correction-AC-using-non-AC-PET-based-synthetic/​https://​doi.​org/​10.​1117/​12.​2548468.​full.
37.
Zurück zum Zitat Lei Y, Dong X, Wang T, Higgins K, Liu T, Curran WJ, et al. MRI-aided attenuation correction for PET imaging with deep learning. In: Gimi BS, Krol A, editors. Med Imaging 2020 Biomed Appl Mol Struct Funct Imaging [Internet]. Houston, United States: SPIE; 2020 [cited 2021 Nov 5]. p. 73. Available from: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11317/2549388/MRI-aided-attenuation-correction-for-PET-imaging-with-deep-learning/https://doi.org/10.1117/12.2549388.full. Lei Y, Dong X, Wang T, Higgins K, Liu T, Curran WJ, et al. MRI-aided attenuation correction for PET imaging with deep learning. In: Gimi BS, Krol A, editors. Med Imaging 2020 Biomed Appl Mol Struct Funct Imaging [Internet]. Houston, United States: SPIE; 2020 [cited 2021 Nov 5]. p. 73. Available from: https://​www.​spiedigitallibra​ry.​org/​conference-proceedings-of-spie/​11317/​2549388/​MRI-aided-attenuation-correction-for-PET-imaging-with-deep-learning/​https://​doi.​org/​10.​1117/​12.​2549388.​full.
38.
Zurück zum Zitat Anaya E, Levin C. Automatic Generation of MR-based Attenuation Map using Conditional Generative Adversarial Network for Attenuation Correction in PET/MR. 2020 IEEE Nucl Sci Symp Med Imaging Conf NSSMIC [Internet]. Boston, MA, USA: IEEE; 2020 [cited 2021 Nov 5]. p. 1–3. Available from: https://ieeexplore.ieee.org/document/9507903/. Anaya E, Levin C. Automatic Generation of MR-based Attenuation Map using Conditional Generative Adversarial Network for Attenuation Correction in PET/MR. 2020 IEEE Nucl Sci Symp Med Imaging Conf NSSMIC [Internet]. Boston, MA, USA: IEEE; 2020 [cited 2021 Nov 5]. p. 1–3. Available from: https://​ieeexplore.​ieee.​org/​document/​9507903/​.
39.
Zurück zum Zitat Armanious K, Küstner T, Reimold M, Nikolaou K, La Fougère C, Yang B, Gatidis S. 18 Independent brain F-FDG PET attenuation correction using a deep learning approach with Generative Adversarial Networks. Hell J Nucl Med. 2019;22:179–86.PubMed Armanious K, Küstner T, Reimold M, Nikolaou K, La Fougère C, Yang B, Gatidis S. 18 Independent brain F-FDG PET attenuation correction using a deep learning approach with Generative Adversarial Networks. Hell J Nucl Med. 2019;22:179–86.PubMed
41.
Zurück zum Zitat Dong X, Lei Y, Wang T, Higgins K, Liu T, Curran WJ, et al. Deep learning-based attenuation correction in the absence of structural information for whole-body positron emission tomography imaging. Phys Med Biol. 2020;65:055011.PubMedPubMedCentralCrossRef Dong X, Lei Y, Wang T, Higgins K, Liu T, Curran WJ, et al. Deep learning-based attenuation correction in the absence of structural information for whole-body positron emission tomography imaging. Phys Med Biol. 2020;65:055011.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Gong K, Yang J, Larson PEZ, Behr SC, Hope TA, Seo Y, et al. MR-Based Attenuation Correction for Brain PET Using 3-D Cycle-Consistent Adversarial Network. IEEE Trans Radiat Plasma Med Sci. 2021;5:185–92.PubMedCrossRef Gong K, Yang J, Larson PEZ, Behr SC, Hope TA, Seo Y, et al. MR-Based Attenuation Correction for Brain PET Using 3-D Cycle-Consistent Adversarial Network. IEEE Trans Radiat Plasma Med Sci. 2021;5:185–92.PubMedCrossRef
43.
Zurück zum Zitat Pozaruk A, Pawar K, Li S, Carey A, Cheng J, Sudarshan VP, et al. Augmented deep learning model for improved quantitative accuracy of MR-based PET attenuation correction in PSMA PET-MRI prostate imaging. Eur J Nucl Med Mol Imaging. 2021;48:9–20.PubMedCrossRef Pozaruk A, Pawar K, Li S, Carey A, Cheng J, Sudarshan VP, et al. Augmented deep learning model for improved quantitative accuracy of MR-based PET attenuation correction in PSMA PET-MRI prostate imaging. Eur J Nucl Med Mol Imaging. 2021;48:9–20.PubMedCrossRef
44.
Zurück zum Zitat Qian P, Xu K, Wang T, Zheng Q, Yang H, Baydoun A, et al. Estimating CT from MR Abdominal Images Using Novel Generative Adversarial Networks. J Grid Comput. 2020;18:211–26.CrossRef Qian P, Xu K, Wang T, Zheng Q, Yang H, Baydoun A, et al. Estimating CT from MR Abdominal Images Using Novel Generative Adversarial Networks. J Grid Comput. 2020;18:211–26.CrossRef
45.
Zurück zum Zitat Tao L, Li X, Fisher J, Levin CS. Application of Conditional Adversarial Networks for Automatic Generation of MR-based Attenuation Map in PET/MR. 2018 IEEE Nucl Sci Symp Med Imaging Conf Proc NSSMIC [Internet]. Sydney, Australia: IEEE; 2018 [cited 2021 Nov 5]. p. 1–3. Available from: https://ieeexplore.ieee.org/document/8824444/. Tao L, Li X, Fisher J, Levin CS. Application of Conditional Adversarial Networks for Automatic Generation of MR-based Attenuation Map in PET/MR. 2018 IEEE Nucl Sci Symp Med Imaging Conf Proc NSSMIC [Internet]. Sydney, Australia: IEEE; 2018 [cited 2021 Nov 5]. p. 1–3. Available from: https://​ieeexplore.​ieee.​org/​document/​8824444/​.
46.
Zurück zum Zitat Tao L, Fisher J, Anaya E, Li X, Levin CS. Pseudo CT Image Synthesis and Bone Segmentation From MR Images Using Adversarial Networks With Residual Blocks for MR-Based Attenuation Correction of Brain PET Data. IEEE Trans Radiat Plasma Med Sci. 2021;5:193–201.CrossRef Tao L, Fisher J, Anaya E, Li X, Levin CS. Pseudo CT Image Synthesis and Bone Segmentation From MR Images Using Adversarial Networks With Residual Blocks for MR-Based Attenuation Correction of Brain PET Data. IEEE Trans Radiat Plasma Med Sci. 2021;5:193–201.CrossRef
47.
Zurück zum Zitat Li Y, Wu W. A deep learning-based approach for direct PET attenuation correction using Wasserstein generative adversarial network. J Phys Conf Ser. 2021;1848:012006.CrossRef Li Y, Wu W. A deep learning-based approach for direct PET attenuation correction using Wasserstein generative adversarial network. J Phys Conf Ser. 2021;1848:012006.CrossRef
48.
Zurück zum Zitat Yang X, Lei Y, Dong X, Wang T, Higgins K, Liu T, et al. Attenuation and Scatter Correction for Whole-body PET Using 3D Generative Adversarial Networks. J Nucl Med. 2019;60:174. Yang X, Lei Y, Dong X, Wang T, Higgins K, Liu T, et al. Attenuation and Scatter Correction for Whole-body PET Using 3D Generative Adversarial Networks. J Nucl Med. 2019;60:174.
49.
Zurück zum Zitat Fukui R, Fujii S, Ninomiya H, Fujiwara Y, Ida T. Generation of the Pseudo CT Image Based on the Deep Learning Technique Aimed for the Attenuation Correction of the PET Image. Jpn J Radiol Technol. 2020;76:1152–62.CrossRef Fukui R, Fujii S, Ninomiya H, Fujiwara Y, Ida T. Generation of the Pseudo CT Image Based on the Deep Learning Technique Aimed for the Attenuation Correction of the PET Image. Jpn J Radiol Technol. 2020;76:1152–62.CrossRef
50.
Zurück zum Zitat Schaefferkoetter J, Yan J, Moon S, Chan R, Ortega C, Metser U, et al. Deep learning for whole-body medical image generation. Eur J Nucl Med Mol Imaging. 2021;48:3817–26.PubMedCrossRef Schaefferkoetter J, Yan J, Moon S, Chan R, Ortega C, Metser U, et al. Deep learning for whole-body medical image generation. Eur J Nucl Med Mol Imaging. 2021;48:3817–26.PubMedCrossRef
51.
Zurück zum Zitat Dong X, Wang T, Lei Y, Higgins K, Liu T, Curran WJ, et al. Synthetic CT generation from non-attenuation corrected PET images for whole-body PET imaging. Phys Med Biol. 2019;64:215016.PubMedPubMedCentralCrossRef Dong X, Wang T, Lei Y, Higgins K, Liu T, Curran WJ, et al. Synthetic CT generation from non-attenuation corrected PET images for whole-body PET imaging. Phys Med Biol. 2019;64:215016.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Geng M, Meng X, Yu J, Zhu L, Jin L, Jiang Z, et al. Content-Noise Complementary Learning for Medical Image Denoising. IEEE Trans Med Imaging. 2021;41(2):407–19.CrossRef Geng M, Meng X, Yu J, Zhu L, Jin L, Jiang Z, et al. Content-Noise Complementary Learning for Medical Image Denoising. IEEE Trans Med Imaging. 2021;41(2):407–19.CrossRef
53.
Zurück zum Zitat Sundar LK, Iommi D, Muzik O, Chalampalakis Z, Klebermass EM, Hienert M, et al. Conditional Generative Adversarial Networks Aided Motion Correction of Dynamic 18 F-FDG PET Brain Studies. J Nucl Med. 2021;62:871–80.CrossRef Sundar LK, Iommi D, Muzik O, Chalampalakis Z, Klebermass EM, Hienert M, et al. Conditional Generative Adversarial Networks Aided Motion Correction of Dynamic 18 F-FDG PET Brain Studies. J Nucl Med. 2021;62:871–80.CrossRef
54.
Zurück zum Zitat Du Q, Ren X, Wang J, Qiang Y, Yang X, Kazihise NG. Iterative PET image reconstruction using cascaded data consistency generative adversarial network. IET Image Process. 2020;14:3989–99.CrossRef Du Q, Ren X, Wang J, Qiang Y, Yang X, Kazihise NG. Iterative PET image reconstruction using cascaded data consistency generative adversarial network. IET Image Process. 2020;14:3989–99.CrossRef
55.
Zurück zum Zitat Shiyam Sundar L, Iommi D, Spencer B, Wang Q, Cherry S, Beyer T, et al. Data-driven motion compensation using cGAN for total-body [18F]FDG-PET imaging. J Nucl Med. 2021;62:35.CrossRef Shiyam Sundar L, Iommi D, Spencer B, Wang Q, Cherry S, Beyer T, et al. Data-driven motion compensation using cGAN for total-body [18F]FDG-PET imaging. J Nucl Med. 2021;62:35.CrossRef
56.
Zurück zum Zitat Zhou B, Tsai Y-J, Chen X, Duncan JS, Liu C. MDPET: A Unified Motion Correction and Denoising Adversarial Network for Low-Dose Gated PET. IEEE Trans Med Imaging. 2021;40:3154–64.PubMedPubMedCentralCrossRef Zhou B, Tsai Y-J, Chen X, Duncan JS, Liu C. MDPET: A Unified Motion Correction and Denoising Adversarial Network for Low-Dose Gated PET. IEEE Trans Med Imaging. 2021;40:3154–64.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Wang Y, Zhou L, Yu B, Wang L, Zu C, Lalush DS, et al. 3D Auto-Context-Based Locality Adaptive Multi-Modality GANs for PET Synthesis. IEEE Trans Med Imaging. 2019;38:1328–39.PubMedCrossRef Wang Y, Zhou L, Yu B, Wang L, Zu C, Lalush DS, et al. 3D Auto-Context-Based Locality Adaptive Multi-Modality GANs for PET Synthesis. IEEE Trans Med Imaging. 2019;38:1328–39.PubMedCrossRef
58.
Zurück zum Zitat Wang Y, Yu B, Wang L, Zu C, Lalush DS, Lin W, et al. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage. 2018;174:550–62.PubMedCrossRef Wang Y, Yu B, Wang L, Zu C, Lalush DS, Lin W, et al. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage. 2018;174:550–62.PubMedCrossRef
59.
Zurück zum Zitat Ouyang J, Chen KT, Gong E, Pauly J, Zaharchuk G. Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss. Med Phys. 2019;46:3555–64.PubMedCrossRef Ouyang J, Chen KT, Gong E, Pauly J, Zaharchuk G. Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss. Med Phys. 2019;46:3555–64.PubMedCrossRef
60.
Zurück zum Zitat Chen KT, Gong E, de Carvalho Macruz FB, Xu J, Boumis A, Khalighi M, et al. Ultra–Low-Dose 18 F-Florbetaben Amyloid PET Imaging Using Deep Learning with Multi-Contrast MRI Inputs. Radiology. 2019;290:649–56.PubMedCrossRef Chen KT, Gong E, de Carvalho Macruz FB, Xu J, Boumis A, Khalighi M, et al. Ultra–Low-Dose 18 F-Florbetaben Amyloid PET Imaging Using Deep Learning with Multi-Contrast MRI Inputs. Radiology. 2019;290:649–56.PubMedCrossRef
61.
Zurück zum Zitat Hu Z, Xue H, Zhang Q, Gao J, Zhang N, Zou S, et al. DPIR-Net: Direct PET Image Reconstruction Based on the Wasserstein Generative Adversarial Network. IEEE Trans Radiat Plasma Med Sci. 2021;5:35–43.CrossRef Hu Z, Xue H, Zhang Q, Gao J, Zhang N, Zou S, et al. DPIR-Net: Direct PET Image Reconstruction Based on the Wasserstein Generative Adversarial Network. IEEE Trans Radiat Plasma Med Sci. 2021;5:35–43.CrossRef
62.
Zurück zum Zitat Sanaat A, Shiri I, Arabi H, Mainta I, Nkoulou R, Zaidi H. Whole-body PET Image Synthesis from Low-Dose Images Using Cycle-consistent Generative Adversarial Networks. 2020 IEEE Nucl Sci Symp Med Imaging Conf NSSMIC [Internet]. Boston, MA, USA: IEEE; 2020 [cited 2021 Nov 5]. p. 1–3. Available from: https://ieeexplore.ieee.org/document/9507947/. Sanaat A, Shiri I, Arabi H, Mainta I, Nkoulou R, Zaidi H. Whole-body PET Image Synthesis from Low-Dose Images Using Cycle-consistent Generative Adversarial Networks. 2020 IEEE Nucl Sci Symp Med Imaging Conf NSSMIC [Internet]. Boston, MA, USA: IEEE; 2020 [cited 2021 Nov 5]. p. 1–3. Available from: https://​ieeexplore.​ieee.​org/​document/​9507947/​.
63.
Zurück zum Zitat Xue H, Zhang Q, Zou S, Zhang W, Zhou C, Tie C, et al. LCPR-Net: low-count PET image reconstruction using the domain transform and cycle-consistent generative adversarial networks. Quant Imaging Med Surg. 2021;11:749–62.PubMedPubMedCentralCrossRef Xue H, Zhang Q, Zou S, Zhang W, Zhou C, Tie C, et al. LCPR-Net: low-count PET image reconstruction using the domain transform and cycle-consistent generative adversarial networks. Quant Imaging Med Surg. 2021;11:749–62.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Du Q, Qiang Y, Yang W, Wang Y, Ma Y, Zia MB. DRGAN: a deep residual generative adversarial network for PET image reconstruction. IET Image Process. 2020;14:1690–700.CrossRef Du Q, Qiang Y, Yang W, Wang Y, Ma Y, Zia MB. DRGAN: a deep residual generative adversarial network for PET image reconstruction. IET Image Process. 2020;14:1690–700.CrossRef
65.
Zurück zum Zitat Lei Y, Wang T, Dong X, Higgins K, Liu T, Curran WJ, et al. Low dose PET imaging with CT-aided cycle-consistent adversarial networks. In: Bosmans H, Chen G-H, editors. Med Imaging 2020 Phys Med Imaging [Internet]. Houston, United States: SPIE; 2020 [cited 2021 Nov 5]. p. 152. Available from: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11312/2549386/Low-dose-PET-imaging-with-CT-aided-cycle-consistent-adversarial/https://doi.org/10.1117/12.2549386.full. Lei Y, Wang T, Dong X, Higgins K, Liu T, Curran WJ, et al. Low dose PET imaging with CT-aided cycle-consistent adversarial networks. In: Bosmans H, Chen G-H, editors. Med Imaging 2020 Phys Med Imaging [Internet]. Houston, United States: SPIE; 2020 [cited 2021 Nov 5]. p. 152. Available from: https://​www.​spiedigitallibra​ry.​org/​conference-proceedings-of-spie/​11312/​2549386/​Low-dose-PET-imaging-with-CT-aided-cycle-consistent-adversarial/​https://​doi.​org/​10.​1117/​12.​2549386.​full.
66.
Zurück zum Zitat Lei Y, Dong X, Wang T, Higgins K, Liu T, Curran WJ, et al. Estimating standard-dose PET from low-dose PET with deep learning. In: Landman BA, Išgum I, editors. Med Imaging 2020 Image Process [Internet]. Houston, United States: SPIE; 2020 [cited 2021 Nov 5]. p. 73. Available from: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11313/2548461/Estimating-standard-dose-PET-from-low-dose-PET-with-deep/https://doi.org/10.1117/12.2548461.full. Lei Y, Dong X, Wang T, Higgins K, Liu T, Curran WJ, et al. Estimating standard-dose PET from low-dose PET with deep learning. In: Landman BA, Išgum I, editors. Med Imaging 2020 Image Process [Internet]. Houston, United States: SPIE; 2020 [cited 2021 Nov 5]. p. 73. Available from: https://​www.​spiedigitallibra​ry.​org/​conference-proceedings-of-spie/​11313/​2548461/​Estimating-standard-dose-PET-from-low-dose-PET-with-deep/​https://​doi.​org/​10.​1117/​12.​2548461.​full.
67.
Zurück zum Zitat Zhao K, Zhou L, Gao S, Wang X, Wang Y, Zhao X, et al. Study of low-dose PET image recovery using supervised learning with CycleGAN. Hatt M, editor. PLOS ONE. 2020; 15:e0238455. Zhao K, Zhou L, Gao S, Wang X, Wang Y, Zhao X, et al. Study of low-dose PET image recovery using supervised learning with CycleGAN. Hatt M, editor. PLOS ONE. 2020; 15:e0238455.
68.
Zurück zum Zitat Gong Y, Shan H, Teng Y, Tu N, Li M, Liang G, et al. Parameter-Transferred Wasserstein Generative Adversarial Network (PT-WGAN) for Low-Dose PET Image Denoising. IEEE Trans Radiat Plasma Med Sci. 2021;5:213–23.PubMedCrossRef Gong Y, Shan H, Teng Y, Tu N, Li M, Liang G, et al. Parameter-Transferred Wasserstein Generative Adversarial Network (PT-WGAN) for Low-Dose PET Image Denoising. IEEE Trans Radiat Plasma Med Sci. 2021;5:213–23.PubMedCrossRef
69.
Zurück zum Zitat Lu W, Onofrey JA, Lu Y, Shi L, Ma T, Liu Y, et al. An investigation of quantitative accuracy for deep learning based de-noising in oncological PET. Phys Med Biol. 2019;64:165019.PubMedCrossRef Lu W, Onofrey JA, Lu Y, Shi L, Ma T, Liu Y, et al. An investigation of quantitative accuracy for deep learning based de-noising in oncological PET. Phys Med Biol. 2019;64:165019.PubMedCrossRef
70.
Zurück zum Zitat Wang Y, Zhou L, Wang L, Yu B, Zu C, Lalush DS, et al. Locality Adaptive Multi-modality GANs for High-Quality PET Image Synthesis. In: Frangi AF, Schnabel JA, Davatzikos C, Alberola-López C, Fichtinger G, editors. Med Image Comput Comput Assist Interv – MICCAI 2018 [Internet]. Cham: Springer International Publishing; 2018 [cited 2021 Nov 5]. p. 329–37. Available from: http://link.springer.com/https://doi.org/10.1007/978-3-030-00928-1_38. Wang Y, Zhou L, Wang L, Yu B, Zu C, Lalush DS, et al. Locality Adaptive Multi-modality GANs for High-Quality PET Image Synthesis. In: Frangi AF, Schnabel JA, Davatzikos C, Alberola-López C, Fichtinger G, editors. Med Image Comput Comput Assist Interv – MICCAI 2018 [Internet]. Cham: Springer International Publishing; 2018 [cited 2021 Nov 5]. p. 329–37. Available from: http://​link.​springer.​com/​https://​doi.​org/​10.​1007/​978-3-030-00928-1_​38.
71.
Zurück zum Zitat Xie Z, Baikejiang R, Li T, Zhang X, Gong K, Zhang M, et al. Generative adversarial network based regularised image reconstruction for PET. Phys Med Biol. 2020;65:125016.PubMedPubMedCentralCrossRef Xie Z, Baikejiang R, Li T, Zhang X, Gong K, Zhang M, et al. Generative adversarial network based regularised image reconstruction for PET. Phys Med Biol. 2020;65:125016.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Zhou L, Schaefferkoetter JD, Tham IWK, Huang G, Yan J. Supervised learning with cyclegan for low-dose FDG PET image de-noising. Med Image Anal. 2020;65:101770.PubMedCrossRef Zhou L, Schaefferkoetter JD, Tham IWK, Huang G, Yan J. Supervised learning with cyclegan for low-dose FDG PET image de-noising. Med Image Anal. 2020;65:101770.PubMedCrossRef
73.
Zurück zum Zitat Sanaat A, Shiri I, Arabi H, Mainta I, Nkoulou R, Zaidi H. Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging. Eur J Nucl Med Mol Imaging. 2021;48:2405–15.PubMedPubMedCentralCrossRef Sanaat A, Shiri I, Arabi H, Mainta I, Nkoulou R, Zaidi H. Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging. Eur J Nucl Med Mol Imaging. 2021;48:2405–15.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Jeong YJ, Park HS, Jeong JE, Yoon HJ, Jeon K, Cho K, et al. Restoration of amyloid PET images obtained with short-time data using a generative adversarial networks framework. Sci Rep. 2021;11:4825.PubMedPubMedCentralCrossRef Jeong YJ, Park HS, Jeong JE, Yoon HJ, Jeon K, Cho K, et al. Restoration of amyloid PET images obtained with short-time data using a generative adversarial networks framework. Sci Rep. 2021;11:4825.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Sanaat A, Mirsadeghi E, Razeghi B, Ginovart N, Zaidi H. Fast Dynamic Brain PET Imaging Using a Generative Adversarial Network. 2020 IEEE Nucl Sci Symp Med Imaging Conf NSSMIC [Internet]. Boston, MA, USA: IEEE; 2020 [cited 2021 Nov 5]. p. 1–3. Available from: https://ieeexplore.ieee.org/document/9507894/. Sanaat A, Mirsadeghi E, Razeghi B, Ginovart N, Zaidi H. Fast Dynamic Brain PET Imaging Using a Generative Adversarial Network. 2020 IEEE Nucl Sci Symp Med Imaging Conf NSSMIC [Internet]. Boston, MA, USA: IEEE; 2020 [cited 2021 Nov 5]. p. 1–3. Available from: https://​ieeexplore.​ieee.​org/​document/​9507894/​.
76.
Zurück zum Zitat Kim J-W, Kim J-Y, Lim H, Kim J. Comparative Evaluation of 18 F-FDG Brain PET/CT AI Images Obtained Using Generative Adversarial Network. Korean J Nucl Med Technol. The Korean Society of Nuclear Medicine Technology. 2020; 24:15–9. Kim J-W, Kim J-Y, Lim H, Kim J. Comparative Evaluation of 18 F-FDG Brain PET/CT AI Images Obtained Using Generative Adversarial Network. Korean J Nucl Med Technol. The Korean Society of Nuclear Medicine Technology. 2020; 24:15–9.
77.
Zurück zum Zitat Xue H, Teng Y, Tie C, Wan Q, Wu J, Li M, et al. A 3D attention residual encoder–decoder least-square GAN for low-count PET de-noising. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip. 2020;983:164638.CrossRef Xue H, Teng Y, Tie C, Wan Q, Wu J, Li M, et al. A 3D attention residual encoder–decoder least-square GAN for low-count PET de-noising. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip. 2020;983:164638.CrossRef
78.
Zurück zum Zitat Lei Y, Dong X, Wang T, Higgins K, Liu T, Curran WJ, et al. Whole-body PET estimation from low count statistics using cycle-consistent generative adversarial networks. Phys Med Biol. 2019;64:215017.PubMedPubMedCentralCrossRef Lei Y, Dong X, Wang T, Higgins K, Liu T, Curran WJ, et al. Whole-body PET estimation from low count statistics using cycle-consistent generative adversarial networks. Phys Med Biol. 2019;64:215017.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Liu Z, Chen H, Liu H. Deep Learning Based Framework for Direct Reconstruction of PET Images. In: Shen D, Liu T, Peters TM, Staib LH, Essert C, Zhou S, et al., editors. Med Image Comput Comput Assist Interv – MICCAI 2019 [Internet]. Cham: Springer International Publishing; 2019 [cited 2021 Nov 5]. p. 48–56. Available from: http://link.springer.com/https://doi.org/10.1007/978-3-030-32248-9_6. Liu Z, Chen H, Liu H. Deep Learning Based Framework for Direct Reconstruction of PET Images. In: Shen D, Liu T, Peters TM, Staib LH, Essert C, Zhou S, et al., editors. Med Image Comput Comput Assist Interv – MICCAI 2019 [Internet]. Cham: Springer International Publishing; 2019 [cited 2021 Nov 5]. p. 48–56. Available from: http://​link.​springer.​com/​https://​doi.​org/​10.​1007/​978-3-030-32248-9_​6.
80.
81.
Zurück zum Zitat Song T-A, Roy Chowdhury S, Yang F, Dutta J. Self Supervised Super-Resolution PET Using A Generative Adversarial Network. 2019 IEEE Nucl Sci Symp Med Imaging Conf NSSMIC [Internet]. Manchester, United Kingdom: IEEE; 2019 [cited 2021 Nov 5]. p. 1–3. Available from: https://ieeexplore.ieee.org/document/9059947/. Song T-A, Roy Chowdhury S, Yang F, Dutta J. Self Supervised Super-Resolution PET Using A Generative Adversarial Network. 2019 IEEE Nucl Sci Symp Med Imaging Conf NSSMIC [Internet]. Manchester, United Kingdom: IEEE; 2019 [cited 2021 Nov 5]. p. 1–3. Available from: https://​ieeexplore.​ieee.​org/​document/​9059947/​.
82.
Zurück zum Zitat Oh KT, Kim D, Ye BS, Lee S, Yun M, Yoo SK. Segmentation of white matter hyperintensities on 18F-FDG PET/CT images with a generative adversarial network. Eur J Nucl Med Mol Imaging. 2021;48:3422–31.PubMedCrossRef Oh KT, Kim D, Ye BS, Lee S, Yun M, Yoo SK. Segmentation of white matter hyperintensities on 18F-FDG PET/CT images with a generative adversarial network. Eur J Nucl Med Mol Imaging. 2021;48:3422–31.PubMedCrossRef
83.
Zurück zum Zitat Oh KT, Lee S, Lee H, Yun M, Yoo SK. Semantic Segmentation of White Matter in FDG-PET Using Generative Adversarial Network. J Digit Imaging. 2020;33:816–25.PubMedPubMedCentralCrossRef Oh KT, Lee S, Lee H, Yun M, Yoo SK. Semantic Segmentation of White Matter in FDG-PET Using Generative Adversarial Network. J Digit Imaging. 2020;33:816–25.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Wu X, Bi L, Fulham M, Kim J. Unsupervised Positron Emission Tomography Tumor Segmentation via GAN based Adversarial Auto-Encoder. 2020 16th Int Conf Control Autom Robot Vis ICARCV [Internet]. Shenzhen, China: IEEE; 2020 [cited 2021 Nov 5]. p. 448–53. Available from: https://ieeexplore.ieee.org/document/9305364/. Wu X, Bi L, Fulham M, Kim J. Unsupervised Positron Emission Tomography Tumor Segmentation via GAN based Adversarial Auto-Encoder. 2020 16th Int Conf Control Autom Robot Vis ICARCV [Internet]. Shenzhen, China: IEEE; 2020 [cited 2021 Nov 5]. p. 448–53. Available from: https://​ieeexplore.​ieee.​org/​document/​9305364/​.
85.
Zurück zum Zitat Yousefirizi F, Rahmim A. GAN-Based Bi-Modal Segmentation Using Mumford-Shah Loss: Application to Head and Neck Tumors in PET-CT Images. In: Andrearczyk V, Oreiller V, Depeursinge A, editors. Head Neck Tumor Segmentation [Internet]. Cham: Springer International Publishing; 2021 [cited 2021 Nov 5]. p. 99–108. Available from: http://link.springer.com/https://doi.org/10.1007/978-3-030-67194-5_11. Yousefirizi F, Rahmim A. GAN-Based Bi-Modal Segmentation Using Mumford-Shah Loss: Application to Head and Neck Tumors in PET-CT Images. In: Andrearczyk V, Oreiller V, Depeursinge A, editors. Head Neck Tumor Segmentation [Internet]. Cham: Springer International Publishing; 2021 [cited 2021 Nov 5]. p. 99–108. Available from: http://​link.​springer.​com/​https://​doi.​org/​10.​1007/​978-3-030-67194-5_​11.
86.
Zurück zum Zitat Ma J, Xu H, Jiang J, Mei X, Zhang X-P. DDcGAN: A Dual-Discriminator Conditional Generative Adversarial Network for Multi-Resolution Image Fusion. IEEE Trans Image Process. 2020;29:4980–95.CrossRef Ma J, Xu H, Jiang J, Mei X, Zhang X-P. DDcGAN: A Dual-Discriminator Conditional Generative Adversarial Network for Multi-Resolution Image Fusion. IEEE Trans Image Process. 2020;29:4980–95.CrossRef
87.
Zurück zum Zitat Kang J, Lu W, Zhang W. Fusion of Brain PET and MRI Images Using Tissue-Aware Conditional Generative Adversarial Network With Joint Loss. IEEE Access. 2020;8:6368–78.CrossRef Kang J, Lu W, Zhang W. Fusion of Brain PET and MRI Images Using Tissue-Aware Conditional Generative Adversarial Network With Joint Loss. IEEE Access. 2020;8:6368–78.CrossRef
88.
Zurück zum Zitat Huang J, Le Z, Ma Y, Fan F, Zhang H, Yang L. MGMDcGAN: Medical Image Fusion Using Multi-Generator Multi-Discriminator Conditional Generative Adversarial Network. IEEE Access. 2020;8:55145–57.CrossRef Huang J, Le Z, Ma Y, Fan F, Zhang H, Yang L. MGMDcGAN: Medical Image Fusion Using Multi-Generator Multi-Discriminator Conditional Generative Adversarial Network. IEEE Access. 2020;8:55145–57.CrossRef
89.
Zurück zum Zitat Yang Z, Chen Y, Le Z, Fan F, Pan E. Multi-Source Medical Image Fusion Based on Wasserstein Generative Adversarial Networks. IEEE Access. 2019;7:175947–58.CrossRef Yang Z, Chen Y, Le Z, Fan F, Pan E. Multi-Source Medical Image Fusion Based on Wasserstein Generative Adversarial Networks. IEEE Access. 2019;7:175947–58.CrossRef
90.
Zurück zum Zitat Liu H, Nai Y-H, Saridin F, Tanaka T, O’Doherty J, Hilal S, et al. Improved amyloid burden quantification with non-specific estimates using deep learning. Eur J Nucl Med Mol Imaging. 2021;48:1842–53.PubMedPubMedCentralCrossRef Liu H, Nai Y-H, Saridin F, Tanaka T, O’Doherty J, Hilal S, et al. Improved amyloid burden quantification with non-specific estimates using deep learning. Eur J Nucl Med Mol Imaging. 2021;48:1842–53.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Kang SK, Choi H, Lee JS. Translating amyloid PET of different radiotracers by a deep generative model for interchangeability. NeuroImage. 2021;232:117890.PubMedCrossRef Kang SK, Choi H, Lee JS. Translating amyloid PET of different radiotracers by a deep generative model for interchangeability. NeuroImage. 2021;232:117890.PubMedCrossRef
92.
Zurück zum Zitat Kang SK, Seo S, Shin SA, Byun MS, Lee DY, Kim YK, et al. Adaptive template generation for amyloid PET using a deep learning approach. Hum Brain Mapp. 2018;39:3769–78.PubMedPubMedCentralCrossRef Kang SK, Seo S, Shin SA, Byun MS, Lee DY, Kim YK, et al. Adaptive template generation for amyloid PET using a deep learning approach. Hum Brain Mapp. 2018;39:3769–78.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Liu H, Nai Y-H, Chen C, Reilhac A. Deep Learning-Based Estimation of Non-Specific Uptake in Amyloid-PET Images from Structural MRI for Improved Quantification of Amyloid Load in Alzheimer’s Disease. 2020 IEEE 33rd Int Symp Comput-Based Med Syst CBMS [Internet]. Rochester, MN, USA: IEEE; 2020 [cited 2021 Nov 5]. p. 573–8. Available from: https://ieeexplore.ieee.org/document/9182970/. Liu H, Nai Y-H, Chen C, Reilhac A. Deep Learning-Based Estimation of Non-Specific Uptake in Amyloid-PET Images from Structural MRI for Improved Quantification of Amyloid Load in Alzheimer’s Disease. 2020 IEEE 33rd Int Symp Comput-Based Med Syst CBMS [Internet]. Rochester, MN, USA: IEEE; 2020 [cited 2021 Nov 5]. p. 573–8. Available from: https://​ieeexplore.​ieee.​org/​document/​9182970/​.
94.
Zurück zum Zitat Ma S, Hu Z, Ye K, Zhang X, Wang Y, Peng H. Feasibility study of patient-specific dose verification in proton therapy utilising positron emission tomography (PET) and generative adversarial network (GAN). Med Phys. 2020;47:5194–208.PubMedCrossRef Ma S, Hu Z, Ye K, Zhang X, Wang Y, Peng H. Feasibility study of patient-specific dose verification in proton therapy utilising positron emission tomography (PET) and generative adversarial network (GAN). Med Phys. 2020;47:5194–208.PubMedCrossRef
95.
Zurück zum Zitat Hognon C, Tixier F, Colin T, Gallinato O, Visvikis D, Jaouen V. Influence of gradient difference loss on MR to PET brain image synthesis using GANs. J Nucl Med. 2020;61:1431. Hognon C, Tixier F, Colin T, Gallinato O, Visvikis D, Jaouen V. Influence of gradient difference loss on MR to PET brain image synthesis using GANs. J Nucl Med. 2020;61:1431.
96.
Zurück zum Zitat Hu S, Lei B, Wang S, Wang Y, Feng Z, Shen Y. Bidirectional Mapping Generative Adversarial Networks for Brain MR to PET Synthesis. IEEE Trans Med Imaging. 2022;41(1):145–57.PubMedCrossRef Hu S, Lei B, Wang S, Wang Y, Feng Z, Shen Y. Bidirectional Mapping Generative Adversarial Networks for Brain MR to PET Synthesis. IEEE Trans Med Imaging. 2022;41(1):145–57.PubMedCrossRef
97.
Zurück zum Zitat Wei W, Poirion E, Bodini B, Durrleman S, Ayache N, Stankoff B, et al. Predicting PET-derived demyelination from multi-modal MRI using sketcher-refiner adversarial training for multiple sclerosis. Med Image Anal. 2019;58:101546.PubMedCrossRef Wei W, Poirion E, Bodini B, Durrleman S, Ayache N, Stankoff B, et al. Predicting PET-derived demyelination from multi-modal MRI using sketcher-refiner adversarial training for multiple sclerosis. Med Image Anal. 2019;58:101546.PubMedCrossRef
98.
Zurück zum Zitat Pan Y, Liu M, Lian C, Xia Y, Shen D. Spatially-Constrained Fisher Representation for Brain Disease Identification With Incomplete Multi-Modal Neuroimages. IEEE Trans Med Imaging. 2020;39:2965–75.PubMedPubMedCentralCrossRef Pan Y, Liu M, Lian C, Xia Y, Shen D. Spatially-Constrained Fisher Representation for Brain Disease Identification With Incomplete Multi-Modal Neuroimages. IEEE Trans Med Imaging. 2020;39:2965–75.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Shin H-C, Ihsani A, Mandava S, Sreenivas ST, Forster C, Cha J et al. GANBERT: Generative Adversarial Networks with Bidirectional Encoder Representations from Transformers for MRI to PET synthesis. ArXiv200804393 Cs Eess [Internet]. 2020 [cited 2021 Nov 5]; Available from: http://arxiv.org/abs/2008.04393. Shin H-C, Ihsani A, Mandava S, Sreenivas ST, Forster C, Cha J et al. GANBERT: Generative Adversarial Networks with Bidirectional Encoder Representations from Transformers for MRI to PET synthesis. ArXiv200804393 Cs Eess [Internet]. 2020 [cited 2021 Nov 5]; Available from: http://​arxiv.​org/​abs/​2008.​04393.
100.
101.
Zurück zum Zitat Hu S, Shen Y, Wang S, Lei B. Brain MR to PET Synthesis via Bidirectional Generative Adversarial Network. In: Martel AL, Abolmaesumi P, Stoyanov D, Mateus D, Zuluaga MA, Zhou SK, et al., editors. Med Image Comput Comput Assist Interv – MICCAI 2020 [Internet]. Cham: Springer International Publishing; 2020 [cited 2021 Nov 5]. p. 698–707. Available from: https://link.springer.com/https://doi.org/10.1007/978-3-030-59713-9_67. Hu S, Shen Y, Wang S, Lei B. Brain MR to PET Synthesis via Bidirectional Generative Adversarial Network. In: Martel AL, Abolmaesumi P, Stoyanov D, Mateus D, Zuluaga MA, Zhou SK, et al., editors. Med Image Comput Comput Assist Interv – MICCAI 2020 [Internet]. Cham: Springer International Publishing; 2020 [cited 2021 Nov 5]. p. 698–707. Available from: https://​link.​springer.​com/​https://​doi.​org/​10.​1007/​978-3-030-59713-9_​67.
102.
Zurück zum Zitat Jung MM, van den Berg B, Postma E, Huijbers W. Inferring PET from MRI with pix2pix. Inferring PET MRI Pix2pix [Internet]. 2018. Available from: https://bnaic2018.nl/. Jung MM, van den Berg B, Postma E, Huijbers W. Inferring PET from MRI with pix2pix. Inferring PET MRI Pix2pix [Internet]. 2018. Available from: https://​bnaic2018.​nl/​.
103.
Zurück zum Zitat Lin W, Lin W, Chen G, Zhang H, Gao Q, Huang Y, et al. Bidirectional Mapping of Brain MRI and PET With 3D Reversible GAN for the Diagnosis of Alzheimer’s Disease. Front Neurosci. 2021;15:646013.PubMedPubMedCentralCrossRef Lin W, Lin W, Chen G, Zhang H, Gao Q, Huang Y, et al. Bidirectional Mapping of Brain MRI and PET With 3D Reversible GAN for the Diagnosis of Alzheimer’s Disease. Front Neurosci. 2021;15:646013.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Lan H, the Alzheimer Disease Neuroimaging Initiative, Toga AW, Sepehrband F. Three-dimensional self-attention conditional GAN with spectral normalisation for multi-modal neuroimaging synthesis. Magn Reson Med. 2021;86:1718–33.PubMedCrossRef Lan H, the Alzheimer Disease Neuroimaging Initiative, Toga AW, Sepehrband F. Three-dimensional self-attention conditional GAN with spectral normalisation for multi-modal neuroimaging synthesis. Magn Reson Med. 2021;86:1718–33.PubMedCrossRef
105.
Zurück zum Zitat Yaakub SN, McGinnity CJ, Clough JR, Kerfoot E, Girard N, Guedj E et al. Pseudo-normal PET Synthesis with Generative Adversarial Networks for Localising Hypometabolism in Epilepsies. In: Burgos N, Gooya A, Svoboda D, editors. Simul Synth Med Imaging [Internet]. Cham: Springer International Publishing; 2019 [cited 2021 Nov 5]. p. 42–51. Available from: http://link.springer.com/https://doi.org/10.1007/978-3-030-32778-1_5. Yaakub SN, McGinnity CJ, Clough JR, Kerfoot E, Girard N, Guedj E et al. Pseudo-normal PET Synthesis with Generative Adversarial Networks for Localising Hypometabolism in Epilepsies. In: Burgos N, Gooya A, Svoboda D, editors. Simul Synth Med Imaging [Internet]. Cham: Springer International Publishing; 2019 [cited 2021 Nov 5]. p. 42–51. Available from: http://​link.​springer.​com/​https://​doi.​org/​10.​1007/​978-3-030-32778-1_​5.
106.
Zurück zum Zitat Pan Y, Liu M, Lian C, Zhou T, Xia Y, Shen D. Synthesizing Missing PET from MRI with Cycle-consistent Generative Adversarial Networks for Alzheimer’s Disease Diagnosis. In: Frangi AF, Schnabel JA, Davatzikos C, Alberola-López C, Fichtinger G, editors. Med Image Comput Comput Assist Interv – MICCAI 2018 [Internet]. Cham: Springer International Publishing; 2018 [cited 2021 Nov 5]. p. 455–63. Available from: http://link.springer.com/https://doi.org/10.1007/978-3-030-00931-1_52. Pan Y, Liu M, Lian C, Zhou T, Xia Y, Shen D. Synthesizing Missing PET from MRI with Cycle-consistent Generative Adversarial Networks for Alzheimer’s Disease Diagnosis. In: Frangi AF, Schnabel JA, Davatzikos C, Alberola-López C, Fichtinger G, editors. Med Image Comput Comput Assist Interv – MICCAI 2018 [Internet]. Cham: Springer International Publishing; 2018 [cited 2021 Nov 5]. p. 455–63. Available from: http://​link.​springer.​com/​https://​doi.​org/​10.​1007/​978-3-030-00931-1_​52.
107.
Zurück zum Zitat Sikka A, Skand, Virk JS, Bathula DR. MRI to PET Cross-Modality Translation using Globally and Locally Aware GAN (GLA-GAN) for Multi-Modal Diagnosis of Alzheimer’s Disease. ArXiv210802160 Cs Eess [Internet]. 2021 [cited 2021 Nov 5]; Available from: http://arxiv.org/abs/2108.02160. Sikka A, Skand, Virk JS, Bathula DR. MRI to PET Cross-Modality Translation using Globally and Locally Aware GAN (GLA-GAN) for Multi-Modal Diagnosis of Alzheimer’s Disease. ArXiv210802160 Cs Eess [Internet]. 2021 [cited 2021 Nov 5]; Available from: http://​arxiv.​org/​abs/​2108.​02160.
108.
Zurück zum Zitat Yan Y, Lee H, Somer E, Grau V. Generation of Amyloid PET Images via Conditional Adversarial Training for Predicting Progression to Alzheimer’s Disease. In: Rekik I, Unal G, Adeli E, Park SH, editors. Predict Intell Med [Internet]. Cham: Springer International Publishing; 2018 [cited 2021 Nov 5]. p. 26–33. Available from: http://link.springer.com/https://doi.org/10.1007/978-3-030-00320-3_4. Yan Y, Lee H, Somer E, Grau V. Generation of Amyloid PET Images via Conditional Adversarial Training for Predicting Progression to Alzheimer’s Disease. In: Rekik I, Unal G, Adeli E, Park SH, editors. Predict Intell Med [Internet]. Cham: Springer International Publishing; 2018 [cited 2021 Nov 5]. p. 26–33. Available from: http://​link.​springer.​com/​https://​doi.​org/​10.​1007/​978-3-030-00320-3_​4.
109.
Zurück zum Zitat Gao X, Shi F, Shen D, Liu M. Task-induced Pyramid and Attention GAN for Multi-modal Brain Image Imputation and Classification in Alzheimers disease. IEEE J Biomed Health Inform. 2021;26(1):36–43.CrossRef Gao X, Shi F, Shen D, Liu M. Task-induced Pyramid and Attention GAN for Multi-modal Brain Image Imputation and Classification in Alzheimers disease. IEEE J Biomed Health Inform. 2021;26(1):36–43.CrossRef
110.
111.
Zurück zum Zitat Armanious K, Jiang C, Fischer M, Küstner T, Hepp T, Nikolaou K, et al. MedGAN: Medical image translation using GANs. Comput Med Imaging Graph. 2020;79:101684.PubMedCrossRef Armanious K, Jiang C, Fischer M, Küstner T, Hepp T, Nikolaou K, et al. MedGAN: Medical image translation using GANs. Comput Med Imaging Graph. 2020;79:101684.PubMedCrossRef
112.
Zurück zum Zitat Santini G, Fourcade C, Moreau N, Rousseau C, Ferrer L, Lacombe M et al. Unpaired PET/CT image synthesis of liver region using CycleGAN. In: Brieva J, Lepore N, Romero Castro E, Linguraru MG, editors. 16th Int Symp Med Inf Process Anal [Internet]. Lima, Peru: SPIE; 2020 [cited 2021 Nov 5]. p. 6. Available from: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/2576095/Unpaired-PETCT-image-synthesis-of-liver-region-using-CycleGAN/https://doi.org/10.1117/12.2576095.full. Santini G, Fourcade C, Moreau N, Rousseau C, Ferrer L, Lacombe M et al. Unpaired PET/CT image synthesis of liver region using CycleGAN. In: Brieva J, Lepore N, Romero Castro E, Linguraru MG, editors. 16th Int Symp Med Inf Process Anal [Internet]. Lima, Peru: SPIE; 2020 [cited 2021 Nov 5]. p. 6. Available from: https://​www.​spiedigitallibra​ry.​org/​conference-proceedings-of-spie/​11583/​2576095/​Unpaired-PETCT-image-synthesis-of-liver-region-using-CycleGAN/​https://​doi.​org/​10.​1117/​12.​2576095.​full.
113.
Zurück zum Zitat Sharma A, Jindal N. Cross-Modality Breast Image Translation with Improved Resolution Using Generative Adversarial Networks. Wirel Pers Commun. 2021;119:2877–91.CrossRef Sharma A, Jindal N. Cross-Modality Breast Image Translation with Improved Resolution Using Generative Adversarial Networks. Wirel Pers Commun. 2021;119:2877–91.CrossRef
114.
Zurück zum Zitat Ben-Cohen A, Klang E, Raskin SP, Soffer S, Ben-Haim S, Konen E, et al. Cross-modality synthesis from CT to PET using FCN and GAN networks for improved automated lesion detection. Eng Appl Artif Intell. 2019;78:186–94.CrossRef Ben-Cohen A, Klang E, Raskin SP, Soffer S, Ben-Haim S, Konen E, et al. Cross-modality synthesis from CT to PET using FCN and GAN networks for improved automated lesion detection. Eng Appl Artif Intell. 2019;78:186–94.CrossRef
115.
Zurück zum Zitat Leydon P, O’Connell M, Greene D, Curran K. Synthetic positron emission tomography using conditional-generative adversarial networks for healthy bone marrow baseline image generation. IMVIP 2019: Irish Machine Vision & Image Processing, Technological University Dublin: Dublin, Ireland; 2019. https://doi.org/10.21427/xmkn-d265. Leydon P, O’Connell M, Greene D, Curran K. Synthetic positron emission tomography using conditional-generative adversarial networks for healthy bone marrow baseline image generation. IMVIP 2019: Irish Machine Vision & Image Processing, Technological University Dublin: Dublin, Ireland; 2019. https://​doi.​org/​10.​21427/​xmkn-d265.
117.
Zurück zum Zitat Ben-Cohen A, Klang E, Raskin SP, Amitai MM, Greenspan H. Virtual PET Images from CT Data Using Deep Convolutional Networks: Initial Results. In: Tsaftaris SA, Gooya A, Frangi AF, Prince JL, editors. Simul Synth Med Imaging [Internet]. Cham: Springer International Publishing; 2017 [cited 2021 Nov 5]. p. 49–57. Available from: http://link.springer.com/https://doi.org/10.1007/978-3-319-68127-6_6. Ben-Cohen A, Klang E, Raskin SP, Amitai MM, Greenspan H. Virtual PET Images from CT Data Using Deep Convolutional Networks: Initial Results. In: Tsaftaris SA, Gooya A, Frangi AF, Prince JL, editors. Simul Synth Med Imaging [Internet]. Cham: Springer International Publishing; 2017 [cited 2021 Nov 5]. p. 49–57. Available from: http://​link.​springer.​com/​https://​doi.​org/​10.​1007/​978-3-319-68127-6_​6.
119.
Zurück zum Zitat Plachouris D, Tzolas I, Gatos I, Papadimitroulas P, Spyridonidis T, Apostolopoulos D, et al. A deep-learning-based prediction model for the biodistribution of 90 Y microspheres in liver radioembolisation. Med Phys. 2021;48:7427–38.PubMedCrossRef Plachouris D, Tzolas I, Gatos I, Papadimitroulas P, Spyridonidis T, Apostolopoulos D, et al. A deep-learning-based prediction model for the biodistribution of 90 Y microspheres in liver radioembolisation. Med Phys. 2021;48:7427–38.PubMedCrossRef
120.
Zurück zum Zitat Chen JS, Coyner AS, Chan RVP, Hartnett ME, Moshfeghi DM, Owen LA, et al. Deepfakes in Ophthalmology. Ophthalmol Sci. 2021;1:100079.CrossRef Chen JS, Coyner AS, Chan RVP, Hartnett ME, Moshfeghi DM, Owen LA, et al. Deepfakes in Ophthalmology. Ophthalmol Sci. 2021;1:100079.CrossRef
121.
Zurück zum Zitat Chu LC, Anandkumar A, Shin HC, Fishman EK. The Potential Dangers of Artificial Intelligence for Radiology and Radiologists. J Am Coll Radiol. 2020;17:1309–11.PubMedPubMedCentralCrossRef Chu LC, Anandkumar A, Shin HC, Fishman EK. The Potential Dangers of Artificial Intelligence for Radiology and Radiologists. J Am Coll Radiol. 2020;17:1309–11.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Apostolopoulos ID, Pintelas EG, Livieris IE, Apostolopoulos DJ, Papathanasiou ND, Pintelas PE, et al. Automatic classification of solitary pulmonary nodules in PET/CT imaging employing transfer learning techniques. Med Biol Eng Comput. 2021;59:1299–310.PubMedCrossRef Apostolopoulos ID, Pintelas EG, Livieris IE, Apostolopoulos DJ, Papathanasiou ND, Pintelas PE, et al. Automatic classification of solitary pulmonary nodules in PET/CT imaging employing transfer learning techniques. Med Biol Eng Comput. 2021;59:1299–310.PubMedCrossRef
123.
Zurück zum Zitat Apostolopoulos ID, Apostolopoulos DI, Spyridonidis TI, Papathanasiou ND, Panayiotakis GS. Multi-input deep learning approach for Cardiovascular Disease diagnosis using Myocardial Perfusion Imaging and clinical data. Phys Med. 2021;84:168–77.PubMedCrossRef Apostolopoulos ID, Apostolopoulos DI, Spyridonidis TI, Papathanasiou ND, Panayiotakis GS. Multi-input deep learning approach for Cardiovascular Disease diagnosis using Myocardial Perfusion Imaging and clinical data. Phys Med. 2021;84:168–77.PubMedCrossRef
Metadaten
Titel
Applications of Generative Adversarial Networks (GANs) in Positron Emission Tomography (PET) imaging: A review
verfasst von
Ioannis D. Apostolopoulos
Nikolaos D. Papathanasiou
Dimitris J. Apostolopoulos
George S. Panayiotakis
Publikationsdatum
22.04.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 11/2022
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-022-05805-w

Weitere Artikel der Ausgabe 11/2022

European Journal of Nuclear Medicine and Molecular Imaging 11/2022 Zur Ausgabe