Skip to main content
Erschienen in: Archives of Gynecology and Obstetrics 1/2023

Open Access 21.05.2022 | Gynecologic Endocrinology and Reproductive Medicine

Archimetrosis: the evolution of a disease and its extant presentation

Pathogenesis and pathophysiology of archimetrosis (uterine adenomyosis and endometriosis)

verfasst von: Gerhard Leyendecker, Ludwig Wildt, Matthias W. Laschke, Gerhard Mall

Erschienen in: Archives of Gynecology and Obstetrics | Ausgabe 1/2023

Abstract

Purpose

This article presents a novel concept of the evolution and, thus, the pathogenesis of uterine adenomyosis as well as peritoneal and peripheral endometriosis. Presently, no unifying denomination of this nosological entity exists.

Methods

An extensive search of the literature on primate evolution was performed. This included comparative functional morphology with special focus on the evolution of the birthing process that fundamentally differs between the haplorrhine primates and most of the other eutherian mammals. The data were correlated with the results of own research on the pathophysiology of human archimetrosis and with the extant presentation of the disease.

Results

The term Archimetrosis is suggested as a denomination of the nosological entity. Archimetrosis occurs in human females and also in subhuman primates. There are common features in the reproductive process of haplorrhine primates such as spontaneous ovulation and corpus luteum formation, spontaneous decidualization and menstruation. These have fused Müllerian ducts resulting in a uterus simplex. Following a usually singleton pregnancy, the fetus is delivered in the skull position. Some of these features are shared by other mammals, but not in that simultaneous fashion. In haplorrhine primates, with the stratum vasculare, a new myometrial layer has evolved during the time of the Cretaceous–Terrestrial Revolution (KTR) that subserves expulsion of the conceptus and externalization of menstrual debris in non-conceptive cycles. Hypercontractility of this layer has evolved as an advantage with respect to the survival of the mother and the birth of a living child during delivery and may be experienced as primary dysmenorrhea during menstruation. It may result in tissue injury by the sheer power of the contractions and possibly by the associated uterine ischemia. Moreover, the lesions at extra-uterine sites appear to be maintained by biomechanical stress.

Conclusions

Since the pathogenesis of archimetrosis is connected with the evolution of the stratum vasculare, tissue injury and repair (TIAR) turns out to be the most parsimonious explanation for the development of the disease based on clinical, experimental and evolutionary evidence. Furthermore, a careful analysis of the published clinical data suggests that, in the risk population with uterine hypercontractility, the disease develops with a yet to be defined latency phase after the onset of the biomechanical injury. This opens a new avenue of prevention of the disease in potentially affected women that we consider to be primarily highly fertile.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

The essential aspects of a new view of the pathogenesis and pathophysiology of endometriosis have been presented in several publications by us since the mid-1990s of the last century [17]. It is the notion that in spontaneously occurring endometriosis and adenomyosis, ongoing muscular activity of the uterus [5, 811], especially during an ovulatory, non-conceptional cycle, leads to self-injury (auto-traumatization) and a healing process (tissue injury and repair; TIAR) [4, 5, 12] of uterine structures and parallel or subsequent dissemination of viable basal endometrial (archimetral) tissue fragments and stem cells (endometrial, ESC or archimetral, ASC), or archimetral progenitor cells, via the tubes into the abdominal cavity and via the vascular system into the periphery of the body [9, 1315]. At these extra-uterine sites, biomechanical mechanisms of injury and repair [4, 5] are also operative and maintain the proliferative process.
The prevalence of primary dysmenorrhea as a clinical sign of uterine hypercontractility amounts to 50–60% of all young women [7, 17, 18]. However, menstrual bleeding has been very infrequent in the population of young women that drove reproduction for millions of years [7]. Thus, the potentially destructive effect of uterine hypercontractility, as observed today in many non-conceptual cycles, did rarely occur and, therefore, had no impact on reproductive biological evolution. In the human, the stratum vasculare constitutes the main muscular layer of the uterus and the contraction of this layer presumably causes primary dysmenorrhea [3, 5, 1921].
Endometriosis is also described in subhuman haplorrhine primates exhibiting spontaneous decidualization followed by menstruation in non-conceptive cycles [22, 23]. The Haplorrhini separated from the Strepsirrhini with a common primate ancestor before the Cretaceous–Paleogene boundary (K–T boundary) [24]. Therefore, the assumption has to be made that auto-traumatization by hypercontractility is presumably also operative in all anthropoids.
While it is well known that the myometrium of most placental mammals is composed of two myometrial layers [25, 26], the inner circular and the outer longitudinal layer, there is no direct information available on the myometrial structure in subhuman primates. It is very similar or even the same in all haplorrhine primates (Fig. 1). The exact knowledge, however, is of enormous importance for the understanding of the evolution of the haplorrhine primates in general [27] and the pathogenesis of archimetrosis in particular.
We suggest replacing the terms endometriosis and adenomyosis by the more comprehensive term ‘archimetrosis’, because we are dealing primarily with a disease of the archimetra [2, 6, 7, 13, 20] as well as proliferation of ASC and progenitor cells (genitoblasts) [15, 2729] at the sites of primary lesions and parallel and subsequent trans-tubal [30] and vascular dissemination into the abdominal cavity and to the body periphery, respectively [15]. Archimetrotic foci within and outside the uterus are considered as archimetral (Müllerian) organoid structures that are composed of all the tissue elements of the primordial uterus [6, 7, 15, 3133] (Fig. 1).
There is no doubt that non-conceptional cycles, uterine hypercontractility [1, 5, 15], spontaneous decidualization [23, 34], and menstruation constitute central aspects in the pathophysiology of the disease process. These phenomena have to be discussed in a broad evolutionary, primatological, historical, sociological and clinical context to be fully understood.

Material and methods

Concept

The pathogenesis of spontaneous archimetrosis (uterine adenomyosis and endometriosis) is unknown. This work is based on own previous results and therefore on the premise that archimetrosis is caused by tissue injury and repair (TIAR). It is aimed to corroborate this concept and elucidate the pathogenesis of the disease.

Methods

An extensive search of the literature on primate evolution was performed. This included comparative functional morphology. Special emphasis was laid on the evolution of the birthing process that fundamentally differs between the haplorrhine primates and at least most of the other eutherian mammals. The data were correlated with the results of older and recent research on the pathophysiology of human archimetrosis and with the extant presentation of the disease.

Historical overview and state of research

The honor of having rendered the first detailed description of the disease under discussion goes to Karl von Rokitansky [3538]. At his time the term ‘sarcoma’ did not have the connotation of a malignant tumor [3942].
About 30 years later, Friedrich von Recklinghausen [43, 44] and Wilhelm Alexander Freund [45] resumed the clinical and morphologic workup of these tumors, which they termed adenomyomas of the uterus.
Wilhelm Alexander Freund had the reputation as a brilliant gynecologic surgeon and was the first to publish a systematic and reproducible method of abdominal hysterectomy [46]. He realized that some of the benign uterine tumors he often was confronted with differed in many respects, both, clinically and morphologically, from uterine fibroids. He felt that he was dealing with a new, hitherto undefined gynecologic disease entity. He was able to make the correct diagnosis preoperatively and invited von Recklinghausen [44] into the operation theater during the operation of such a patient to demonstrate the situs and hand over the specimen for pathological workup [45].
As documented by their published cases, they were confronted with the full spectrum of the clinical picture of archimetrosis. It ranged from uterine tumors, foci on the pelvic floor, the uterine serosa and peritoneum, to ovarian tumors that, when ruptured, emptied "chocolate-colored" fluid [45]. Clinically, the patients presented with lower abdominal tumors of greater or lesser size, accompanied by pain, bleeding disorders and secondary sterility as the predominant symptoms. But primary sterility was also frequently observed. The triad of symptoms of endometriosis (archimetrosis), such as pain, bleeding disorders and sterility, was for the first time formulated by Freund [45].
It was Tomas S. Cullen [47] who was able to demonstrate a continuity of the glandular elements of the adenomyomas with the endometrial surface of the uterine cavity and that therefore these tumors were derived from the paramesonephric (Müllerian) ducts. He was familiar with the controversy between Recklinghausen's Wolffian duct hypothesis [43, 44] and the Müllerian duct hypothesis advocated mainly by Kossmann [37, 44, 48]. His first monograph entitled "Adeno-Myoma des Uterus" [49] was part of a ‘Festschrift’ for Johannes Orth of Göttingen, which he later extended into the English version [50]. In his review paper [51], he summarized the results of his many years of study of adenomyomas and their spread into the body.
The broad clinical and scientific interest in the adenomyoma of the uterus at the end of the nineteenth century [44, 47, 51] was the starting point for the still ongoing research on the pathogenesis and pathophysiology of ‘endometriosis’. Against this background, it is astounding that Sampson [37, 52] made the bold remark that uterine adenomyosis had no pathogenetic connection whatsoever with endometriosis [30]. This had an enormous (worldwide) impact on the perception of the disease [53, 54] and further research, which was recently mainly directed in identifying abnormalities in the “omics” (proteinomics, genomics, epigenomics) of endometrium of affected women [5568] in comparison to normal endometrium. These are, in our opinion, secondary phenomena to the primary and evolutionarily highly conserved physiological process of tissue injury and repair (TIAR) [4, 6, 12, 69, 70] taking place at the level of the uterus.
Sampson’s concept of transtubal dissemination of cells and fragments of menstrual debris is widely accepted. His theory of simple retrograde menstruation causing endometriosis was only later questioned by the finding that transtubal flow of blood into the peritoneal cavity was apparently a physiological phenomenon [71, 72], which was immediately refuted by experimental data [73]. Philipp and Huber [74] came to the conclusion that the cells that cause endometriosis by transtubal transmission must come from deeper layers of the endometrium, rather than the functionalis shed during menstruation. A surprisingly modern aspect was presented by De Snoo [27], in that only cells that were involved in embryogenesis of the Müllerian ducts and in the regeneration of the endometrium after pregnancy could have the potential of causing endometriosis. He termed these cells ‘genitoblasts’.
In addition, Robert Meyer [75] criticized the term endometriosis, because it omitted the fact that all endometriotic lesions are composed of all Müllerian duct morphological elements, such as endometrial epithelium, stroma and metaplastic myometrial cells [15, 32, 33] (Fig. 1).
The original view that endometriosis and adenomyosis constitute a nosological entity, however, was not completely abandoned [36, 52, 74, 7678] and was re-enforced by our own and other studies [2, 4, 5, 911, 1315, 7983].
Endometriosis (archimetrosis) in subhuman primates, anatomically and clinically, appears to be identical to the human disease and there is no evidence for suspecting a pathophysiological difference [84]. Furthermore, the disease goes far back into primate evolution.

Results and discussion

Spontaneous archimetrosis has been described in subhuman primates [85, 86]. Meanwhile, archimetrosis has been found in all Great Apes, Old World and New World monkeys [8794]. A high prevalence of archimetrosis is observed in primates kept in captivity and prevented from reproduction [95].
The separation of the rhesus monkeys from the main stem line leading to Homo took place about 25 million years ago, and that of the New World monkeys about 35–45 million years ago. The latter probably came through drafting on vegetation islands in the course of the continental drift and low sea levels from Africa to South America [96, 97].
This allows the conclusion that morphological, structural and functional predispositions for the development of archimetrosis were presumably already present in all Anthropoidea (haplorrhine monkeys). These primates menstruate following spontaneous decidualization in non-conceptive cycles. Thus, on the basis of present knowledge spontaneous archimetrosis constitutes an anthropoid primate disease. In this regard, data are lacking with respect to other known menstruating non-primate species, such as the spiny mouse (Acomys cahirinus), chiroptera and the elephant shrew (Elephantulus myurus) [98101].

The myometrium in Glires and Ferungulata

In the Ferungulata and the Glires, the myometrium is composed of two layers [102]. While the inner layer with circular (Müllerian) fibers subserves the ancestrally old peristaltic and anti-peristaltic functions of gamete and embryo transport [103], the outer longitudinal layer serves to support the forces for expulsion of the fetus or fetuses [13, 20]. Muscular connections between the two layers have been described in mice. They are thought to serve signal transduction and the synchronization of peristaltic contractile activity of both layers during delivery and, in the immediate postpartum period, for reduction of uterine blood minute volume that is increased in all placentals during and particularly at the end of pregnancy [104, 105].
Glires, such as the rabbit, which, like haplorrhine primates, have ancestral hemochorial implantation [106], can bleed profusely during delivery. Ferungulata have replaced ancestral hemochorial in favor of epitheliochorial (Ungulata) and endotheliochorial (Carnivora) implantation [102]. They do not bleed or only show some sanguinolent secretion after the expulsion of the afterbirth. In all placentalia, uterine contraction postpartum provides the conditions for the onset of efficient and permanent hemostasis by blood clotting [107].

The shape and the myometrial composition of the uterus in menstruating non-human species

Menstruating higher mammals, such as the Old and New World monkeys, ovulate spontaneously and have a hemochorial implantation. Usually they have a uterus simplex. This also applies to the menstruating chiroptera with one exception [98, 99, 108]. The spiny mouse and the elephant shrew have a bicornuate uterus [23, 100, 101]. Menstruating mammals usually give birth to singletons [102, 109]. Exceptions to this are the spiny mouse and elephant shrew with two to four newborns.
Through the analyses of menstruating mammals, it is hoped to obtain suitable animal models for the study of human reproductive diseases, such as endometriosis and early pregnancy loss [34, 101, 110]. Although the gross forms of the uteri (uterus simplex versus bicornuate uterus) are generally well described, no information is available on the myometrial structure of the uterus in these animals. Surprisingly, this holds also true for the myometrial composition of the uterus in subhuman primates, although they are intensively discussed as animal models for the study of archimetrosis [111115].
Thus, the exact knowledge of the myometrial structure in subhuman primates and how and why it evolved is lacking. With respect to the evolution of spontaneous archimetrosis, an analysis of the myometrial functional structure of subhuman primates and their evolution appears to be an important research desiderate.

The composition of the myometrium in the human female

There is largely consensus on the three-layered nature of the human myometrium: the stratum subvasculare, vasculare and supravasculare [116, 117]. However, in the Anglo-American literature, Kreitzer’s terminology is usually not used [116120]. The layers are named according to the predominant course of their fibers such as ‘criss-cross’ for the stratum vasculare. The functional significance of this specific fiber course of the stratum vasculare is apparently not widely appreciated.
Wetzstein [19] was the first to point out that, due to its composition of short muscular bundles, the stratum vasculare does not contract peristaltically, such as the other layers, but contracts in a concentric fashion in toto. Thus, during a concentric contraction the pressure increases within the entire uterine cavity.
In women, the main mass of the myometrium consists of the stratum vasculare, while the stratum supravasculare is largely regressed, as shown by magnetic resonance diffusion tensor imaging [21] (Fig. 2). This study also revealed an important structural detail of the stratum vasculare that may contribute to the delay between onset of the potential archimetral injury and the manifestation of the peritoneal disease [121, 122]: the short bundles of the stratum vasculare attain a more circular arrangement around the intramural part of the tubes. Thus, this part of the tubes is occluded, when the stratum vasculare contracts during parturition or menstruation (Fig. 1a).

Peristaltic and aperistaltic birth

There is only indirect evidence that presumably all Haplorrhini (Anthropoidea) have, like the human, developed a stratum vasculare of the myometrium. This can be derived from studies that were performed by De Snoo in the Javan monkey (M. fascicularis) and the domestic pig (Sus scrofa domesticus) [27]. On the basis of film recordings during cesarean sections, he could demonstrate fundamental differences of the biomechanical birth processes between the primate and the pig.
In the Ferungulata he described the muscular biomechanics of the uterus during delivery as "peristaltic", while he described those in haplorrhine primates, quite similar to the concentric contractions during delivery in the human, as "aperistaltic". In the Ferungulata, the fetuses are literally pushed outward by peristaltic contraction waves of the myometrium, while in the haplorrhine primates the birth of the fetuses takes place by intermittent-rhythmic increases in intrauterine hydrostatic pressure.
Since Wetzstein [19] had recognized that the stratum vasculare is capable of strong concentric contractions due to its three-dimensional structure of short muscle bundles that simultaneously involve the entire muscle, we conclude that the aperistaltic birth in primates, as described by De Snoo, obviously constitutes the functional consequence of the specific structure of the stratum vasculare. Thus, the myometrium of subhuman primates appears to be composed, as that of the human female, of an inner circular layer (stratum subvasculare; archimyometrium; junctional zone myometrium), an outer longitudinal layer (stratum supravasculare) and a third layer in between, the stratum vasculare. Surprisingly, in his studies on the aperistaltic birth process in primates, De Snoo did not mention the stratum vasculare as the morphological basis of this phenomenon. This was probably due to Goerttler’s then famous and enforced concept of the structure and functioning of the human myometrium as a double spiral muscular tube [123] that prevailed until it was fully refuted by Wetzstein’s studies [19].
As mentioned above, muscular fibers and even muscular bridges in rodents serve to synchronize the peristaltic activity of the circular and longitudinal layers during parturition. It is reasonable to assume that these muscle fibers and muscle bridges between these two layers [105] constitute the anlage for the evolutionary development of the stratum vasculare in haplorrhine primates.

Encephalization

The question arises as to why in Haplorrhini, with the stratum vasculare, a third, phylogenetically and ontogenetically young muscle layer [20, 116] developed at all and along with it the 'aperistaltic' birth [27], although in many and also large mammals the synchronized peristaltic muscular power of the circular and longitudinal layer is sufficient for successful completion of a birth. The answer lies in the need for stronger muscular strength in the birthing process in the Haplorrhini, of which the prenatal development is characterized by a preference for brain and therefore head growth over body growth [124]. This increased encephalization is already present in the haplorrhines after their separation from the strepsirrhines [125].
During the time of the Cretaceous–Terrestrial Revolution (KTR) [126], which ranges from about 120 million years ago to the Cretaceous–Tertiary boundary (K–T boundary) 65 million years ago, previously non-existent habitats had opened up in the course of the continental drift and with the appearance of a new, angiosperm flora, which, as a result of a mosaic of different mutations, led to a splitting of the early Eutheria in the sense of the favored "long fuse model" [127131]. Thus, probably even before the K–T boundary, the pro-simians (Strepsirrhini) and the Haplorrhini (Anthropoidea) had developed from a common ancestor of the primates [102] (Fig. 3). As a result of their specific locomotion (grasping, climbing and jumping) as well as primarily optical detection of food and, thus, due to the preference for optical over olfactory sensory perception of the environment, the early anthropoids were able to assert themselves as diurnally active animals in the canopies of tropical forests as an arboreal habitat. The preference for optical perception to the detriment of olfactory perception resulted in an increase in the neocortex and, thus, the beginning of an increased brain growth that accelerated in the apes and became explosive only in the last 2–3 million years [97, 124, 132].
Due to a mosaic of parallel, evolutionary processes [24], it was ensured that singleton pregnancy and birth in skull position became the norm. Already, De Snoo points out that all anthropoids take a sitting or squatting position at rest and in sleep [27, 97]. Thus, the head of the fetus can enter into a firm relationship with the pelvis prior to birth [27].
The Tarsier are haplorrhine and considered a sister taxon to the anthropoids [133]. Their eyes are bigger than their whole brain. This and some differences in the neural organization of their optical sensory system may be attributed to the fact that they probably secondarily changed from a diurnal to nocturnal activity [134, 135]. They have a uterus simplex and singleton pregnancies. In our context, it is of interest that these animals are forced into a permanent vertical posture, which has to be made possible for them when they are kept in captivity.
The entire female reproductive system of primates, including specific structure and function of the myometrium [19, 27], had principally already reached the stage of development as in humans, when the Cercopithecoidea were separating off the stem line leading to Homo, if not before (Figs. 1, 3). Spontaneous alternating ovulations on the basis of a “permissive” hypothalamic GnRH secretion [136143], a uterus simplex with a fundo-cornual raphe [14, 116], menstrual bleeding after spontaneous decidualization [23] in all Haplorrhini possibly including the tarsiers and the occurrence of archimetrosis in all Anthropoidea allow the conclusion that the specific development of the reproductive system of haplorrhine primates represents a predisposition to the development of archimetrosis.
In Old World monkeys, birth is often a long-lasting, difficult biomechanical process. With the relatively wide pelvic entrance in the large apes, the birth process seems a bit more effortless [97]. Irrespective of the various theories behind the initiation of the birth process [144146], after the explosive encephalization in Homo the need for the birth of a largely immature newborn arose. Thus, for the birth and control of the postnatal period, a large concentric contraction force that is provided by the stratum vasculare represented an evolutionary advantage, and it has to be kept in mind that in the wild and also in archaic human societies non-conceptive cycles and menstruation were and still are rather infrequent incidences [7]. However, in the non-conceptual cycle, uterine hypercontractility leads to biomechanical stress and traumatization of deeper layers of the archimetra obviously in all anthropoids (Fig. 4). In some colonies of macaque (Macaca Fuscata), the prevalence of acquiring archimetrosis in captivity with prevention of conception is as high [95] as the prevalence of severe and extreme primary dysmenorrhea in young women [16, 147].
Against this evolutionary background, it will be examined to which extent anamnestic, clinical, histological and immunohistochemical data as well as data obtained by imaging techniques of the extant disease in women are compatible with the concept of auto-traumatization of the uterus exerted by its own biomechanical functions.

Primary dysmenorrhea

Uterine contractions at the end of an ovulatory cycle and labor pains are homologous to each other in their initiation (decline of progesterone blood levels) and functionality (emptying of the uterus). Primary dysmenorrhea reflects increased contractility of the stratum vasculare; it occurs only after ovulatory cycles [148, 149].
Amounting up to 50–60%, the prevalence of primary dysmenorrhea in young women is high [16]. Instead of a pain score, we used in our studies easily remembered anamnestic data to assess the severity of primary dysmenorrhea. We do not consider the more or less mild abdominal pulling that many women experience with the onset of menstruation as dysmenorrhea. Our classification is based on the analgesic requirement [4, 7]:
Mild primary dysmenorrhea: painful contractions that are tolerated without analgesics.
Moderate primary dysmenorrhea: analgesics are occasionally required.
Severe primary dysmenorrhea: persistent perimenstrual need for analgesics.
Extreme dysmenorrhea: absence from school and work (absenteeism).
Particularly women with persistent severe and extreme dysmenorrhea are at high risk of developing archimetrosis. Severe forms of uterine archimetrosis, cystic–cornual angle adenomyosis (“zystische Tubenwinkeladenomyose”) [44], also termed salpingitis isthmica nodosa [75], were found only in women with extreme dysmenorrhea [5]. However, even (possibly) asymptomatic women develop archimetrosis over time. Ten years after the last birth, on the occasion of tubal sterilization, approximately 30% of women had peritoneal archimetrosis. The percentage decreased with a decreasing time interval from the last birth [121, 122]. Thus, there appears to be a strength–duration relationship between contraction strength and number of menstrual cycles, which in combination lead to archimetrosis. The circular structure of the muscular fibers of the stratum vasculare just around the intramural part of the tubes [21] may impede and delay the transtubal dissemination of archimetral stem cells into the peritoneal cavity. In any event, almost all women develop perimenopausal adenomyosis (archimetrosis), and 70% of women, who underwent post-mortem examination, had adenomyosis according to classical pathologic–anatomic criteria. Since confirmed peritoneal endometriosis (peritoneal archimetrosis) is often no longer detectable in women in late post-menopause and old age, uterine adenomyosis (uterine archimetrosis) is in the foreground owing to persistent structural changes of the uterus [36, 150].

Uterine contractility

Assuming a mean peristaltic activity of two contraction waves per minute throughout the proliferative phase in stable ovulatory cycles, 5–6 million contraction waves occur during the first 10n years of reproductive maturity, exerting their highest power in the fundal region of the uterine cavity [5]. Similarly, in the first 10n years after the onset of stable cycles, assuming 24–36 neometral contractions per hour, which last for about 36 h with decreasing strength, approximately 110–140 thousand compressions of the archimetra occur during menstruation by the concentric contractions of the stratum vasculare. Due to the distribution of uterine muscle mass, these also develop their strongest force in the fundal region of the uterus [5].

Hyper- and dysperistalsis

In women with endometriosis/adenomyosis (archimetrosis), the mean number of contraction waves is doubled and the intrauterine pressure is increased [1, 8, 83]. This leads to permanent traumatization at the fundo-cornual raphe of the archimyometrium [2, 14, 116]. In our opinion, this is a predilection site for the development of uterine archimetrosis, since the peristaltic contractions associated with unilateral directed sperm transport can lead to a chronic, cyclically changing, asymmetric mechanical stress and, thus, injury to the stromal fibroblasts at this dividing line of the formerly separated two Müllerian muscle tubes (fundo-cornual raphe) [18, 14]. Early focal uterine archimetrosis is often observed with magnetic resonance imaging (MRI) in the midline fundal part of the archimyometrium [9, 10].
Hyperperistalsis probably develops already before menarche when estradiol levels are rising and falling during "occult anovulatory cycles", in which follicles can grow to preovulatory size [151155]. It may lead to injury and desquamation of cells and fragments of the basalis and, thus, stem cells because this layer is not yet sheathed by substantial proliferation of the endometrial mucosa.

Compression of the archimetra by the concentric contractions of the stratum vasculare

In our opinion, the essential auto-traumatization occurs due to the increased contractions of the stratum vasculare at the end of an ovulatory cycle, which initially manifest as primary dysmenorrhea [5]. Compression not only of the spiral arteries due to shrinkage of the functionalis, but also of the radial arteries occurs, resulting in intermittent acute ischemia of the basal and subbasal endometrium and its stroma and, in extreme cases, of the entire uterus [147]. Desquamation of deeper layers of the basalis ensues [5, 15]. Now, menstrual bleeding is accompanied by acute injury due to pressure and ischemia (Fig. 4). The blood that is dark, more watery, and non-coagulable during normal menstrual bleeding [156] becomes more reddish and may coagulate in parts since it is mixed with fresh blood from the deeper capillaries that supply the deeper part of the archimetra including the archimyometrium [157159]. The intrauterine pressure may by far exceed the blood pressure in the arterioles (30 mmHg) during contractions and also between them, so that prolonged uterine ischemia occurs as the pathophysiological basis of extreme primary dysmenorrhea with severe vegetative symptoms and absenteeism [5, 147] (Fig. 4).
From a heuristic and terminological point of view, we do not concur with the notion that ‘normal menstrual bleeding’, such as described by Ober [156] and the subsequent regeneration of the functionalis, should be considered as a process of “Tissue injury and repair” [160]. As a physiological process, endometrial detachment during normal menstruation only involves the non-vital functional layer of the endometrium (Fig. 4).
There is indirect evidence that the hypercontractility of both, the stratum vasculare and the stratum subvasculare, in women with archimetrosis is associated with an increased oxytocin receptor expression [161163].

Uterine archimetrosis (adenomyosis)

According to the prevalent definition, uterine archimetrosis (adenomyosis) represents tumors consisting of endometrial glands proliferating into the depth of the uterus and hyperplastic myometrium [164, 165]. This definition, however, is inadequate, because it does not refer to the genuine character of hyperplastic archimetral myometrium and, thus, the nature of adenomyosis as an archimetral (Müllerian) organoid tumor with metaplastic (archimetral) muscle tissue [166]. Based on preliminary findings by Sitzenfrey [167], according to which smaller sub-endometrial lesions were much more frequently encountered in the surgical specimen than large isolated adenomyomas, Frankl [168, 169] coined the term adenomyosis, thus emphasizing the frequently disseminated character of the adenomyotic lesions. Bird and coworkers [164] took up this phenomenon again with the term subbasal adenomyosis.
Furthermore, adenomyosis could only be diagnosed definitively if the glandular proliferations would extend at least one simple field of view deep into the uterus or if the so-called junctional zone (JZ) was at least 12 mm thick on MRI [170, 171]. These criteria may also be based on the view [172] that "endometrium, wherever located, has an inherent proclivity to proliferate into subjacent tissues." Presumably, this view ultimately stems from Recklinghausen's rather casual comment that the chronic reproductive biologic stress on the endometrium, meaning pregnancy and childbirth, could be a stimulus to proliferation [44]. From this, and probably from some of the cases described by Recklinghausen and Cullen, stems the erroneous view that uterine archimetrosis is a disease of the multiparous older woman and has no pathogenetic similarities with peritoneal archimetrosis in the younger woman [173].
There is no doubt that the disease on all levels, such as the uterus, the peritoneal cavity and the periphery of the body, takes time to develop probably dependent upon the severity of and the individual susceptibility to the biomechanical strain. Today, the patients often present with primary sterility, menstrual pain and severe discomfort [15, 62]. Two to four generations ago the patients presented at rather the same age often as parous women and with secondary sterility [45, 49] or the diagnosis was made at tubal sterilization of parous women [121, 122]. This pattern of presentation of symptoms allows the extrapolation of the reproductive potential of women with primary dysmenorrhea back into the early postmenarcheal period of life: they are very fertile. In fact, onset of regular ovulatory menstrual cycles indicates reproductive health (Fig. 5).
Undoubtedly, adenomyosis, like any neoplasm, begins as a very small lesion microscopically [50, 51]. In the now very extensive MRI literature [171, 174178], focal widths of JZ as small as 6 mm are discussed as indicative of adenomyosis. We used in our studies a width of the JZ of 10 mm and additional visual criteria such as cyst formation to establish the diagnosis of adenomyosis on MRI. The same is true for high-resolution vaginal ultrasonography (VSG) [5, 9, 10, 79].
Hricak [174] could not clearly assign the low-intensity band she first described by MRI in the uterus to any anatomic structure. Tentatively, she used the term "endometrial–myometrial junction." Undoubtedly, the hypointense band-like structure with a mean width of about 5–6 mm in healthy woman [9] represents the stratum subvasculare of the myometrium that is morphologically characterized by little connective tissue and densely packed cells [179].
The 'expansion' of the JZ should be primarily regarded as a radiological phenomenon. The "broadening" of the JZ [165, 180] actually consists in the destruction of the archimyometrium in the early process [177] and its replacement by newly formed archimetral (Müllerian) muscular tissue. In early cases of development of adenomyosis (uterine archimetrosis) with proliferation of the endometrial glands and basal stroma into the deep layers, at first, a hyperintense disruption of the hypointense structure occurs on MRI. Subsequent stroma-muscular metaplasia then results in a widening of the junctional zone on MRI. This process of the development of uterine archimetrosis may be focally or diffuse [5, 9, 10].

Tissue injury and repair

Hypercontractile leasioning of the archimetra with the desquamation of basal fragments initiates a physiological healing process that, as in other wounds in the body [181186], involves the local upregulation of P450 aromatase and formation and paracrine action of estradiol as a process of tissue injury and repair (TIAR) [4] and, furthermore, the formation of the “morphogenetic complex” ERß/CXCL12/CXCR4 [6, 160, 187, 188]. Data from animal experiments support this view. In the urodele, it was shown that experimental heart lesions healed faster when estradiol was injected locally. This effect was mediated by the increased expression of CXCL12 [189].
The CXCR4 receptor on stem cells binds to the chemokine CXCL12, which is upregulated in the endometrium by high estradiol concentrations. There is an accumulation of mesenchymal stem cells in the wound area, which are converted into archimetral progenitor cells in the immediate apical vicinity of the epithelium, as the ligand, CXCL12, is formed in the endometrial epithelium [187, 190]. The attraction of stem cells takes place via the archimetral vascular system [159]. The dividing ESC (ASC) and progenitor cells are HOXA-10 regulated [191] and form endometrial epithelium at the apical parts of the glands through stroma–epithelial transformation and, thus, provide continuity between the original glandular tube and the glands of the newly formed organoid structure. At the opposite pole, through fibromuscular metaplasia, muscular tissue develops. Cullen [49] called these (Müllerian) archimetral structures “uteri en miniature”.
The paracrine action of locally produced estradiol within the TIAR process, together with ovarian estradiol, may further increase uterine contractility and, thus, the process of injury. It is not clear which factors are responsible in the individual case if and when an adenomyoma becomes arrested in its growth or if it develops in a monstrous uterine tumor of Müllerian tissue. Most likely, the severity and extent of the trauma is important in this regard as observed in extreme primary dysmenorrhea with the development of cystic cornual angle archimetrosis [5]. In iatrogenic uterine archimetrosis, we observed larger uterine lesions following post-partum curettage and curettages following miscarriages as well as after surgical abortion [75, 78].
The composition of glandular and muscular parts can vary considerably. Secretory and blood drainage from proliferated glandular tubes may be obstructed, resulting in blood-filled cysts that can be detected by hysteroscopy and transvaginal sonography [5, 192195].
We do not concur with the notion to consider lesions of deeply infiltrating endometriosis (archimetrosis, DIA) that grow into the lower parts of the uterine corpus as a variant of uterine adenomyosis. By definition, they do not fulfill the developmental criteria of uterine adenomyosis (uterine archimetrosis) [196].

Peritoneal and peripheral archimetrosis (endometriosis)

As already suggested by Philipp and Huber [74] and by De Snoo [27], the cells that cause peritoneal archimetrosis must come from a deeper layer of the endometrium and must have the potential of stem cells (genitoblasts). This has been experimentally substantiated by demonstrating that in patients suffering from peritoneal archimetrosis, basal endometrial fragments were detached during menstruation in a significantly higher proportion than in controls without the disease. From these data, it was concluded that in women with peritoneal archimetrosis basal endometrial fragments with stem cell character were shed via the tubes into the peritoneal cavity, where they implant and proliferate to archimetrotic lesions [15]. In such studies, it is often difficult but of paramount importance to recruit adequate young healthy controls with regular cycles, proven fertility, absence of primary dysmenorrhea and that of uterine archimetrosis as demonstrated by a normal stratum subvasculare (archimyometrium, “junctional zone myometrium”) by MRI or transvaginal sonography [197]. Infertility is often associated with focal adenomyosis [198].
Transplantation of the endometrium of mice into their peritoneal space initially leads to a seemingly complete destruction of the transplanted tissue with loss of the glandular structures within a few days. Only some days thereafter, apparently from surviving progenitor cells and along with the formation of vessels, a new archimetral structure with typical formation of glands develops at the site of the implantation [199].
In animal experiments, human transplanted archimetral stem cells (ASC) or progenitor cells regulated like the native tissue by HOXA-10 [191] form endometrial glandular epithelium by stromal–epithelial transformation and muscular tissue by fibromuscular metaplasia [28]. It is likely that after vascular or transtubar dissemination of the cells from the uterus as well as after their implantation in the periphery of the body or in the peritoneal cavity, the same processes of differentiation take place [29]. Accordingly, with the archimetrotic lesions Müllerian organoid structures develop that in principle have the same tissue composition as the primordial uterus or the later archimetra [15] (Fig. 1e, f).
Bird and coworkers [164] described in their study on patients undergoing hysterectomy that the most frequent menstrual disorders were not encountered in patients with extensive adenomyosis, but rather in women with subbasal lesions. Premenstrual and postmenstrual spotting is considered as a typical symptom of endometriosis [45]. Therefore, we consider that the seeding of vital endometrial fragments containing stem or progenitor cells may already or even preferentially occur in the early phase of the development of uterine archimetrotic lesions. It also has to be taken into consideration that due to increased intrauterine pressure and cervico-fundal peristaltic activity, which is already present at the end or immediately after the menstruation in women with peritoneal archimetrosis [1, 81, 82], proliferating progenitor cells of the early functionalis [200] are transported via the tubes into the peritoneal cavity.
The stratum vasculare as well as the stratum subvasculare (archimyometrium) are in the case of hypercontractility both involved in the transtubal dissemination of archimetral stem or progenitor cells.
The increased neometral contractions repeatedly lead to deep injuries of the endometrium with detachment of fragments of vital basalis, which contain archimetral bone marrow-derived stem cells due to the chronic process of wound healing (TIAR) and also resident progenitor cells and may be disseminated into the periphery of the body or by retrograde blood flow into the peritoneal cavity.
In addition, the increased peristalsis of the archimyometrium (hyperperistalsis) results in a permanent “Durchwalkung” (kneading) of the injured endometrium in cervico-fundal direction. This effect is enhanced when hyperperistalsis changes at mid-cycle and high estradiol levels into dysperistalsis with convulsive contractions of the entire uterus [1]. This constant kneading of the injured uterus through hyper- and dysperistalsis may contribute together with the hypercontractility of the stratum vasculare to the lymphatic dissemination of stem and progenitor cells into the periphery of the body. Accordingly, endometrial tissue has been detected in pelvic lymph nodes and the groin in patients with endometriosis [201, 202].

Persistence of archimetrosis by biomechanical strain

Predilection sites of extra-uterine archimetrosis

After Cullen's detailed description of the localization of extra-uterine archimetral foci [51], other sites of predilection, such as the retrocoecale area and the peritoneum of the diaphragm, have been further recognized. Dramatic catamenial conditions, such as recurrent pneumothorax or seizures, have shown that the pleura and brain, among others, may be involved [203206].
The topography of the uterus, tubes, ovaries, and the other intraperitoneal and extra-peritoneal abdominal organs such as the intestine and urinary bladder is certainly of importance, in that increased menstrual detritus may collect in the dependent areas of the abdomen and in the various niches formed by different organs. However, the crucial criterion in both intraperitoneal and peripheral archimetrosis is not the implantation of endometrial epithelium and stroma as such, but the onset and persistence of the proliferative and inflammatory processes by stem and progenitor cells as a result of local trauma.
Thus, the question arises whether predilection sites of extra-uterine archimetrosis in the body are characterized by persistent biomechanical strain. This view appears to be supported by the localization of the lesions, as described by Cullen [51], and continues to be supported by newly described sites such as the pleura and the diaphragm [203, 204]. Deep infiltrating archimetrosis should therefore serve to enforce our view that the persistence and possibly progression of extra-uterine archimetrosis at whatever site in the body is supported by constant biomechanical strain.

Deeply infiltrating archimetrosis (DIA)

Deeply infiltrating archimetrosis (DIA) is the most painful and debilitating variant of the disease and has been the subject of extensive discussion for decades regarding its development [207209]. According to a proposed definition, deeply infiltrating archimetrosis (endometriosis) is present when the depth of infiltration of the foci exceeds 5 mm [65, 210]. Such foci preferentially start in the pouch of Douglas. From there, they may extend into the sacro-uterine ligaments, caudally into the cervix and the vagina, may penetrate into the rectum and obstruct the ureters. DIA may also penetrate into the lower parts of the uterine corpus and falsely considered as a special variant of uterine archimetrosis [196]. DIA is the subject of a special classification system, the Enzian classification [211213].
Normally, the uterus and cervix are flexibly connected by the cervico-uterine junction. Movements of the cervix are therefore not readily transferred to the uterus, as any gynecological examination of a healthy woman will show. As soon as an archimetrotic focus infiltrates into the cervico-uterine junction from the pouch of Douglas, this structure becomes coarse and hard. The previously flexible cervico-uterine axis becomes rigid. It is not uncommon for the previously anteverted and anteflexed uterus to transition to an erected and stretched position. Both cervix and uterus become lever arms with the fulcrum of the lever at the suspension of the upper cervix and the now rigid cervico-uterine junction at the pelvic ligaments. That posits the fulcrum just inside the proliferative and inflammatory process. The movement of the cervix as the caudal lever arm during examination is painful and explains the patient's often extreme dyspareunia. The corpus uteri that rested before on the pelvic floor now constitutes the cranial arm of the lever and is inevitably moved during virtually any physiologic body activity, such as walking and even breathing. The result is a chronic TIAR process with proliferation and infiltration into the surrounding area. The first case of this type is described by Freund and v. Recklinghausen [44, 45].
On the basis of these considerations the following general view of the pathophysiology of peritoneal archimetrosis is proposed.
Following a TIAR process on the level of the basal endometrium, archimetral stem cells (ASC) or progenitor cells are transported to the extra-uterine foci and form archimetral organoid structures following the HOXA-10 program ("micro-primordial uteri") [15]. Like uterine archimetrosis, the peritoneal variety follows vascular structures, since only through them the attraction of stem cells occurs. Formation of capillaries [199] as well as sprouting of nerve fibers in and around the focus is massively promoted by estradiol-dependent growth factors, such as vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) [32]. At sites without mechanical stress and therefore without the paracrine morphogenetic effect of estradiol, implanted endometrial tissue spontaneously regresses forming white fibrotic scars.
In the persistent archimetrotic foci, peripheral estradiol levels and paracrine estradiol concentrations appear to act additively. Reduction of either component (suppression of ovarian function or, for example, resolution of an adhesion between the intestine and uterus to terminate the local biomechanical irritation and TIAR process) may terminate the local proliferative and inflammatory process. Occasionally, with the administration of aromatase inhibitors [214], additional direct drug intervention in the TIAR process may be necessary to deprive the basal morphogenetic complex consisting of ER-beta, CXCL12, and CXCR4 of estrogenic supply.

Cross talk between Müllerian organoid structures

Subfertility and infertility in the presence of minimal and mild peritoneal archimetrosis with patent tubes and unaffected tubo-ovarian complex has been considered as idiopathic, because operative or hormonal treatment did not result in a significant improvement of fertility [215, 216]. At the time of these studies, however, uterine archimetrosis had not at all been taken into consideration. Thus, in any event, removal of peritoneal lesions was widely not considered a successful option for improving fertility in patients suffering from peritoneal archimetrosis. Rickes and coworkers [217] for the first time demonstrated that in patients with severe peritoneal archimetrosis the pregnancy rate was significantly improved, if prior to in vitro fertilization (IVF) a systemic treatment with a long-acting gonadotropin-releasing hormone (GnRH) analog was performed. This positive effect on the pregnancy rate could not be demonstrated in patients suffering from minimal to mild peritoneal archimetrosis. Again, at that time uterine archimetrosis was not taken into consideration.
Surprisingly, radical surgery of peritoneal archimetrosis resulted in an improved pregnancy rate in spontaneous and IVF cycles in comparison to untreated patients. Furthermore, it could be demonstrated that “inflammatory” markers that could be detected in the peritoneal archimetrotic lesions as well as in the endometrium of the affected women had disappeared in the endometrium after the eradication of the peritoneal lesion. Unfortunately, whether at all and to what extent uterine archimetrosis was present in these patients was not documented by vaginal ultrasound or MRI in this study. On the basis of our own results, we assume that these patients had both, uterine and peritoneal archimetrosis [61, 218220]
We would like to denominate this phenomenon as “Müllerian” crosstalk. A crosstalk between the peritoneal archimetrotic lesions and the endometrium has been repeatedly described in studies performed in subhuman primates [221, 222]. Sufficient explanations of this phenomenon are still lacking. Our concept that archimetrotic lesions are to be considered as archimetral (“Müllerian”) organoid structures could provide an approach toward an explanation. As outlined before, florid archimetrotic lesions, such as DIA, are subjected to chronic biomechanical stress. In consequence of this ongoing tissue injury and repair process (TIAR), bone-marrow derived stem cells are mobilized and arrested presumably not only in the active lesion but also at other archimetrotic or archimetral sites with the presence of CXCL12 as the ligand to the receptor CXCR4 [160], such as in the uterus, where they are converted into archimetral progenitor cells and enter a proliferative process. A direct cross talk via the circulation between archimetral and archimetrotic tissue involving cellular elements, specific macrophages and chemokines and not necessarily involving the bone marrow loop could also be possible [68, 223].
This ongoing cross talk could be the pathophysiological basis for the notion that women with severe archimetrosis are suffering from a generalized inflammatory status and that archimetrosis could be considered a systemic disease [62, 68, 224226].

Conclusions

Based on evolutionary, clinical and experimental evidence, the concept of tissue injury and repair (TIAR) is the most parsimonious explanation for the development of archimetrosis that is initiated at the level of the basal endometrium and induced by uterine hypercontractility in non-conceptual cycles. With the beginning of encephalization during the Cretaceous–Terrestrial revolution and with the parallel evolution of a third myometrial layer, the stratum vasculare, the process of birth had dramatically changed and gave rise to a new mammalian order, the haplorrhine primates, with an inherent predisposition to develop archimetrosis.
The main clinical finding is to be able to define a special risk population due to the high prevalence of primary dysmenorrhea today. Although 60–80% of all women develop premenopausal archimetrosis (adenomyosis/endometriosis), about 10–15% of them are affected at a younger age. Presumably, there is a pathophysiologic continuum in the strength of uterine contractility based on the expression of oxytocin receptors with an evolutionary selection in favor of hypercontractility going back well into the development of menstruating primates.

Pathogenesis develops in three intertwined processes

1.
The traumatization of the archimetra in the area of endometrial–myometrial junction by organ-specific biomechanical functions.
 
2.
The activation of the non-organ-specific, but physiological TIAR process for local production of estradiol and formation of the also non-organ-specific basal morphogenetic complex for attraction of mesenchymal stem cells (MSCs) to the site of trauma.
 
3.
Organ-specific differentiation of MSC into endometrial (ESC) or archimetral stem cells (ASC) and their proliferation and further differentiation into all tissue components of the archimetra such as endometrial epithelium, stroma and metaplastic muscle fibers. Archimetrotic lesions are considered as archimetral (“Müllerian”) organoid structures. In principle, iatrogenic archimetrosis develops in the same way.
 
Focal and diffuse proliferations of Müllerian tissue destroy the functional morphology of the "junctional zone myometrium" (archimyometrium). In MRI and TVS, these proliferations are seen as "widening" of the junctional zone or "halo" and serve as diagnostic criteria.
There is a high association of uterine archimetrosis with peritoneal archimetrosis. Fragments of basal endometrium containing stem or progenitor cells are disseminated into the peritoneal cavity via the tubes and into the body periphery via the vascular system, forming foci of archimetrosis. They are composed of all archimetral elements ("mini primordial uteri") and persist at sites of chronic mechanical stress.
Early menarche with early onset of regular ovulatory cycles and particularly high contractile activity of the stratum vasculare of the uterus as indicated by primary dysmenorrhea are characteristic for women with a high although, without doubt, individually varying risk for developing archimetrosis. But at the same time, these criteria indicated reproductive health for thousands of years. This is, in our opinion, an important conjecture resulting from our pathogenetic and pathophysiological concept and a translational aspect of our research, in that suppressing hypercontractility as early as possible after onset of menarche and primary dysmenorrhea, a the disease and its sequels could be prevented and health and fertility may be preserved.

Declarations

Conflict of interest

All authors declare that they have no conflicts of interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Gynäkologie

Kombi-Abonnement

Mit e.Med Gynäkologie erhalten Sie Zugang zu CME-Fortbildungen der beiden Fachgebiete, den Premium-Inhalten der Fachzeitschriften, inklusive einer gedruckten gynäkologischen oder urologischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Leyendecker G, Kunz G, Wildt L, Beil D, Deininger H (1996) Uterine hyperperistalsis and dysperistalsis as dysfunctions of the mechanism of rapid sperm transport in patients with endometriosis and infertility. Hum Reprod 11:1542–1551 CrossRef Leyendecker G, Kunz G, Wildt L, Beil D, Deininger H (1996) Uterine hyperperistalsis and dysperistalsis as dysfunctions of the mechanism of rapid sperm transport in patients with endometriosis and infertility. Hum Reprod 11:1542–1551 CrossRef
2.
Zurück zum Zitat Leyendecker G, Kunz G, Noe M, Herbertz M, Mall G (1998) Endometriosis: a dysfunction and disease of the archimetra. Hum Reprod Update 4:752–762 CrossRef Leyendecker G, Kunz G, Noe M, Herbertz M, Mall G (1998) Endometriosis: a dysfunction and disease of the archimetra. Hum Reprod Update 4:752–762 CrossRef
3.
Zurück zum Zitat Wildt L, Kissler S, Licht P, Becker W (1998) Sperm transport in the human female genital tract and its modulation by oxytocin ass assessed by hysterosalpingography, hysterotonography, electrohysterography and Doppler sonography. Hum Reprod Update 4:655–666 CrossRef Wildt L, Kissler S, Licht P, Becker W (1998) Sperm transport in the human female genital tract and its modulation by oxytocin ass assessed by hysterosalpingography, hysterotonography, electrohysterography and Doppler sonography. Hum Reprod Update 4:655–666 CrossRef
4.
Zurück zum Zitat Leyendecker G, Wildt L, Mall G (2009) The pathophysiology of endometriosis and adenomyosis: tissue injury and repair. Arch Gynecol Obstet 280:529–538 CrossRef Leyendecker G, Wildt L, Mall G (2009) The pathophysiology of endometriosis and adenomyosis: tissue injury and repair. Arch Gynecol Obstet 280:529–538 CrossRef
5.
Zurück zum Zitat Leyendecker G, Bilgicyildirim A, Inacker M, Stalf T, Huppert P, Mall G, Böttcher B, Wildt L (2015) Adenomyosis and endometriosis. Re-visiting their association and further insights into the mechanisms of auto-traumatisation. An MRI study. Arch Gynecol Obstet 291:917–932 CrossRef Leyendecker G, Bilgicyildirim A, Inacker M, Stalf T, Huppert P, Mall G, Böttcher B, Wildt L (2015) Adenomyosis and endometriosis. Re-visiting their association and further insights into the mechanisms of auto-traumatisation. An MRI study. Arch Gynecol Obstet 291:917–932 CrossRef
6.
Zurück zum Zitat Leyendecker (2019a) Pathogenese und Pathophysiologie der Adenomyose und Endometriose (Archimetrose). In: Ebert AD (Hrsg) Endometriose. Ein Wegweiser für die Praxis, 5. Aufl. De Gruyter, Berlin Leyendecker (2019a) Pathogenese und Pathophysiologie der Adenomyose und Endometriose (Archimetrose). In: Ebert AD (Hrsg) Endometriose. Ein Wegweiser für die Praxis, 5. Aufl. De Gruyter, Berlin
7.
Zurück zum Zitat Leyendecker G, Wildt L (1919) Evolutionäre Aspekte in der Pathogenese und Pathophysiologie von Adenomyose und Endometriose. J Gynäkol Endokrinol 29:110–121 CrossRef Leyendecker G, Wildt L (1919) Evolutionäre Aspekte in der Pathogenese und Pathophysiologie von Adenomyose und Endometriose. J Gynäkol Endokrinol 29:110–121 CrossRef
8.
Zurück zum Zitat Kunz G, Beil D, Deininger H, Wildt L, Leyendecker G (1996) The dynamics of rapid sperm transport through the female genital tract. Evidence from vaginal sonography of uterine peristalsis (VSUP) and hysterosalpingoscintigraphy (HSSG). Hum Reprod 11:627–632 CrossRef Kunz G, Beil D, Deininger H, Wildt L, Leyendecker G (1996) The dynamics of rapid sperm transport through the female genital tract. Evidence from vaginal sonography of uterine peristalsis (VSUP) and hysterosalpingoscintigraphy (HSSG). Hum Reprod 11:627–632 CrossRef
9.
Zurück zum Zitat Kunz G, Beil D, Huppert P, Leyendecker G (2000) Structural abnormalities of the uterine wall in women with endometriosis and infertility visualized by vaginal sonography and magnetic resonance imaging. Hum Reprod 15:76–82 CrossRef Kunz G, Beil D, Huppert P, Leyendecker G (2000) Structural abnormalities of the uterine wall in women with endometriosis and infertility visualized by vaginal sonography and magnetic resonance imaging. Hum Reprod 15:76–82 CrossRef
10.
Zurück zum Zitat Kunz G, Beil D, Huppert P, Noe M, Kissler S, Leyendecker G (2005) Adenomyosis in endometriosis—prevalence and impact on fertility. Evidence from magnetic resonance imaging. Hum Reprod 20:2309–2316 CrossRef Kunz G, Beil D, Huppert P, Noe M, Kissler S, Leyendecker G (2005) Adenomyosis in endometriosis—prevalence and impact on fertility. Evidence from magnetic resonance imaging. Hum Reprod 20:2309–2316 CrossRef
11.
Zurück zum Zitat Leyendecker G, Kunz G, Kissler S, Wildt L (2006) Adenomyosis and reproduction. Best Pract Res Clin Obstet Gynaecol 20:523–546 CrossRef Leyendecker G, Kunz G, Kissler S, Wildt L (2006) Adenomyosis and reproduction. Best Pract Res Clin Obstet Gynaecol 20:523–546 CrossRef
12.
Zurück zum Zitat Leyendecker G, Wildt L (2011) A new concept of endometriosis and adenomyosis: tissue injury and repair (TIAR). Hum Mol Biol Clin Investig 5:125–142 Leyendecker G, Wildt L (2011) A new concept of endometriosis and adenomyosis: tissue injury and repair (TIAR). Hum Mol Biol Clin Investig 5:125–142
13.
Zurück zum Zitat Leyendecker G, Kunz G, Noe M, Herbertz M, Beil, D, Huppert P, Mall G (1999) Die Archimetra als neues morphologisch-funktionelles Konzept des Uterus sowie als Ort der Primärerkrankung bei Endometriose Reproduktionsmedizin 15: 356–371 Leyendecker G, Kunz G, Noe M, Herbertz M, Beil, D, Huppert P, Mall G (1999) Die Archimetra als neues morphologisch-funktionelles Konzept des Uterus sowie als Ort der Primärerkrankung bei Endometriose Reproduktionsmedizin 15: 356–371
14.
Zurück zum Zitat Leyendecker G (2000) Endometriosis is an entity with extreme pleiomorphism. Hum Reprod 15:4–7 CrossRef Leyendecker G (2000) Endometriosis is an entity with extreme pleiomorphism. Hum Reprod 15:4–7 CrossRef
15.
Zurück zum Zitat Leyendecker G, Herbertz M, Kunz G, Mall G (2002) Endometriosis results from the dislocation of basal endometrium. Hum Reprod 17:2725–2736 CrossRef Leyendecker G, Herbertz M, Kunz G, Mall G (2002) Endometriosis results from the dislocation of basal endometrium. Hum Reprod 17:2725–2736 CrossRef
16.
Zurück zum Zitat Burnett MA, Antao V, Black A, Feldman K, Grenville A, Lea R, Lefebvre G, Pinsonneault O, Robert M (2005) Prevalence of primary dysmenorrhea in Canada. J Obstet Gynaecol Can 27(8):765–770 CrossRef Burnett MA, Antao V, Black A, Feldman K, Grenville A, Lea R, Lefebvre G, Pinsonneault O, Robert M (2005) Prevalence of primary dysmenorrhea in Canada. J Obstet Gynaecol Can 27(8):765–770 CrossRef
17.
Zurück zum Zitat Daum W (1985) Ursemitische religion. Kohlhammer, Stuttgart Daum W (1985) Ursemitische religion. Kohlhammer, Stuttgart
18.
Zurück zum Zitat Potts M, Short R (1999) Ever since Adam and Eve: the evolution of human sexuality. Cambridge University Press, Cambridge Potts M, Short R (1999) Ever since Adam and Eve: the evolution of human sexuality. Cambridge University Press, Cambridge
19.
Zurück zum Zitat Wetzstein R (1965) Der Uterusmuskel Morphologie. Arch Gynecol 202:1–13 Wetzstein R (1965) Der Uterusmuskel Morphologie. Arch Gynecol 202:1–13
20.
Zurück zum Zitat Noe M, Kunz G, Herbertz M, Mall G, Leyendecker G (1999) The cyclic pattern of the immunocytochemical expression of estrogen and progesterone receptors in human myometrial and endometrial layers: characterization of the endometrial-subendometrial unit. Hum Reprod 14:101–110 CrossRef Noe M, Kunz G, Herbertz M, Mall G, Leyendecker G (1999) The cyclic pattern of the immunocytochemical expression of estrogen and progesterone receptors in human myometrial and endometrial layers: characterization of the endometrial-subendometrial unit. Hum Reprod 14:101–110 CrossRef
21.
Zurück zum Zitat Weiss S, Jaermann T, Schmid P, Staempfli P, Boesiger P, Niederer P, Caduff R, Bajka M (2006) Three dimensional fiber architecture of the nonpregnant human uterus determined ex vivo using magnetic resonance diffusion tensor imaging. Anat Rec A Discov Mol Cell Evol Biol 288:84–90 CrossRef Weiss S, Jaermann T, Schmid P, Staempfli P, Boesiger P, Niederer P, Caduff R, Bajka M (2006) Three dimensional fiber architecture of the nonpregnant human uterus determined ex vivo using magnetic resonance diffusion tensor imaging. Anat Rec A Discov Mol Cell Evol Biol 288:84–90 CrossRef
22.
Zurück zum Zitat Strassmann BI (1996) The evolution of endometrial cycles and menstruation. Q R Biol 71:181–220 CrossRef Strassmann BI (1996) The evolution of endometrial cycles and menstruation. Q R Biol 71:181–220 CrossRef
23.
Zurück zum Zitat Emera D, Romero R, Wagner G (2012) The evolution of menstruation: a new model for genetic assimilation. Bioassays 34:26–35 CrossRef Emera D, Romero R, Wagner G (2012) The evolution of menstruation: a new model for genetic assimilation. Bioassays 34:26–35 CrossRef
24.
Zurück zum Zitat Williams BA, Kay RF, Kirk EC (2010) New perspectives on anthropoids origins. PNAS 107:4797–4804 CrossRef Williams BA, Kay RF, Kirk EC (2010) New perspectives on anthropoids origins. PNAS 107:4797–4804 CrossRef
25.
Zurück zum Zitat Mossman HW (1989) Comparative anatomy. In: Wynn RM, Jolly WP (eds) Biology of the uterus, 2nd edn. Plenum, New York, pp 19–34 CrossRef Mossman HW (1989) Comparative anatomy. In: Wynn RM, Jolly WP (eds) Biology of the uterus, 2nd edn. Plenum, New York, pp 19–34 CrossRef
26.
Zurück zum Zitat Spooner MK, Lenis YY, Watson R, Jaimes D, Patterson AL (2021) The role of stem cells in uterine involution. Reproduction 161:R61–R77 CrossRef Spooner MK, Lenis YY, Watson R, Jaimes D, Patterson AL (2021) The role of stem cells in uterine involution. Reproduction 161:R61–R77 CrossRef
27.
Zurück zum Zitat De Snoo K (1942) Das Problem der Menschwerdung im Lichte der vergleichenden Geburtshilfe. Verlag von Gustav Fischer, Jena De Snoo K (1942) Das Problem der Menschwerdung im Lichte der vergleichenden Geburtshilfe. Verlag von Gustav Fischer, Jena
28.
Zurück zum Zitat Gargett CE, Schwab KE, Deane JA (2016) Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update 22:137–163 Gargett CE, Schwab KE, Deane JA (2016) Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update 22:137–163
29.
Zurück zum Zitat Cousins FL, Dorien OF, Gargett CE (2018) Endometrial stem/progenitor cells and their role in the pathogenesis of endometriosis. Best Pract Clin Res Obstet Gynecol 50:27–38 CrossRef Cousins FL, Dorien OF, Gargett CE (2018) Endometrial stem/progenitor cells and their role in the pathogenesis of endometriosis. Best Pract Clin Res Obstet Gynecol 50:27–38 CrossRef
30.
Zurück zum Zitat Sampson JA (1927) Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol 14:422–429 CrossRef Sampson JA (1927) Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol 14:422–429 CrossRef
31.
Zurück zum Zitat Anaf V, Simon P, Fayt I, Noel JC (2000) Smooth muscles are frequent components of endometriotic lesions. Hum Reprod 15:767–771 CrossRef Anaf V, Simon P, Fayt I, Noel JC (2000) Smooth muscles are frequent components of endometriotic lesions. Hum Reprod 15:767–771 CrossRef
32.
Zurück zum Zitat Anaf V, Simon P, El Nakadi I, Fayt I, Simonart T, Buxant F, Noel JC (2002) Hyperalgesia, nerve infiltration and nerve growth factor expression in deep adenomyotic nodules, peritoneal and ovarian endometriosis. Hum Reprod 17(7):1895–1900 CrossRef Anaf V, Simon P, El Nakadi I, Fayt I, Simonart T, Buxant F, Noel JC (2002) Hyperalgesia, nerve infiltration and nerve growth factor expression in deep adenomyotic nodules, peritoneal and ovarian endometriosis. Hum Reprod 17(7):1895–1900 CrossRef
33.
Zurück zum Zitat Barcena de Arellano ML, Gericke J, Reichelt U, Ebert AD, Chiantera V, Schneider A, Mechsner S (2011) Immunohistochemical characterization of endometriosis-associated smooth muscle cells in human peritoneal endometriotic lesions. Hum Reprod 26:2721–2730 CrossRef Barcena de Arellano ML, Gericke J, Reichelt U, Ebert AD, Chiantera V, Schneider A, Mechsner S (2011) Immunohistochemical characterization of endometriosis-associated smooth muscle cells in human peritoneal endometriotic lesions. Hum Reprod 26:2721–2730 CrossRef
34.
Zurück zum Zitat Gellersen B, Brosens JJ (2014) Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev 35:851–905 CrossRef Gellersen B, Brosens JJ (2014) Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev 35:851–905 CrossRef
35.
Zurück zum Zitat von Rokitansky K (1960) Über Uterusdrüsen-Neubildung in Uterus- und Ovarial-Sarkomen. Z Gesellschaft Ärzte 16:577–581 von Rokitansky K (1960) Über Uterusdrüsen-Neubildung in Uterus- und Ovarial-Sarkomen. Z Gesellschaft Ärzte 16:577–581
36.
Zurück zum Zitat Emge LA (1962) The elusive adenomyosis of the uterus. It’s historical past and it’s present state of recognition. Am J Obstet Gynecol 83:1541–1563 CrossRef Emge LA (1962) The elusive adenomyosis of the uterus. It’s historical past and it’s present state of recognition. Am J Obstet Gynecol 83:1541–1563 CrossRef
37.
Zurück zum Zitat Hudelist G, Keckstein J, Wright JT (2008) The migrating adenomyoma: past views on the etiology of adenomyosis and endometriosis. Fertil Steril 92:1536–1543 CrossRef Hudelist G, Keckstein J, Wright JT (2008) The migrating adenomyoma: past views on the etiology of adenomyosis and endometriosis. Fertil Steril 92:1536–1543 CrossRef
38.
39.
Zurück zum Zitat Benagiano G, Brosens I (2006) History of adenomyosis. Best Pract Res Clin Obstet Gynaecol 20:449–463 CrossRef Benagiano G, Brosens I (2006) History of adenomyosis. Best Pract Res Clin Obstet Gynaecol 20:449–463 CrossRef
40.
Zurück zum Zitat Benagiano G, Brosens I (2011) Who identified endometriosis. Fertil Steril 95:13–16 CrossRef Benagiano G, Brosens I (2011) Who identified endometriosis. Fertil Steril 95:13–16 CrossRef
42.
Zurück zum Zitat Virchow R (1858) Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. Verlag von August Hirschwald, Berlin Virchow R (1858) Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. Verlag von August Hirschwald, Berlin
43.
Zurück zum Zitat Recklinghausen F. Vortrag vor dem Medicinisch-naturwissenschaftlichen Verein. Straßburg, 19. Mai1893 Recklinghausen F. Vortrag vor dem Medicinisch-naturwissenschaftlichen Verein. Straßburg, 19. Mai1893
44.
Zurück zum Zitat von Recklinghausen F (1896) Die Adenomyomata und Cystadenomyomata des Uterus und der Tubenwandung: ihre Abkunft von Resten des Wolff‘schen Körpers. August Hirschwald Verlag, Berlin von Recklinghausen F (1896) Die Adenomyomata und Cystadenomyomata des Uterus und der Tubenwandung: ihre Abkunft von Resten des Wolff‘schen Körpers. August Hirschwald Verlag, Berlin
45.
Zurück zum Zitat Freund WA (1896) Klinische Notizen zu den voluminösen Adenomyomen des Uterus. In: Recklinghausen von F (ed) Die Adenomyomata und Cystadenomyomata des Uterus und der Tubenwandung: ihre Abkunft von Resten des Wolff‘schen Körpers. August Hirschwald Verlag, Berlin Freund WA (1896) Klinische Notizen zu den voluminösen Adenomyomen des Uterus. In: Recklinghausen von F (ed) Die Adenomyomata und Cystadenomyomata des Uterus und der Tubenwandung: ihre Abkunft von Resten des Wolff‘schen Körpers. August Hirschwald Verlag, Berlin
46.
Zurück zum Zitat Freund AW (1877) Eine neue Methode der Exstirpation des ganzen Uterus. Breitkopf und Härtel, Leipzig 1877 (Sammlung klinischer Vorträge. Gynäkologie. 41) Freund AW (1877) Eine neue Methode der Exstirpation des ganzen Uterus. Breitkopf und Härtel, Leipzig 1877 (Sammlung klinischer Vorträge. Gynäkologie. 41)
47.
Zurück zum Zitat Cullen TS (1896) Adenomyoma uteri diffusum benignum. Johns Hopkins Hosp Rep 6:133–157 Cullen TS (1896) Adenomyoma uteri diffusum benignum. Johns Hopkins Hosp Rep 6:133–157
48.
Zurück zum Zitat Kossmann R (1897) Die Abstammung der Drüsenschläuche in dem Uterus und in den Tuben. Arch Gynec 54:359–381 CrossRef Kossmann R (1897) Die Abstammung der Drüsenschläuche in dem Uterus und in den Tuben. Arch Gynec 54:359–381 CrossRef
49.
Zurück zum Zitat Cullen TS (1903) Adeno-Myome des Uterus. (Festschrift Johannes Orth) Verlag von August Hirschwald, Berlin Cullen TS (1903) Adeno-Myome des Uterus. (Festschrift Johannes Orth) Verlag von August Hirschwald, Berlin
50.
Zurück zum Zitat Cullen TS (1908) Adenomyoma of the uterus. W.B. Saunders Company, Philadelphia Cullen TS (1908) Adenomyoma of the uterus. W.B. Saunders Company, Philadelphia
51.
Zurück zum Zitat Cullen TS (1920) The distribution of adenomyoma containing uterine mucosa. Arch Surg 1:215–283 CrossRef Cullen TS (1920) The distribution of adenomyoma containing uterine mucosa. Arch Surg 1:215–283 CrossRef
52.
Zurück zum Zitat Albrecht H (1955) Die Endometriose. In: Seitz L, Amreich AI (eds) Biologie und Pathologie des Weibes, Ban4, Gynäkologie I, pp 190–288 Albrecht H (1955) Die Endometriose. In: Seitz L, Amreich AI (eds) Biologie und Pathologie des Weibes, Ban4, Gynäkologie I, pp 190–288
53.
Zurück zum Zitat American Fertility Society (1985) Revised American Fertility Society classification of endometriosis. Fertil Steril 43:351–352 CrossRef American Fertility Society (1985) Revised American Fertility Society classification of endometriosis. Fertil Steril 43:351–352 CrossRef
54.
Zurück zum Zitat American Society for Reproductive Medicine (1996) Revised American Society for Reproductive Medicine classification of endometriosis: 1996. Fertil Steril 67:817–821 CrossRef American Society for Reproductive Medicine (1996) Revised American Society for Reproductive Medicine classification of endometriosis: 1996. Fertil Steril 67:817–821 CrossRef
55.
56.
Zurück zum Zitat Aghajanova L, Hamilton A, Kwintkiewicz J, Vo KC, Giudice LC (2009) Steroidogenic enzyme and key decidualization marker dysregulation in endometrial stromal cells from women with versus without endometriosis. Biol Reprod 80(1):105–114 ( Epub 2008 Sep 24) CrossRef Aghajanova L, Hamilton A, Kwintkiewicz J, Vo KC, Giudice LC (2009) Steroidogenic enzyme and key decidualization marker dysregulation in endometrial stromal cells from women with versus without endometriosis. Biol Reprod 80(1):105–114 ( Epub 2008 Sep 24) CrossRef
57.
Zurück zum Zitat Liu H, Lang JH (2011) Is abnormal eutopic endometrium the cause of endometriosis? The role of eutopic endometrium in pathogenesis of endometriosis. Med Sci Monit 17(4):RA92–RA99 Liu H, Lang JH (2011) Is abnormal eutopic endometrium the cause of endometriosis? The role of eutopic endometrium in pathogenesis of endometriosis. Med Sci Monit 17(4):RA92–RA99
58.
Zurück zum Zitat Burney RO, Giudice L (2012) Pathogenesis and pathophysiology of endometriosis. Fertil Steril 98(3):511–519 CrossRef Burney RO, Giudice L (2012) Pathogenesis and pathophysiology of endometriosis. Fertil Steril 98(3):511–519 CrossRef
59.
Zurück zum Zitat Rogers PAW, Adamson GD, Al-Jefout M, Becker CM, D’Hooghe TM, Dunselman GAJ, Fazleabas A, Giudice LC, Horne AW, Hull ML, Hummelshoij L, Missmer SA, Montgomery GW, Stratton P, Taylor RN, Rombauts L, Saunder PT, Vincent K, Zondervan K, WES/WERF Consortium for Research Priorities in Endometriosis (2017) Research priorities for endometriosis: recommendations from a global consortium of investigators in endometriosis. Reprod Sci 24(2):202–226 CrossRef Rogers PAW, Adamson GD, Al-Jefout M, Becker CM, D’Hooghe TM, Dunselman GAJ, Fazleabas A, Giudice LC, Horne AW, Hull ML, Hummelshoij L, Missmer SA, Montgomery GW, Stratton P, Taylor RN, Rombauts L, Saunder PT, Vincent K, Zondervan K, WES/WERF Consortium for Research Priorities in Endometriosis (2017) Research priorities for endometriosis: recommendations from a global consortium of investigators in endometriosis. Reprod Sci 24(2):202–226 CrossRef
60.
Zurück zum Zitat Johnson NP, Hummelshoij L, Adamson GD, Keckstein J, Taylor HS, Abrao MS, Bush D, Kiesel L, Tamini R, Sharpe-Timms KL, Rombauts L, Giudice LC, World Endometriosis Society Sao Paulo Consortium (2017) World Endometriosis Society consensus on the classification of endometriosis. Hum Reprod 32:315–324 CrossRef Johnson NP, Hummelshoij L, Adamson GD, Keckstein J, Taylor HS, Abrao MS, Bush D, Kiesel L, Tamini R, Sharpe-Timms KL, Rombauts L, Giudice LC, World Endometriosis Society Sao Paulo Consortium (2017) World Endometriosis Society consensus on the classification of endometriosis. Hum Reprod 32:315–324 CrossRef
61.
Zurück zum Zitat Lessey BA, Kim JJ (2017) Endometrial receptivity in the eutopic endometrium of women with endometriosis: it is affected, and let me show why. Fertil Steril 108:19–27 CrossRef Lessey BA, Kim JJ (2017) Endometrial receptivity in the eutopic endometrium of women with endometriosis: it is affected, and let me show why. Fertil Steril 108:19–27 CrossRef
62.
Zurück zum Zitat Bulun SESE (2019) Endometriosis. In: Strauss JF III, Barbieri RL (eds) Yen & Jaffe’s reproductive endocrinology. Elsevier, Amsterdam Bulun SESE (2019) Endometriosis. In: Strauss JF III, Barbieri RL (eds) Yen & Jaffe’s reproductive endocrinology. Elsevier, Amsterdam
63.
Zurück zum Zitat Lagana AS, Garzon S, Götte M, Vigano P, Franch M, Ghezzi F, Martin DC (2019) The pathogenesis of endometriosis: molecular and cell biology insights. Int J Mol Sci 20(22):5615 CrossRef Lagana AS, Garzon S, Götte M, Vigano P, Franch M, Ghezzi F, Martin DC (2019) The pathogenesis of endometriosis: molecular and cell biology insights. Int J Mol Sci 20(22):5615 CrossRef
64.
Zurück zum Zitat Zondervan KT, Becker C, Missmer SA (2020) Endometriosis. N Engl J Med 382:1244–1256 CrossRef Zondervan KT, Becker C, Missmer SA (2020) Endometriosis. N Engl J Med 382:1244–1256 CrossRef
65.
Zurück zum Zitat Koninckx PR, Ussia A, Adamyan L, Wattiez A, Gomel V, Martin DC (2019) Pathogenesis of endometriosis: the genetic/epigenetic theory. Fertil Steril 111:327–339 CrossRef Koninckx PR, Ussia A, Adamyan L, Wattiez A, Gomel V, Martin DC (2019) Pathogenesis of endometriosis: the genetic/epigenetic theory. Fertil Steril 111:327–339 CrossRef
66.
Zurück zum Zitat Filby CE, Rombauts L, Montgomery GW, Giudice LC, Gargett CE (2020) Cellular origins of endometriosis: towards novel diagnostics and therapeutics. Sem Reprod Med 38:1–15 Filby CE, Rombauts L, Montgomery GW, Giudice LC, Gargett CE (2020) Cellular origins of endometriosis: towards novel diagnostics and therapeutics. Sem Reprod Med 38:1–15
67.
Zurück zum Zitat Dinsdale N, Nepomnaschy CB (2021) The evolutionary biology of endometriosis. Evol Med Pub Health 9:174–191 CrossRef Dinsdale N, Nepomnaschy CB (2021) The evolutionary biology of endometriosis. Evol Med Pub Health 9:174–191 CrossRef
68.
Zurück zum Zitat Taylor HS, Kotlyar AM, Flores VA (2021) Endometriosis is a chronic systemic disease: clinical challenges and novel innovations. Lance 397:839–852 CrossRef Taylor HS, Kotlyar AM, Flores VA (2021) Endometriosis is a chronic systemic disease: clinical challenges and novel innovations. Lance 397:839–852 CrossRef
69.
Zurück zum Zitat Garcia-Segura LM, Wozniak A, Azcoitia I, Rodriguez JR, Hutchison RE, Hutchison JB (1999) Aromatase expression by astrocytes after brain injury: implications for local estrogen formation in brain repair. Neuroscience 89(2):567–578 CrossRef Garcia-Segura LM, Wozniak A, Azcoitia I, Rodriguez JR, Hutchison RE, Hutchison JB (1999) Aromatase expression by astrocytes after brain injury: implications for local estrogen formation in brain repair. Neuroscience 89(2):567–578 CrossRef
70.
Zurück zum Zitat Garcia-Segura LM (2008) Aromatase in the brain: not just for reproduction anymore. J Neuroendocrinol 20:705–712 CrossRef Garcia-Segura LM (2008) Aromatase in the brain: not just for reproduction anymore. J Neuroendocrinol 20:705–712 CrossRef
71.
Zurück zum Zitat Blumenkrantz MJ, Gallagher N, Bashore RA, Tenckhoh H (1981) Retrograde menstruation in women undergoing chronic peritoneal dialysis. Obstet Gynecol 57:667–672 Blumenkrantz MJ, Gallagher N, Bashore RA, Tenckhoh H (1981) Retrograde menstruation in women undergoing chronic peritoneal dialysis. Obstet Gynecol 57:667–672
72.
Zurück zum Zitat Halme J, Hammond MG, Hulka JF, Raj SG, Talbert LM (1984) Retrograde menstruation in healthy women and in patients with endometriosis. Obstet Gynecol 64:151–154 Halme J, Hammond MG, Hulka JF, Raj SG, Talbert LM (1984) Retrograde menstruation in healthy women and in patients with endometriosis. Obstet Gynecol 64:151–154
73.
Zurück zum Zitat Heim K (1927) Beitrag zur Frage der Verschleppungsmöglichkeit und Wachstumsfähigkrit menschlicher Uterusschleimhaut Zbl. Gynäk 51:1818–1821 Heim K (1927) Beitrag zur Frage der Verschleppungsmöglichkeit und Wachstumsfähigkrit menschlicher Uterusschleimhaut Zbl. Gynäk 51:1818–1821
74.
Zurück zum Zitat Philipp E, Huber H (1939) Die Entstehung der Endometriose, gleichzeitig ein Beitrag zur Pathologie des interstitiellen Tuben Abschnittes Zbl Gyn 63:7–40 Philipp E, Huber H (1939) Die Entstehung der Endometriose, gleichzeitig ein Beitrag zur Pathologie des interstitiellen Tuben Abschnittes Zbl Gyn 63:7–40
75.
Zurück zum Zitat Meyer R (1930) Adenomyosis, adenofibrosis und adenomyom. In: Stoeckel W (ed) Handbuch der Gynäkologie. Sechster Band/Erste Hälfte. J.F. Bergmann, München, pp 356–669 Meyer R (1930) Adenomyosis, adenofibrosis und adenomyom. In: Stoeckel W (ed) Handbuch der Gynäkologie. Sechster Band/Erste Hälfte. J.F. Bergmann, München, pp 356–669
76.
Zurück zum Zitat Counseller VS (1938) Endometriosis. A clinical and surgical review. Am J Obstet Gynecol 36:877–886 CrossRef Counseller VS (1938) Endometriosis. A clinical and surgical review. Am J Obstet Gynecol 36:877–886 CrossRef
77.
Zurück zum Zitat Novak E, Alves de Lima O (1948) A correlative study of adenomyosis and pelvic endometriosis, with special reference to the hormone reaction of ectopic endometrium. Am J Obstet Gynecol 56:634–644 CrossRef Novak E, Alves de Lima O (1948) A correlative study of adenomyosis and pelvic endometriosis, with special reference to the hormone reaction of ectopic endometrium. Am J Obstet Gynecol 56:634–644 CrossRef
78.
Zurück zum Zitat Kindermnn G (1988) Endometriose: Wesen und Entstehung. In: Käser O, Friedberg V, Ober KG, Thomsen K, Zander J (eds) Gynäkologie und Geburtshilfe Band III Teil, vol 2, pp 13.1–13.27 Kindermnn G (1988) Endometriose: Wesen und Entstehung. In: Käser O, Friedberg V, Ober KG, Thomsen K, Zander J (eds) Gynäkologie und Geburtshilfe Band III Teil, vol 2, pp 13.1–13.27
79.
Zurück zum Zitat Exacoustos C, Luciano D, Corbett B, De Felice G, Di Feliciantonio M, Luciano A, Zupi E (2013) The uterine junctional zone: a 3 dimensional ultrasound study of patients with endometriosis. Am J Obstet Gynecol 209:248.e1–7 CrossRef Exacoustos C, Luciano D, Corbett B, De Felice G, Di Feliciantonio M, Luciano A, Zupi E (2013) The uterine junctional zone: a 3 dimensional ultrasound study of patients with endometriosis. Am J Obstet Gynecol 209:248.e1–7 CrossRef
80.
Zurück zum Zitat Maruyama S, Imanaka S, Nagayasu M, Kimura M, Kobayashi H (2020) Relationship between adenomyosis and endometriosis; different phenotypes of a single disease? Eur J Obstet Gynecol Reprod Biol 253:191–197 CrossRef Maruyama S, Imanaka S, Nagayasu M, Kimura M, Kobayashi H (2020) Relationship between adenomyosis and endometriosis; different phenotypes of a single disease? Eur J Obstet Gynecol Reprod Biol 253:191–197 CrossRef
81.
Zurück zum Zitat Mäkäräinen L (1988) Uterine contractions in endometriosis: effects of operative and danazol treatment. J Obstet Gynecol 9:134–138 CrossRef Mäkäräinen L (1988) Uterine contractions in endometriosis: effects of operative and danazol treatment. J Obstet Gynecol 9:134–138 CrossRef
82.
Zurück zum Zitat Salamanca A, Beltran E (1995) Subendometrial contractility in menstrual phase visualised by transvaginal sonography in patients with endometriosis. Fertil Steril 64:193–195 CrossRef Salamanca A, Beltran E (1995) Subendometrial contractility in menstrual phase visualised by transvaginal sonography in patients with endometriosis. Fertil Steril 64:193–195 CrossRef
83.
Zurück zum Zitat Bulletti C, De Ziegler D, Polli V, Del Ferro E, Palini S, Flamigni C (2002) Characteristics of uterine contractility during menses in women with mild to moderate endometriosis. Fertil Steril 77:156–1161 CrossRef Bulletti C, De Ziegler D, Polli V, Del Ferro E, Palini S, Flamigni C (2002) Characteristics of uterine contractility during menses in women with mild to moderate endometriosis. Fertil Steril 77:156–1161 CrossRef
84.
Zurück zum Zitat MacKanzie WF (1975) Animal model: endometriosis in rhesus monkeys. Am J Path 80:341–344 MacKanzie WF (1975) Animal model: endometriosis in rhesus monkeys. Am J Path 80:341–344
85.
Zurück zum Zitat Bertens APMG, Helmond FA, Hein PR (1982) Endometriosis in the rhesus monkey. Lab Anim 16:281–284 CrossRef Bertens APMG, Helmond FA, Hein PR (1982) Endometriosis in the rhesus monkey. Lab Anim 16:281–284 CrossRef
86.
Zurück zum Zitat Barrier BF, Malinowski MJ, Dick EJ, Hubbard GB, Bates GW (2003) Adenomyosis in the baboon is associated with primary infertility. Fertil Steril 82(Suppl. 3):1091–1094 Barrier BF, Malinowski MJ, Dick EJ, Hubbard GB, Bates GW (2003) Adenomyosis in the baboon is associated with primary infertility. Fertil Steril 82(Suppl. 3):1091–1094
87.
Zurück zum Zitat Barrier BF, Allison J, Hubbard GB, Dick EJ, Brasky KM, Schust DJ (2007) Spontaneous adenomyosis in the chimpanzee ( Pan troglodytes): a first report and review of the literature: case report. Hum Reprod 22:1714–1717 CrossRef Barrier BF, Allison J, Hubbard GB, Dick EJ, Brasky KM, Schust DJ (2007) Spontaneous adenomyosis in the chimpanzee ( Pan troglodytes): a first report and review of the literature: case report. Hum Reprod 22:1714–1717 CrossRef
88.
Zurück zum Zitat Dore M, Lagace A (1985) Spontaneous external Endometriosis in a gorilla ( Gorilla gorilla). Can Vet J 26:347–349 Dore M, Lagace A (1985) Spontaneous external Endometriosis in a gorilla ( Gorilla gorilla). Can Vet J 26:347–349
90.
Zurück zum Zitat D’Hooghe TM, Bambra CS, Cornillie FJ, Isahakia M, Konincks PR (1991) Prevalence and laparoscopic appearance in spontaneous endometriosis in the baboon ( Papio anubis, Papio cynocephalus). Biol Reprod 45:411–416 CrossRef D’Hooghe TM, Bambra CS, Cornillie FJ, Isahakia M, Konincks PR (1991) Prevalence and laparoscopic appearance in spontaneous endometriosis in the baboon ( Papio anubis, Papio cynocephalus). Biol Reprod 45:411–416 CrossRef
91.
Zurück zum Zitat Gruber-Dujardin E, Bleyer M, Mätz-Rensing K (2017) Morphological and immunohistochemical characterization of spontaneous endometriosis in rhesus macaques ( Macaca mulatta). Primate Biol 4:77–91 CrossRef Gruber-Dujardin E, Bleyer M, Mätz-Rensing K (2017) Morphological and immunohistochemical characterization of spontaneous endometriosis in rhesus macaques ( Macaca mulatta). Primate Biol 4:77–91 CrossRef
92.
Zurück zum Zitat Kondova I, Braskamp G, Heidt PJ, Collignon W, Haaksma T, de Groot N, Otting N, Dixidis G, Westmoreland SV, Vallender EJ, Bontrop RE (2017) Spontaneous endometriosis in rhesus macaques: evidence for a genetic association with specific MAMU-A1alleles. Primate Biol 4:117–125 CrossRef Kondova I, Braskamp G, Heidt PJ, Collignon W, Haaksma T, de Groot N, Otting N, Dixidis G, Westmoreland SV, Vallender EJ, Bontrop RE (2017) Spontaneous endometriosis in rhesus macaques: evidence for a genetic association with specific MAMU-A1alleles. Primate Biol 4:117–125 CrossRef
93.
Zurück zum Zitat Hayashi K, Nakayama M, Iwatani C et al (2020) The natural history of spontaneously occurred endometriosis in cynomolgus monkeys by monthly follow-up laparoscopy for two years. Tohoku J Exp Med 251(4):241–253 CrossRef Hayashi K, Nakayama M, Iwatani C et al (2020) The natural history of spontaneously occurred endometriosis in cynomolgus monkeys by monthly follow-up laparoscopy for two years. Tohoku J Exp Med 251(4):241–253 CrossRef
94.
Zurück zum Zitat Okeson DM, Higbie CT, Mylniczenko ND, Haynes A, Bennett S, Klocke E, Carpenter JW (2016) Management of endometriosis in two captive mandrills (Mandrillus Sphinx). J Zoo Wildl Med 47:614–617 CrossRef Okeson DM, Higbie CT, Mylniczenko ND, Haynes A, Bennett S, Klocke E, Carpenter JW (2016) Management of endometriosis in two captive mandrills (Mandrillus Sphinx). J Zoo Wildl Med 47:614–617 CrossRef
95.
Zurück zum Zitat Gall AJ, Olds JE, Wünschmann A, Selmic LE, Rasmussen J, Lewis AD (2018) Lesions of the female reproductive tract in Japanese Macaque ( Macaca Fuscata) of two captive colonies. J Zoo Wildl Med 49:79–85 CrossRef Gall AJ, Olds JE, Wünschmann A, Selmic LE, Rasmussen J, Lewis AD (2018) Lesions of the female reproductive tract in Japanese Macaque ( Macaca Fuscata) of two captive colonies. J Zoo Wildl Med 49:79–85 CrossRef
96.
Zurück zum Zitat Fleagle JG (2013) Primate adaptation and evolution. Academic Press, London Fleagle JG (2013) Primate adaptation and evolution. Academic Press, London
97.
Zurück zum Zitat Encyclopaedia Britannica. Primate (2021) Encyclopaedia Britannica, Inc Encyclopaedia Britannica. Primate (2021) Encyclopaedia Britannica, Inc
98.
Zurück zum Zitat Rasweiler JJ (1991) Spontaneous decidual reactions and menstruation in the black mastiff. Molussus Ater A J Anat 191:1–22 CrossRef Rasweiler JJ (1991) Spontaneous decidual reactions and menstruation in the black mastiff. Molussus Ater A J Anat 191:1–22 CrossRef
100.
Zurück zum Zitat Bellafiore N, Cousins F, Temple-Smith P, Dickinson H, Evans J (2018) A missing piece: the spiny mouse and the puzzle of menstruating species. J Mol Endocrinol 61:R25–R41 CrossRef Bellafiore N, Cousins F, Temple-Smith P, Dickinson H, Evans J (2018) A missing piece: the spiny mouse and the puzzle of menstruating species. J Mol Endocrinol 61:R25–R41 CrossRef
101.
Zurück zum Zitat Catalini L, Fedder J (2020) Characteristics of the endometrium in menstruating species: lessons from the animal kingdom. Biol Reprod 102:1160–1169 CrossRef Catalini L, Fedder J (2020) Characteristics of the endometrium in menstruating species: lessons from the animal kingdom. Biol Reprod 102:1160–1169 CrossRef
102.
Zurück zum Zitat Martin RD (2007) The evolution of human reproduction: a primatological perspective. Am J Phys Anthropol 50(Suppl 45):59–84 CrossRef Martin RD (2007) The evolution of human reproduction: a primatological perspective. Am J Phys Anthropol 50(Suppl 45):59–84 CrossRef
103.
Zurück zum Zitat Kunz G, Kissler S, Wildt L, Leyendecker G (2000) Uterine peristalsis: directed sperm transport and fundal implantation of the blastocyst. In: Fillicori M (ed) Endocrine basis of reproductive function. Monduzzi, pp 409–422 Kunz G, Kissler S, Wildt L, Leyendecker G (2000) Uterine peristalsis: directed sperm transport and fundal implantation of the blastocyst. In: Fillicori M (ed) Endocrine basis of reproductive function. Monduzzi, pp 409–422
104.
Zurück zum Zitat Tomiyasu BA, Chen CJ, Marshall JM (1988) Comparison of the activity of circular and longitudinal myometrium from pregnant rats; co-ordination between muscle layers. Clin Exp Pharmacol Physiol 15(9):647–656 CrossRef Tomiyasu BA, Chen CJ, Marshall JM (1988) Comparison of the activity of circular and longitudinal myometrium from pregnant rats; co-ordination between muscle layers. Clin Exp Pharmacol Physiol 15(9):647–656 CrossRef
106.
Zurück zum Zitat Elliot MG, Crespi BJ (2009) Phylogenetic evidence for early hemochorial placentation in eutherian. Placenta 30:949–967 CrossRef Elliot MG, Crespi BJ (2009) Phylogenetic evidence for early hemochorial placentation in eutherian. Placenta 30:949–967 CrossRef
108.
Zurück zum Zitat Zhang X, Zhu C, Lin H, Yang Q, Ou Q, Li Y, Che Z, Racey P, Zhang S, Wang H (2007) Wild fulvus fruit bats ( Rousettus leschenaulti) exhibit human-like menstrual cycle. Biol Reprod 77:358–364 CrossRef Zhang X, Zhu C, Lin H, Yang Q, Ou Q, Li Y, Che Z, Racey P, Zhang S, Wang H (2007) Wild fulvus fruit bats ( Rousettus leschenaulti) exhibit human-like menstrual cycle. Biol Reprod 77:358–364 CrossRef
109.
Zurück zum Zitat Wimsatt WA (1979) Reproductive asymmetry and unilateral pregnancy in chiroptera. J Reprod Fertil 56:345–357 CrossRef Wimsatt WA (1979) Reproductive asymmetry and unilateral pregnancy in chiroptera. J Reprod Fertil 56:345–357 CrossRef
110.
Zurück zum Zitat Lagana AS, Garzon S, Franchi M, Casarin J, Gullo G, Ghezzi F (2018) Translational animal models for endometriosis research: a long and windy road. Ann Transl Med 6(22):431 CrossRef Lagana AS, Garzon S, Franchi M, Casarin J, Gullo G, Ghezzi F (2018) Translational animal models for endometriosis research: a long and windy road. Ann Transl Med 6(22):431 CrossRef
111.
Zurück zum Zitat Story L, Kennedy S (2004) Animal studies in endometriosis: a review. ILAR 45:132–138 CrossRef Story L, Kennedy S (2004) Animal studies in endometriosis: a review. ILAR 45:132–138 CrossRef
112.
Zurück zum Zitat Braundmeier AG, Fazleabas AT (2009) The non-human primate model of endometriosis: research and implications for fecundity. Mol Hum Reprod 15:577–586 CrossRef Braundmeier AG, Fazleabas AT (2009) The non-human primate model of endometriosis: research and implications for fecundity. Mol Hum Reprod 15:577–586 CrossRef
113.
Zurück zum Zitat Yamanaka A, Kimura F, Takebayashi A, Kita N, Takahashi K, Murakami T (2012) Primate model research for endometriosis. Tohoku J Exp Med 226:95–99 CrossRef Yamanaka A, Kimura F, Takebayashi A, Kita N, Takahashi K, Murakami T (2012) Primate model research for endometriosis. Tohoku J Exp Med 226:95–99 CrossRef
114.
Zurück zum Zitat Brenner RM, Slayden Ov D (2012) Molecular and functional aspects of menstruation in the macaque. Rev Endocr Metab Disord 13:309–318 CrossRef Brenner RM, Slayden Ov D (2012) Molecular and functional aspects of menstruation in the macaque. Rev Endocr Metab Disord 13:309–318 CrossRef
115.
Zurück zum Zitat Nishimoto-Kakiuch A, Netsu S, Okabayashi S, Tanigushi K, Tanimura H, Kat A, Sankai M, Konno R (2018) Spontaneous endometriosis in cynomolgus monkeys as a clinically relevant experimental model. Hum Reprod 33:1228–1236 CrossRef Nishimoto-Kakiuch A, Netsu S, Okabayashi S, Tanigushi K, Tanimura H, Kat A, Sankai M, Konno R (2018) Spontaneous endometriosis in cynomolgus monkeys as a clinically relevant experimental model. Hum Reprod 33:1228–1236 CrossRef
116.
Zurück zum Zitat Werth R, Grusdew W (1898) Untersuchungen über die Entwicklung und Morphologie der menschlichen Uterusmuskulatur. Arch Gynäkol 55:325–409 CrossRef Werth R, Grusdew W (1898) Untersuchungen über die Entwicklung und Morphologie der menschlichen Uterusmuskulatur. Arch Gynäkol 55:325–409 CrossRef
117.
Zurück zum Zitat Kreitzer R (1871) Anatomische Untersuchungen über die Muskulatur der nichtschwangeren Gebärmutter. St. Petersburger Medizinische Zeitschrift. N. F. Bd. 2:113–135. Kreitzer R (1871) Anatomische Untersuchungen über die Muskulatur der nichtschwangeren Gebärmutter. St. Petersburger Medizinische Zeitschrift. N. F. Bd. 2:113–135.
118.
Zurück zum Zitat Ramsey EM (1994) Anatomy of the human uterus. In: The uterus, Chard T, Grudzinskas G (eds) Oxf Rev Hum Reprod, pp 18–40 Ramsey EM (1994) Anatomy of the human uterus. In: The uterus, Chard T, Grudzinskas G (eds) Oxf Rev Hum Reprod, pp 18–40
119.
Zurück zum Zitat Aguilar HN, Mitchell BF (2010) Physiological pathways and molecular mechanism regulating uterine contractility. Hum Reprod Update 16:725–744 CrossRef Aguilar HN, Mitchell BF (2010) Physiological pathways and molecular mechanism regulating uterine contractility. Hum Reprod Update 16:725–744 CrossRef
120.
Zurück zum Zitat Taylor AH, Habiba M (2016) The myometrium in health and disease. In: Habiba M, Benagiano G (eds) Uterine adenomyosis Springer, New York, p 71 Taylor AH, Habiba M (2016) The myometrium in health and disease. In: Habiba M, Benagiano G (eds) Uterine adenomyosis Springer, New York, p 71
121.
Zurück zum Zitat Moen MH (1991) Is a long period without childbirth a risk factor for developing endometriosis? Hum Reprod 6:1404–1407 CrossRef Moen MH (1991) Is a long period without childbirth a risk factor for developing endometriosis? Hum Reprod 6:1404–1407 CrossRef
122.
Zurück zum Zitat Moen MH, Muus KM (1991) Endometriosis in pregnant and non-pregnant women at tubal sterilization. Hum Reprod 6:699 CrossRef Moen MH, Muus KM (1991) Endometriosis in pregnant and non-pregnant women at tubal sterilization. Hum Reprod 6:699 CrossRef
123.
Zurück zum Zitat Goerttler K (1930) Die Architektur der Muskelwand des menschlichen Uterus und ihre funktionelle Bedeutung Gegenbaurs morph Jb 65:45–128 Goerttler K (1930) Die Architektur der Muskelwand des menschlichen Uterus und ihre funktionelle Bedeutung Gegenbaurs morph Jb 65:45–128
125.
Zurück zum Zitat Smith TD, DeLeon VB, Vinyard CJ, Young JW (2020) The newborn primate body form: phylogenetic and life-history influences. In: Skeletal anatomy of the primate newborn. Cambridge University Press, Cambridge Smith TD, DeLeon VB, Vinyard CJ, Young JW (2020) The newborn primate body form: phylogenetic and life-history influences. In: Skeletal anatomy of the primate newborn. Cambridge University Press, Cambridge
126.
Zurück zum Zitat Meredith RW, Janecka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Elzirik E, Simao TLL, Murphy WJ et al (2011) Impacts of the cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334(6055):521–524 CrossRef Meredith RW, Janecka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Elzirik E, Simao TLL, Murphy WJ et al (2011) Impacts of the cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334(6055):521–524 CrossRef
127.
Zurück zum Zitat Arghibals JD, Deutschman DH (2001) Quantitative analysis of the timing of the origin and diversification of extant placental orders. J Mammal Evol 8:107–124 CrossRef Arghibals JD, Deutschman DH (2001) Quantitative analysis of the timing of the origin and diversification of extant placental orders. J Mammal Evol 8:107–124 CrossRef
128.
Zurück zum Zitat Murphy WJ, Eizirik E, O’Brian SJ, Madsen O, Scally M, Douady DJ, Teelin E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:3249–3351 CrossRef Murphy WJ, Eizirik E, O’Brian SJ, Madsen O, Scally M, Douady DJ, Teelin E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:3249–3351 CrossRef
129.
Zurück zum Zitat Ji Q, Luo Z-X, Yuan C-X, Wible JR, Zhang J-P, Georgi JA (2002) The earliest eutherian mammal. Nature 4176:816–822 CrossRef Ji Q, Luo Z-X, Yuan C-X, Wible JR, Zhang J-P, Georgi JA (2002) The earliest eutherian mammal. Nature 4176:816–822 CrossRef
130.
Zurück zum Zitat Springer MS, Murphy WJ, Eiziril E, O’Brian SJ (2003) Placental mammal diversification and the Cretaceous-Tertiary boundary. PNAS 100:1056–1061 CrossRef Springer MS, Murphy WJ, Eiziril E, O’Brian SJ (2003) Placental mammal diversification and the Cretaceous-Tertiary boundary. PNAS 100:1056–1061 CrossRef
132.
Zurück zum Zitat Kirk EC (2006) Visual influences on primate encephalization. J Hum Evol 51:76–90 CrossRef Kirk EC (2006) Visual influences on primate encephalization. J Hum Evol 51:76–90 CrossRef
133.
Zurück zum Zitat Jablonski NG (2003) The evolution of the Tarsii niche. In: Wright PC, Simons EL, Gursky S (eds) Tarsiers past, present and future. Rutgers University Press, London, pp 35–49 Jablonski NG (2003) The evolution of the Tarsii niche. In: Wright PC, Simons EL, Gursky S (eds) Tarsiers past, present and future. Rutgers University Press, London, pp 35–49
134.
Zurück zum Zitat Collins CE, Hendrickson A, Kaas JH (2005) Overview of the visual system of Tarsius. Anat Rec Part A 287A:1013–1025 CrossRef Collins CE, Hendrickson A, Kaas JH (2005) Overview of the visual system of Tarsius. Anat Rec Part A 287A:1013–1025 CrossRef
135.
Zurück zum Zitat Chaimanee Y, Lebrun R, Yamee C, Jaeger J-J (2011) A new middle Miocene tarsier from Thailand and the reconstruction of its orbital morphology using a geometric-morphometric method. Proc R Soc B 278:1956–1963 CrossRef Chaimanee Y, Lebrun R, Yamee C, Jaeger J-J (2011) A new middle Miocene tarsier from Thailand and the reconstruction of its orbital morphology using a geometric-morphometric method. Proc R Soc B 278:1956–1963 CrossRef
136.
Zurück zum Zitat Knobil E (1974) On the control of gonadotropin secretion in the rhesus monkey. Rec Progr Hormone Res 30:1–46 Knobil E (1974) On the control of gonadotropin secretion in the rhesus monkey. Rec Progr Hormone Res 30:1–46
137.
Zurück zum Zitat Belchetz PE, Plant TM, Nakai Y, Keogh EJ, Knobil E (1978) hypophyseal responses to continuous and intermittent delivery of hypothalamic gonadotropin-releasing hormone. Science 202:631–632 CrossRef Belchetz PE, Plant TM, Nakai Y, Keogh EJ, Knobil E (1978) hypophyseal responses to continuous and intermittent delivery of hypothalamic gonadotropin-releasing hormone. Science 202:631–632 CrossRef
138.
Zurück zum Zitat Nakai Y, Plant TM, Hess DL, Keogh EJ, Knobil E (1978) on the sites of the negative and positive feedback actions of estradiol in the control of gonadotropin secretion in the rhesus monkey. Endocrinology 102:1008–1014 CrossRef Nakai Y, Plant TM, Hess DL, Keogh EJ, Knobil E (1978) on the sites of the negative and positive feedback actions of estradiol in the control of gonadotropin secretion in the rhesus monkey. Endocrinology 102:1008–1014 CrossRef
139.
Zurück zum Zitat Leyendecker G (1979) The pathophysiology of hypothalamic ovarian failure. Diagnostic and therapeutical considerations. Eur J Obstet Gynecol Reprod Biol 9:175–186 Leyendecker G (1979) The pathophysiology of hypothalamic ovarian failure. Diagnostic and therapeutical considerations. Eur J Obstet Gynecol Reprod Biol 9:175–186
140.
Zurück zum Zitat Leyendecker G, Struve T, Plotz EJ (1980) Induction of ovulation with chronic intermittent (pulsatile) administration LH-RH in women with hypothalamic and hyperprolactinemic amenorrhea. Arch Gynecol 229:177–190 CrossRef Leyendecker G, Struve T, Plotz EJ (1980) Induction of ovulation with chronic intermittent (pulsatile) administration LH-RH in women with hypothalamic and hyperprolactinemic amenorrhea. Arch Gynecol 229:177–190 CrossRef
141.
Zurück zum Zitat Leyendecker G, Wildt L, Hansmann M (1980) Pregnancies following chronic intermittent (pulsatile) administration of Gn-RH by means of a portable pump (“ZYKLOMAT”)-a new approach to the treatment of infertility in hypothalamic amenorrhea. J Clin Endocr Metab 51:1214–1216 CrossRef Leyendecker G, Wildt L, Hansmann M (1980) Pregnancies following chronic intermittent (pulsatile) administration of Gn-RH by means of a portable pump (“ZYKLOMAT”)-a new approach to the treatment of infertility in hypothalamic amenorrhea. J Clin Endocr Metab 51:1214–1216 CrossRef
142.
Zurück zum Zitat Knobil E, Plant TM, Wildt L, Belchetz TE, Marshall G (1980) Control of the rhesus monkey menstrual cycle: permissive role of hypothalamic gonadotropin releasing-hormone. Science 207:1371–1373 CrossRef Knobil E, Plant TM, Wildt L, Belchetz TE, Marshall G (1980) Control of the rhesus monkey menstrual cycle: permissive role of hypothalamic gonadotropin releasing-hormone. Science 207:1371–1373 CrossRef
143.
Zurück zum Zitat Wildt L, Marshall G, Knobil E (1980) Experimental induction of puberty in the infantile female rhesus monkey. Science 207:1373–1375 CrossRef Wildt L, Marshall G, Knobil E (1980) Experimental induction of puberty in the infantile female rhesus monkey. Science 207:1373–1375 CrossRef
144.
Zurück zum Zitat Condon JC, Jeyasuria P, Faust JM, Wilson JW, Mendelson CR (2003) A decline in the levels of progesterone receptor coactivators in the pregnant uterus at term may antagonize progesterone receptor function and contribute to the initiation of parturition. PNAS 100:9518–9523 CrossRef Condon JC, Jeyasuria P, Faust JM, Wilson JW, Mendelson CR (2003) A decline in the levels of progesterone receptor coactivators in the pregnant uterus at term may antagonize progesterone receptor function and contribute to the initiation of parturition. PNAS 100:9518–9523 CrossRef
146.
Zurück zum Zitat Williams KC, Renthal NE, Condon JC, Gerard RD, Mendelson CR (2012) MicroRNA-200a serves a key role in the decline of progesterone receptor function leading to term and preterm labor. PNAS 109:7529–7534 CrossRef Williams KC, Renthal NE, Condon JC, Gerard RD, Mendelson CR (2012) MicroRNA-200a serves a key role in the decline of progesterone receptor function leading to term and preterm labor. PNAS 109:7529–7534 CrossRef
147.
Zurück zum Zitat Hellman KM, Kuhn CS, Tu FF, Dillane CE, Shlobin NA, Senapati S, Zhou X, Li W, Prasad PV (2018) Cine MRI during spontaneous cramps in women with menstrual pain. Am J Obstet Gynecol 218:506.e1-506.e8 CrossRef Hellman KM, Kuhn CS, Tu FF, Dillane CE, Shlobin NA, Senapati S, Zhou X, Li W, Prasad PV (2018) Cine MRI during spontaneous cramps in women with menstrual pain. Am J Obstet Gynecol 218:506.e1-506.e8 CrossRef
148.
Zurück zum Zitat Wilson L, Kurzrok R (1938) Studies on the motility of the3 human uterus in vivo. Endocrinology 23:79–86 CrossRef Wilson L, Kurzrok R (1938) Studies on the motility of the3 human uterus in vivo. Endocrinology 23:79–86 CrossRef
149.
Zurück zum Zitat Chapron C, Souza C, Borghese B, Lafay-Pillet MC, Santulli P, Bijaoui G, Goffinet F, de Ziegler D (2011) Oral contraceptives and endometriosis: the past use of oral contraceptives for treating severe primary dysmenorrhea is associated with endometriosis, especially deep infiltrating endometriosis. Hum Reprod 26:2028–2035 CrossRef Chapron C, Souza C, Borghese B, Lafay-Pillet MC, Santulli P, Bijaoui G, Goffinet F, de Ziegler D (2011) Oral contraceptives and endometriosis: the past use of oral contraceptives for treating severe primary dysmenorrhea is associated with endometriosis, especially deep infiltrating endometriosis. Hum Reprod 26:2028–2035 CrossRef
150.
Zurück zum Zitat Kunz G, Herbertz M, Beil D, Huppert P, Leyendecker G (2007) Adenomyosis as a disorder of the early and late human reproductive period. Reprod Biomed 15:681–685 CrossRef Kunz G, Herbertz M, Beil D, Huppert P, Leyendecker G (2007) Adenomyosis as a disorder of the early and late human reproductive period. Reprod Biomed 15:681–685 CrossRef
151.
Zurück zum Zitat Peters H (1977) The human ovary in childhood and early maturity. Eur J Obstet Gynecol Reprod Biol 9:137–144 Peters H (1977) The human ovary in childhood and early maturity. Eur J Obstet Gynecol Reprod Biol 9:137–144
152.
Zurück zum Zitat Leyendecker G, Wildt L (1983) Induction of ovulation with chronic intermittent (pulsatile) administration of Gn-RH in women with hypothalamic amenorrhea. Reproduction 69:397–409 CrossRef Leyendecker G, Wildt L (1983) Induction of ovulation with chronic intermittent (pulsatile) administration of Gn-RH in women with hypothalamic amenorrhea. Reproduction 69:397–409 CrossRef
153.
Zurück zum Zitat Marsh EE, Laufer MR (2005) Endometriosis in premenarcheal girls who do not have an obstructive anomaly. Fertil Steril 83:758–760 CrossRef Marsh EE, Laufer MR (2005) Endometriosis in premenarcheal girls who do not have an obstructive anomaly. Fertil Steril 83:758–760 CrossRef
154.
Zurück zum Zitat Ebert AD, Fuhr N, David M, Schneppel L, Papadopoulos T (2009) Histological confirmation of endometriosis in a 9-year-old girl suffering from unexplained cyclic pelvic pain since her eighth year of life. Gynecol Obstet Investig 67:158–161 CrossRef Ebert AD, Fuhr N, David M, Schneppel L, Papadopoulos T (2009) Histological confirmation of endometriosis in a 9-year-old girl suffering from unexplained cyclic pelvic pain since her eighth year of life. Gynecol Obstet Investig 67:158–161 CrossRef
155.
Zurück zum Zitat Janssen EB, Rijkers AC, Hoppenbrouwers K, Meuleman C, D’Hooghe TM (2013) Prevalence of endometriosis diagnosed by laparoscopy in adolescents with dysmenorrhea or chronic pelvic pain: a systematic review. Hum Reprod Update 19:570–582 CrossRef Janssen EB, Rijkers AC, Hoppenbrouwers K, Meuleman C, D’Hooghe TM (2013) Prevalence of endometriosis diagnosed by laparoscopy in adolescents with dysmenorrhea or chronic pelvic pain: a systematic review. Hum Reprod Update 19:570–582 CrossRef
156.
Zurück zum Zitat Ober KG (1959) Ovar. In: Labhart A (ed) Klinik der Inneren Sekretion. Springer, Berlin Ober KG (1959) Ovar. In: Labhart A (ed) Klinik der Inneren Sekretion. Springer, Berlin
157.
Zurück zum Zitat Okkels H, Engle ET (1938) Studies on the finer structure of the uterine blood vessels of the macacus monkey. Acta Pathol Microbiol Scand 15:150–168 CrossRef Okkels H, Engle ET (1938) Studies on the finer structure of the uterine blood vessels of the macacus monkey. Acta Pathol Microbiol Scand 15:150–168 CrossRef
158.
Zurück zum Zitat Bartelmez GW (1957) The form and the functions of the uterine blood vessels in the rhesus monkey. Carnegie Contrib Embryol 36:153–182 Bartelmez GW (1957) The form and the functions of the uterine blood vessels in the rhesus monkey. Carnegie Contrib Embryol 36:153–182
159.
Zurück zum Zitat Rogers PAW (1996) Structure and function of endometrial blood vessels. Hum Reprod Update 2:57–62 CrossRef Rogers PAW (1996) Structure and function of endometrial blood vessels. Hum Reprod Update 2:57–62 CrossRef
160.
Zurück zum Zitat Reavey JJ, Walker C, Nicol M, Murray AA, Critchley HOD, Kershew LE, Maybin JA (2021) Markers of human endometrial hypoxia can be detected in vivo and ex vivo during physiological menstruation. Hum Reprod 36:941–950 CrossRef Reavey JJ, Walker C, Nicol M, Murray AA, Critchley HOD, Kershew LE, Maybin JA (2021) Markers of human endometrial hypoxia can be detected in vivo and ex vivo during physiological menstruation. Hum Reprod 36:941–950 CrossRef
161.
Zurück zum Zitat Kunz G, Noe M, Herbertz M, Leyendecker G (1998) Uterine peristalsis during the follicular phase of the menstrual cycle. Effects of oestrogen, antioestrogen and oxytocin. Hum Reprod Update 4:647–654 CrossRef Kunz G, Noe M, Herbertz M, Leyendecker G (1998) Uterine peristalsis during the follicular phase of the menstrual cycle. Effects of oestrogen, antioestrogen and oxytocin. Hum Reprod Update 4:647–654 CrossRef
162.
Zurück zum Zitat Guo S-W, Mao X, Ma Q, Liu X (2013) Dysmenorrhea and its severity are associated with increased contractility and over-expression of oxytocin receptor (OTR) in women with symptomatic adenomyosis. Fertil Steril 99:231–240 CrossRef Guo S-W, Mao X, Ma Q, Liu X (2013) Dysmenorrhea and its severity are associated with increased contractility and over-expression of oxytocin receptor (OTR) in women with symptomatic adenomyosis. Fertil Steril 99:231–240 CrossRef
164.
Zurück zum Zitat Bird CC, McElin TW, Manalo-Estrella P (1972) The elusive adenomyosis of the uterus—revisited. Am J Obstet Gynecol 112:583–593 CrossRef Bird CC, McElin TW, Manalo-Estrella P (1972) The elusive adenomyosis of the uterus—revisited. Am J Obstet Gynecol 112:583–593 CrossRef
165.
Zurück zum Zitat Brosens JJ, De Souza NM, Barker FG, Paraschos T, Winston RLM (1995) Endovaginal ultrasonography in the diagnosis of adenomyosis uteri: identification of the predictive characteristics. Br J Obstet Gynaecol 102:471–474 CrossRef Brosens JJ, De Souza NM, Barker FG, Paraschos T, Winston RLM (1995) Endovaginal ultrasonography in the diagnosis of adenomyosis uteri: identification of the predictive characteristics. Br J Obstet Gynaecol 102:471–474 CrossRef
166.
Zurück zum Zitat Bird CC, Willis RA (1965) The production of smooth muscle by the endometrial stroma of the adult human uterus. J Path Bact 90:75–81 CrossRef Bird CC, Willis RA (1965) The production of smooth muscle by the endometrial stroma of the adult human uterus. J Path Bact 90:75–81 CrossRef
167.
Zurück zum Zitat Sitzenfrey (1909) Miliare submuköse Myome, auf dem Boden einer Adenometritis entstanden. Gynäk. Rundschau 1/3, 13:469–472 Sitzenfrey (1909) Miliare submuköse Myome, auf dem Boden einer Adenometritis entstanden. Gynäk. Rundschau 1/3, 13:469–472
168.
Zurück zum Zitat Frankl O (1913) Zur Kenntnis der Adenomyosis uteri. Zbl Gynäk 37:907–911 Frankl O (1913) Zur Kenntnis der Adenomyosis uteri. Zbl Gynäk 37:907–911
169.
170.
Zurück zum Zitat Ferenczy A (1998) Pathophysiology of adenomyosis. Hum Reprod Update 4:312–322 CrossRef Ferenczy A (1998) Pathophysiology of adenomyosis. Hum Reprod Update 4:312–322 CrossRef
171.
Zurück zum Zitat Reinhold C, Tafazoli F, Wang L (1998) Imaging features of adenomyosis. Hum Reprod Update 4:337–349 CrossRef Reinhold C, Tafazoli F, Wang L (1998) Imaging features of adenomyosis. Hum Reprod Update 4:337–349 CrossRef
172.
Zurück zum Zitat Ridley JH (1968) The histogenesis of endometriosis. Obstet Gynec Surv 23:1–35 CrossRef Ridley JH (1968) The histogenesis of endometriosis. Obstet Gynec Surv 23:1–35 CrossRef
173.
Zurück zum Zitat Parazzini F, Vercellini P, Panazza S, Chatenoud L, Oldani S, Crosignani PG (1997) Risk factors for adenomyosis. Hum Reprod 12:1275–1279 CrossRef Parazzini F, Vercellini P, Panazza S, Chatenoud L, Oldani S, Crosignani PG (1997) Risk factors for adenomyosis. Hum Reprod 12:1275–1279 CrossRef
174.
Zurück zum Zitat Hricak H, Alpers C, Crooks LE, Sheldon PE (1983) Magnetic resonance imaging of the female pelvis: initial experience. Am J Radiol 141:119–1128 Hricak H, Alpers C, Crooks LE, Sheldon PE (1983) Magnetic resonance imaging of the female pelvis: initial experience. Am J Radiol 141:119–1128
175.
Zurück zum Zitat Brown HK, Stoll BS, Nicosia SV, Fiorica JV, Hambley PS, Clarke LP, Silbiger ML (1991) Uterine junctional zone: correlation between histologic findings and MR imaging. Radiology 179:409–413 CrossRef Brown HK, Stoll BS, Nicosia SV, Fiorica JV, Hambley PS, Clarke LP, Silbiger ML (1991) Uterine junctional zone: correlation between histologic findings and MR imaging. Radiology 179:409–413 CrossRef
176.
Zurück zum Zitat Kang S, Turner DA, Foster GS, Rapoport IM, Spencer SA, Wang JZ (1996) Adenomyosis: specificity of 5 mm as the maximum normal uterine junctional zone thickness in MRI. AJR 166:1145–1150 CrossRef Kang S, Turner DA, Foster GS, Rapoport IM, Spencer SA, Wang JZ (1996) Adenomyosis: specificity of 5 mm as the maximum normal uterine junctional zone thickness in MRI. AJR 166:1145–1150 CrossRef
177.
Zurück zum Zitat Bazot M, Cortez A, Durai E, Rouger J, Chopier J, Antoine J-M, Uzan S (2001) Ultrasonography compared with magnetic resonance imaging for the diagnosis of adenomyosis: correlation with histopathology. Hum Reprod 16:24276–32433 CrossRef Bazot M, Cortez A, Durai E, Rouger J, Chopier J, Antoine J-M, Uzan S (2001) Ultrasonography compared with magnetic resonance imaging for the diagnosis of adenomyosis: correlation with histopathology. Hum Reprod 16:24276–32433 CrossRef
178.
Zurück zum Zitat Agostinho L, Cruiz R, Osorio F, Alves J, Setubal A, Guerra A (2017) MRI for adenomyosis: a pictorial review. Insights Imaging 8:549–556 CrossRef Agostinho L, Cruiz R, Osorio F, Alves J, Setubal A, Guerra A (2017) MRI for adenomyosis: a pictorial review. Insights Imaging 8:549–556 CrossRef
179.
Zurück zum Zitat Schwalm H, Dubrauszky V (1966) The structure of the musculature of the human uterus—muscles and connective tissue. Am J Obstet Gynecol 94:391–404 CrossRef Schwalm H, Dubrauszky V (1966) The structure of the musculature of the human uterus—muscles and connective tissue. Am J Obstet Gynecol 94:391–404 CrossRef
180.
Zurück zum Zitat Brosens JJ, Barker FG, de Souza NM (1998) Myometrial zonal differentiation and junctional zone hyperplasia in the non-pregnant uterus. Hum Reprod Update 4:496–502 CrossRef Brosens JJ, Barker FG, de Souza NM (1998) Myometrial zonal differentiation and junctional zone hyperplasia in the non-pregnant uterus. Hum Reprod Update 4:496–502 CrossRef
181.
Zurück zum Zitat Mirzatoni A, Spence RD, Naranjo KC, Saldanha CJ, Schlinger BAJ (2010) Injury-induced regulation of steroidogenic gene expression in the cerebellum. Neurotrauma 27:1875–1882 CrossRef Mirzatoni A, Spence RD, Naranjo KC, Saldanha CJ, Schlinger BAJ (2010) Injury-induced regulation of steroidogenic gene expression in the cerebellum. Neurotrauma 27:1875–1882 CrossRef
182.
Zurück zum Zitat Dotan I, Werner L, Vigodman S, Weiss S, Brazowski E, Maharshak N, Chen O, Tulchinsky H, Halpern Z, Guzner-Gur H (2010) CXCL12 is a constitutive and inflammatory chemokine in the intestinal immune system. Inflam Bowel Dis 16:583–592 CrossRef Dotan I, Werner L, Vigodman S, Weiss S, Brazowski E, Maharshak N, Chen O, Tulchinsky H, Halpern Z, Guzner-Gur H (2010) CXCL12 is a constitutive and inflammatory chemokine in the intestinal immune system. Inflam Bowel Dis 16:583–592 CrossRef
183.
Zurück zum Zitat Koning JJ, Kooij G, de Vrie HE, Nolte MA, Mebius RE (2013) Mesenchymal stem cells are mobilized from the bone marrow during inflammation. Front Immunol 4:49 CrossRef Koning JJ, Kooij G, de Vrie HE, Nolte MA, Mebius RE (2013) Mesenchymal stem cells are mobilized from the bone marrow during inflammation. Front Immunol 4:49 CrossRef
185.
Zurück zum Zitat Zhang LX, Shen LL, Ge SH, Wang LM, Yu XJ, Xu QC, Yang PS, Yang CZ (2015) Systemic BMSC homing in the regeneration of pulp-like tissue and the enhancing effect of stromal cell-derived factor-1 on BMSC homing. Int J Clin Exp Pathol 8:10261–10271 Zhang LX, Shen LL, Ge SH, Wang LM, Yu XJ, Xu QC, Yang PS, Yang CZ (2015) Systemic BMSC homing in the regeneration of pulp-like tissue and the enhancing effect of stromal cell-derived factor-1 on BMSC homing. Int J Clin Exp Pathol 8:10261–10271
186.
Zurück zum Zitat Thurairaja K, Broadhead ML, Balogh ZJ (2017) Trauma and stem cells: biology and potential therapeutic implications. Int J Mol Sci 18:577 CrossRef Thurairaja K, Broadhead ML, Balogh ZJ (2017) Trauma and stem cells: biology and potential therapeutic implications. Int J Mol Sci 18:577 CrossRef
187.
Zurück zum Zitat Wang X, Mamillapalli R, Mutlu L, Du H, Taylor HS (2015) Chemoattraction of bone marrow-derived stem cells towards human endometrial stromal cells is mediated by estradiol regulated CXCL12 and CXCR4 expression. Stem Cell Res 15:14–22 CrossRef Wang X, Mamillapalli R, Mutlu L, Du H, Taylor HS (2015) Chemoattraction of bone marrow-derived stem cells towards human endometrial stromal cells is mediated by estradiol regulated CXCL12 and CXCR4 expression. Stem Cell Res 15:14–22 CrossRef
188.
Zurück zum Zitat Janssens R, Struyf S, Proost P (2017) The unique structural and functional features of CXCL12. Cell Mol Immunol 15:299–311 CrossRef Janssens R, Struyf S, Proost P (2017) The unique structural and functional features of CXCL12. Cell Mol Immunol 15:299–311 CrossRef
189.
Zurück zum Zitat Garbern JC, Mummetry CL, Lee RT (2013) Model systems for cardiovascular regenerative biology. Cold Spring Harb Perspect Med 3(4):a014019 CrossRef Garbern JC, Mummetry CL, Lee RT (2013) Model systems for cardiovascular regenerative biology. Cold Spring Harb Perspect Med 3(4):a014019 CrossRef
190.
Zurück zum Zitat Ibrahim MG, Chiantera V, Frangini S, Younes S, Köhler C, Taube ET, Plendl J, Mechsner S (2015) Ultramicro-trauma in the endometrial-myometrial junctional zone and pale cell migration in adenomyosis. Fertil Steril 104:1475–1483 CrossRef Ibrahim MG, Chiantera V, Frangini S, Younes S, Köhler C, Taube ET, Plendl J, Mechsner S (2015) Ultramicro-trauma in the endometrial-myometrial junctional zone and pale cell migration in adenomyosis. Fertil Steril 104:1475–1483 CrossRef
191.
Zurück zum Zitat Gui Y, Zhang J, Yuan L, Lessey BA (1999) Regulation of HOXA-10 and its expression in normal and abnormal Endometrium. Mol Hum Reprod 5:866–873 CrossRef Gui Y, Zhang J, Yuan L, Lessey BA (1999) Regulation of HOXA-10 and its expression in normal and abnormal Endometrium. Mol Hum Reprod 5:866–873 CrossRef
192.
Zurück zum Zitat Arnold LL, Ascher SM, Schruefer JJ, Simon JA (1995) The nonsurgical diagnosis of adenomyosis. Obstet Gynecol 86:461–465 CrossRef Arnold LL, Ascher SM, Schruefer JJ, Simon JA (1995) The nonsurgical diagnosis of adenomyosis. Obstet Gynecol 86:461–465 CrossRef
193.
Zurück zum Zitat Gordts S, Campo R, Brosens I (2014) Hysteroscopic diagnosis and excision of myometrial cystic adenomyosis. Gynecol Surg 11:273–278 CrossRef Gordts S, Campo R, Brosens I (2014) Hysteroscopic diagnosis and excision of myometrial cystic adenomyosis. Gynecol Surg 11:273–278 CrossRef
194.
Zurück zum Zitat Lervy G, Dehaene A, Laurent N, Lernout M, Collinetz P, Lucot J-P, Lions C, Poncelet E (2013) An update on adenomyosis. Diagn Interv Imaging 94:3–25 CrossRef Lervy G, Dehaene A, Laurent N, Lernout M, Collinetz P, Lucot J-P, Lions C, Poncelet E (2013) An update on adenomyosis. Diagn Interv Imaging 94:3–25 CrossRef
196.
Zurück zum Zitat Kishi Y, Suginami H, Kuramori R, Yabuta M, Suginami R, Tanigushi F (2012) Four subtypes of adenomyosis assessed by magnetic resonance imaging and their specification. Am J Obstet Gynecol 207:114.e1–7 CrossRef Kishi Y, Suginami H, Kuramori R, Yabuta M, Suginami R, Tanigushi F (2012) Four subtypes of adenomyosis assessed by magnetic resonance imaging and their specification. Am J Obstet Gynecol 207:114.e1–7 CrossRef
197.
Zurück zum Zitat Masuda H, Schwab KE, Filby CE, Tan CSC, Tsaltas J, Weston GC, Gargett CE (2021) Endometrial stem/and progenitor cells in menstrual blood and peritoneal fluid with and without endometriosis. Reprod Biomed Online 43:3–13 CrossRef Masuda H, Schwab KE, Filby CE, Tan CSC, Tsaltas J, Weston GC, Gargett CE (2021) Endometrial stem/and progenitor cells in menstrual blood and peritoneal fluid with and without endometriosis. Reprod Biomed Online 43:3–13 CrossRef
198.
Zurück zum Zitat Bourdon M, Santulli P, Oliviera J, Marcellin L, Maignien C, Melka L, Bordonne C, Millisher A-E, Plu-Bureau G, Cormier J, Chapron C (2020) Focal adenomyosis is associated with primary infertility. Fertil Steril 114:1271–1276 CrossRef Bourdon M, Santulli P, Oliviera J, Marcellin L, Maignien C, Melka L, Bordonne C, Millisher A-E, Plu-Bureau G, Cormier J, Chapron C (2020) Focal adenomyosis is associated with primary infertility. Fertil Steril 114:1271–1276 CrossRef
199.
Zurück zum Zitat Laschke MW, Giebels C, Nickels RM, Scheuer C, Menger MD (2010) Endothelial progenitor cells contribute to the vascularization of endometriotic lesions. Am J Pathol 178:442–450 CrossRef Laschke MW, Giebels C, Nickels RM, Scheuer C, Menger MD (2010) Endothelial progenitor cells contribute to the vascularization of endometriotic lesions. Am J Pathol 178:442–450 CrossRef
201.
Zurück zum Zitat Pick L (1899) Die Adenomyome der Leistengegend und des hinteren Scheidengewölbes, ihr Stellung zu den paraoophoralen Adenomyomen der Uterus- und Tubenwandung v. Recklinghausen’s. Arch Gynecol 57:461–509 Pick L (1899) Die Adenomyome der Leistengegend und des hinteren Scheidengewölbes, ihr Stellung zu den paraoophoralen Adenomyomen der Uterus- und Tubenwandung v. Recklinghausen’s. Arch Gynecol 57:461–509
202.
Zurück zum Zitat Mechsner S, Weichbrodt M, Riedlinger WF, Bartley J, Kaufmann AM, Schneider A, Köhler (2008) Estrogen and progestogen receptor positive endometriotic lesions and disseminated cells in pelvic sentinel lymph nodes of patients with deep infiltrating rectovaginal endometriosis: a pilot study. Hum Reprod 23(10):2202–2209. https://​doi.​org/​10.​1093/​humrep/​den259 ( Epub 2008 Jul 16) CrossRef Mechsner S, Weichbrodt M, Riedlinger WF, Bartley J, Kaufmann AM, Schneider A, Köhler (2008) Estrogen and progestogen receptor positive endometriotic lesions and disseminated cells in pelvic sentinel lymph nodes of patients with deep infiltrating rectovaginal endometriosis: a pilot study. Hum Reprod 23(10):2202–2209. https://​doi.​org/​10.​1093/​humrep/​den259 ( Epub 2008 Jul 16) CrossRef
203.
Zurück zum Zitat Foster DC, Stern JL, Buscema J, Rock JA, Woodruff JD (1981) Pleural and parenchymal pulmonary endometriosis. Obstet Gynecol 58:442556 Foster DC, Stern JL, Buscema J, Rock JA, Woodruff JD (1981) Pleural and parenchymal pulmonary endometriosis. Obstet Gynecol 58:442556
204.
Zurück zum Zitat Bennett GL, Slywotzky CM, Giovaniello G (2002) Gynecologic causes of acute pelvic pain: spectrum of CT findings. Radiographics 22:785–801 CrossRef Bennett GL, Slywotzky CM, Giovaniello G (2002) Gynecologic causes of acute pelvic pain: spectrum of CT findings. Radiographics 22:785–801 CrossRef
205.
Zurück zum Zitat Cecarroni M, Roviglione G, Rosenberg P, Pesci A, Clarizia R, Bruni F, Zardini C, Ruffo G, Olacci A, Crippa S, Minelli L (2012) Pericardial, pleural and diaphragmatic endometriosis in association with pelvic peritoneal and bowel endometriosis: a case report and review of the literature. Videosurgery 7:122–131 Cecarroni M, Roviglione G, Rosenberg P, Pesci A, Clarizia R, Bruni F, Zardini C, Ruffo G, Olacci A, Crippa S, Minelli L (2012) Pericardial, pleural and diaphragmatic endometriosis in association with pelvic peritoneal and bowel endometriosis: a case report and review of the literature. Videosurgery 7:122–131
206.
Zurück zum Zitat Emre A, Akbulut S, Yilmaz M, Bozdag Z (2013) An unusual cause of acute appendicitis: appendiceal endometriosis. Int J Surg Case Rep 4:54–57 CrossRef Emre A, Akbulut S, Yilmaz M, Bozdag Z (2013) An unusual cause of acute appendicitis: appendiceal endometriosis. Int J Surg Case Rep 4:54–57 CrossRef
207.
Zurück zum Zitat Cornillie FJ, Oosterlynck D, Lauweryns JM, Koninckx P (1990) Deeply infiltrating pelvic endometriosis: histology and clinical significance. Fertil Steril 53:978–983 CrossRef Cornillie FJ, Oosterlynck D, Lauweryns JM, Koninckx P (1990) Deeply infiltrating pelvic endometriosis: histology and clinical significance. Fertil Steril 53:978–983 CrossRef
208.
Zurück zum Zitat Gordts S, Koninckx P, Brosens I (2017) Pathogenesis of deep endometriosis. Fertil Steril 108:872–885 CrossRef Gordts S, Koninckx P, Brosens I (2017) Pathogenesis of deep endometriosis. Fertil Steril 108:872–885 CrossRef
209.
Zurück zum Zitat D’Alterio MN, D’Ancona G, Raslan M, Tionelli R, Daniilidis A, Angioni S (2020) Management challenges of deep infiltrating endometriosis. Int J Fertil Steril 15:88–94 D’Alterio MN, D’Ancona G, Raslan M, Tionelli R, Daniilidis A, Angioni S (2020) Management challenges of deep infiltrating endometriosis. Int J Fertil Steril 15:88–94
210.
Zurück zum Zitat Koninckx PR, Ussia A, Adamyan LV, Wattiez A, Donnez J (2012) Deep endometriosis: definition, diagnosis, and treatment. Fertil Steril 98(3):564–571 CrossRef Koninckx PR, Ussia A, Adamyan LV, Wattiez A, Donnez J (2012) Deep endometriosis: definition, diagnosis, and treatment. Fertil Steril 98(3):564–571 CrossRef
211.
Zurück zum Zitat Haas D, Shebl O, Shamiyeh A, Oppelt P (2012) The r ASRM score and the Enzian classification for endometriosis: their strength and weakness. Acta Obstet Gynecol Scand 92:3–7 CrossRef Haas D, Shebl O, Shamiyeh A, Oppelt P (2012) The r ASRM score and the Enzian classification for endometriosis: their strength and weakness. Acta Obstet Gynecol Scand 92:3–7 CrossRef
212.
Zurück zum Zitat Keckstein J, Saridogan E, Ulrich UA, Sillem M, Oppelt P, Schweppe KW, Krentel H, Janscheck E, Exacoustos C, Maslzoni M, Mueller M, Roman H, Condous G, Forman A, Jansen FW, Bokor A, Simedrea V, Hudelist G (2021) The #Enzian classification: a comprehensive non-invasive and surgical description system for endometriosis. Acta Obstet Gynecol Scand 100:1165–12175 CrossRef Keckstein J, Saridogan E, Ulrich UA, Sillem M, Oppelt P, Schweppe KW, Krentel H, Janscheck E, Exacoustos C, Maslzoni M, Mueller M, Roman H, Condous G, Forman A, Jansen FW, Bokor A, Simedrea V, Hudelist G (2021) The #Enzian classification: a comprehensive non-invasive and surgical description system for endometriosis. Acta Obstet Gynecol Scand 100:1165–12175 CrossRef
214.
Zurück zum Zitat Takayama K, Zeitoun K, Gunby RT, Sasano H, Carr BR, Bulun SE (1998) Treatment of severe postmenopausal endometriosis with an aromatase inhibitor. Fertil Steril 69:709–713 CrossRef Takayama K, Zeitoun K, Gunby RT, Sasano H, Carr BR, Bulun SE (1998) Treatment of severe postmenopausal endometriosis with an aromatase inhibitor. Fertil Steril 69:709–713 CrossRef
215.
Zurück zum Zitat Adamson GD, Pasta DJ (1994) Surgical treatment of endometriosis-associated infertility: analysis compared with survival analysis. Am J Obstet Gynecol 171:1488–1505 CrossRef Adamson GD, Pasta DJ (1994) Surgical treatment of endometriosis-associated infertility: analysis compared with survival analysis. Am J Obstet Gynecol 171:1488–1505 CrossRef
216.
Zurück zum Zitat Marcoux S, Maheux R, Berube S (1997) Laparoscopic surgery in infertile women with minimal or mild endometriosis. Canadian Collaborative Group on Endometriosis. N Engl J Med 337:217–222 CrossRef Marcoux S, Maheux R, Berube S (1997) Laparoscopic surgery in infertile women with minimal or mild endometriosis. Canadian Collaborative Group on Endometriosis. N Engl J Med 337:217–222 CrossRef
217.
Zurück zum Zitat Rickes D, Nickel I, Kropf S, Kleinstein J (2002) Increased pregnancy rates after ultralong postoperative therapy with gonadotropin-releasing hormone analogs in patients with endometriosis. Fertil Steril 78(4):757–762 CrossRef Rickes D, Nickel I, Kropf S, Kleinstein J (2002) Increased pregnancy rates after ultralong postoperative therapy with gonadotropin-releasing hormone analogs in patients with endometriosis. Fertil Steril 78(4):757–762 CrossRef
218.
Zurück zum Zitat Evans-Hoecker E, Lessey BA, Jeong JW, Savaris RF, Palomino WA, Yuan L, Schammel DP, Young SL (2016) Endometrial BCL6 overexpression in eutopic endometrium of women with endometriosis. Rep Sci 23:1234–1241 CrossRef Evans-Hoecker E, Lessey BA, Jeong JW, Savaris RF, Palomino WA, Yuan L, Schammel DP, Young SL (2016) Endometrial BCL6 overexpression in eutopic endometrium of women with endometriosis. Rep Sci 23:1234–1241 CrossRef
219.
Zurück zum Zitat Almquist LD, Likes CE, Stone B, Brown KR, Savaris R, Forstein DA, Miller PB, Lessey BA (2017) Endometrial BCL6 testing for the prediction of in vitro fertilization outcomes: a cohort study. Fertil Steril 108:1063–1069 CrossRef Almquist LD, Likes CE, Stone B, Brown KR, Savaris R, Forstein DA, Miller PB, Lessey BA (2017) Endometrial BCL6 testing for the prediction of in vitro fertilization outcomes: a cohort study. Fertil Steril 108:1063–1069 CrossRef
221.
Zurück zum Zitat Afshar Y, Hastings J, Roqueiro D, Jeong J-W, Giudice LC, Fazleabas AT (2013) Changes in eutopic endometrial gene expression during the progression of experimental endometriosis in the baboon, Papaqio Anubis. Biol Reprod 88(2):44 CrossRef Afshar Y, Hastings J, Roqueiro D, Jeong J-W, Giudice LC, Fazleabas AT (2013) Changes in eutopic endometrial gene expression during the progression of experimental endometriosis in the baboon, Papaqio Anubis. Biol Reprod 88(2):44 CrossRef
222.
Zurück zum Zitat Slayden OD (2013) Induced endometriosis in nonhuman primates. Biol Reprod 88(43):1–2 Slayden OD (2013) Induced endometriosis in nonhuman primates. Biol Reprod 88(43):1–2
223.
Zurück zum Zitat Li F, Alderman MH III, Tal A, Mamillapalli R, Coolidge A, Hufnagel D, Wang Z, Neisani E, Gidicsin S, Krikun G, Taylor HS (2018) Hematogenous dissemination of mesenchymal stem cells from endometriosis. Stem Cells 36:881–890 CrossRef Li F, Alderman MH III, Tal A, Mamillapalli R, Coolidge A, Hufnagel D, Wang Z, Neisani E, Gidicsin S, Krikun G, Taylor HS (2018) Hematogenous dissemination of mesenchymal stem cells from endometriosis. Stem Cells 36:881–890 CrossRef
224.
Zurück zum Zitat Agic A, Xu H, Finas D, Banz C, Diedrich K, Hornung D (2006) Is endometriosis associated with systemic subclinical inflammation? Gynecol Obstet Investig 62:139–147 CrossRef Agic A, Xu H, Finas D, Banz C, Diedrich K, Hornung D (2006) Is endometriosis associated with systemic subclinical inflammation? Gynecol Obstet Investig 62:139–147 CrossRef
225.
Zurück zum Zitat Greaves E, Temp J, Esnat-Zufiurre A, Mechsner S, Home AW, Saunders PTK (2015) Estradiol is a critical mediator of macrophage-nerve cross talk in peritoneal endometriosis. Am J Pathol 185:2286–2297 CrossRef Greaves E, Temp J, Esnat-Zufiurre A, Mechsner S, Home AW, Saunders PTK (2015) Estradiol is a critical mediator of macrophage-nerve cross talk in peritoneal endometriosis. Am J Pathol 185:2286–2297 CrossRef
226.
Zurück zum Zitat Liang Y, Xie H, Wu J, Liu D, Yao S (2018) Villainous role of estrogen in macrophage-nerve interaction in endometriosis. Reprod Biol Endocrinol 16:122–133 CrossRef Liang Y, Xie H, Wu J, Liu D, Yao S (2018) Villainous role of estrogen in macrophage-nerve interaction in endometriosis. Reprod Biol Endocrinol 16:122–133 CrossRef
227.
Zurück zum Zitat Leyendecker G, Hinckers K, Nocke W, Plotz EJ (1975) LH, FSH and ovarian steroids in serum during normal menstrual cycles and cycles with corpus luteum insufficiency in the human female (German). Arch Gynecol Obstet 218:47–64 Leyendecker G, Hinckers K, Nocke W, Plotz EJ (1975) LH, FSH and ovarian steroids in serum during normal menstrual cycles and cycles with corpus luteum insufficiency in the human female (German). Arch Gynecol Obstet 218:47–64
228.
Zurück zum Zitat Padykula HA, Coles LG, Okulicz WC, Rapaport SI, Mc Cracken JA, King NW Jr, Longcope C, Kaiserman-Abramof IR (1989) The basalis of the primate endometrium: a bifunctional germinal compartment. Biol Reprod 40:681–690 CrossRef Padykula HA, Coles LG, Okulicz WC, Rapaport SI, Mc Cracken JA, King NW Jr, Longcope C, Kaiserman-Abramof IR (1989) The basalis of the primate endometrium: a bifunctional germinal compartment. Biol Reprod 40:681–690 CrossRef
Metadaten
Titel
Archimetrosis: the evolution of a disease and its extant presentation
Pathogenesis and pathophysiology of archimetrosis (uterine adenomyosis and endometriosis)
verfasst von
Gerhard Leyendecker
Ludwig Wildt
Matthias W. Laschke
Gerhard Mall
Publikationsdatum
21.05.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Archives of Gynecology and Obstetrics / Ausgabe 1/2023
Print ISSN: 0932-0067
Elektronische ISSN: 1432-0711
DOI
https://doi.org/10.1007/s00404-022-06597-y

Weitere Artikel der Ausgabe 1/2023

Archives of Gynecology and Obstetrics 1/2023 Zur Ausgabe

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.