Skip to main content
Erschienen in: European Radiology 8/2012

01.08.2012 | Contrast Media

Arterial input function calculation in dynamic contrast-enhanced MRI: an in vivo validation study using co-registered contrast-enhanced ultrasound imaging

verfasst von: Hatef Mehrabian, Chaitanya Chandrana, Ian Pang, Rajiv Chopra, Anne L. Martel

Erschienen in: European Radiology | Ausgabe 8/2012

Einloggen, um Zugang zu erhalten

Abstract

Objectives

Developing a method of separating intravascular contrast agent concentration to measure the arterial input function (AIF) in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of tumours, and validating its performance in phantom and in vivo experiments.

Methods

A tissue-mimicking phantom was constructed to model leaky tumour vasculature and DCE-MR images of this phantom were acquired. An in vivo study was performed using tumour-bearing rabbits. Co-registered DCE-MRI and contrast-enhanced ultrasound (CEUS) images were acquired. An independent component analysis (ICA)-based method was developed to separate the intravascular component from DCE-MRI. Results were validated by comparing the time-intensity curves with the actual phantom and in vivo curves.

Results

Phantom study: the AIF extracted using ICA correlated well with the true intravascular curve. In vivo study: the AIFs extracted from DCE-MRI using ICA were very close to the true AIF. Intravascular component images were very similar to the CEUS images. The contrast onset times and initial wash-in slope of the ICA-derived AIF showed good agreement with the CEUS curves.

Conclusion

ICA has the potential to separate the intravascular component from DCE-MRI. This could eliminate the requirement for contrast medium uptake measurements in a major artery and potentially result in more accurate pharmacokinetic parameters.

Key Points

Tumour response to therapy can be inferred from pharmacokinetic parameters.
Arterial input function (AIF) is required for pharmacokinetic modelling of tumours.
Independent component analysis has the potential to measure AIF inside the tumour.
AIF measurement is validated using contrast enhanced ultrasound and phantoms.
Literatur
2.
Zurück zum Zitat Lee CH, Braga L, de Campos RO, Semelka RC (2011) Hepatic tumour response evaluation by MRI. NMR Biomed 24:721–733PubMed Lee CH, Braga L, de Campos RO, Semelka RC (2011) Hepatic tumour response evaluation by MRI. NMR Biomed 24:721–733PubMed
3.
Zurück zum Zitat Forner A, Ayuso C, Varela M et al (2009) Evaluation of tumour response after locoregional therapies in hepatocellular carcinoma: are response evaluation criteria in solid tumours reliable? Cancer 115:616–623PubMedCrossRef Forner A, Ayuso C, Varela M et al (2009) Evaluation of tumour response after locoregional therapies in hepatocellular carcinoma: are response evaluation criteria in solid tumours reliable? Cancer 115:616–623PubMedCrossRef
4.
Zurück zum Zitat Hutchings M, Barrington SF (2009) PET/CT for therapy response assessment in lymphoma. J Nucl Med 50:21S–30SPubMedCrossRef Hutchings M, Barrington SF (2009) PET/CT for therapy response assessment in lymphoma. J Nucl Med 50:21S–30SPubMedCrossRef
5.
Zurück zum Zitat Hamstra DA, Rehemtulla A, Ross BD (2007) Diffusion magnetic resonance imaging: A biomarker for treatment response in oncology. J Clin Oncol 25:4104–4109PubMedCrossRef Hamstra DA, Rehemtulla A, Ross BD (2007) Diffusion magnetic resonance imaging: A biomarker for treatment response in oncology. J Clin Oncol 25:4104–4109PubMedCrossRef
6.
Zurück zum Zitat Smith JJ, Sorensen AG, Thrall JH (2003) Biomarkers in imaging: realizing radiology’s future. Radiology 227:633–638PubMedCrossRef Smith JJ, Sorensen AG, Thrall JH (2003) Biomarkers in imaging: realizing radiology’s future. Radiology 227:633–638PubMedCrossRef
7.
Zurück zum Zitat Korporaal JG, Vanvulpen M, Vandenberg CAT et al (2012) Tracer kinetic model selection for dynamic contrast-enhanced computed tomography imaging of prostate cancer. Invest Radiol 47:41–48 Korporaal JG, Vanvulpen M, Vandenberg CAT et al (2012) Tracer kinetic model selection for dynamic contrast-enhanced computed tomography imaging of prostate cancer. Invest Radiol 47:41–48
8.
Zurück zum Zitat Lawaczeck R, Jost G, Pietsch H (2011) Pharmacokinetics of contrast media in humans: model with circulation, distribution, and renal excretion. Invest Radiol 46:576–585PubMedCrossRef Lawaczeck R, Jost G, Pietsch H (2011) Pharmacokinetics of contrast media in humans: model with circulation, distribution, and renal excretion. Invest Radiol 46:576–585PubMedCrossRef
9.
Zurück zum Zitat Kanematsu M, Osada S, Amaoka N et al (2005) Expression of vascular endothelial growth factor in hepatocellular carcinoma and the surrounding liver and correlation with MRI findings. AJR Am J Roentgenol 184:832–841PubMed Kanematsu M, Osada S, Amaoka N et al (2005) Expression of vascular endothelial growth factor in hepatocellular carcinoma and the surrounding liver and correlation with MRI findings. AJR Am J Roentgenol 184:832–841PubMed
10.
Zurück zum Zitat Leach MO, Brindle KM, Evelhoch JL et al (2005) Assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92:1599–1610PubMedCrossRef Leach MO, Brindle KM, Evelhoch JL et al (2005) Assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92:1599–1610PubMedCrossRef
11.
Zurück zum Zitat Gossmann A, Helbich TH, Kuriyama N et al (2002) Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumour response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme. J Magn Reson Imaging 15:233–240PubMedCrossRef Gossmann A, Helbich TH, Kuriyama N et al (2002) Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumour response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme. J Magn Reson Imaging 15:233–240PubMedCrossRef
12.
Zurück zum Zitat Galbraith SM, Maxwell RJ, Lodge MA et al (2003) Combretastatin A4 phosphate has tumour antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J Clin Oncol 21:2831–2842PubMedCrossRef Galbraith SM, Maxwell RJ, Lodge MA et al (2003) Combretastatin A4 phosphate has tumour antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J Clin Oncol 21:2831–2842PubMedCrossRef
13.
Zurück zum Zitat Tofts P, Brix G, Buckley D et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232PubMedCrossRef Tofts P, Brix G, Buckley D et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232PubMedCrossRef
14.
Zurück zum Zitat Naish JH, Kershaw LE, Buckley DL et al (2009) Modeling of contrast agent kinetics in the lung using T(1)-weighted dynamic contrast-enhanced MRI. Magn Reson Med 61:1507–1514PubMedCrossRef Naish JH, Kershaw LE, Buckley DL et al (2009) Modeling of contrast agent kinetics in the lung using T(1)-weighted dynamic contrast-enhanced MRI. Magn Reson Med 61:1507–1514PubMedCrossRef
15.
Zurück zum Zitat Cheng HLM (2008) Investigation and optimization of parameter accuracy in dynamic contrast-enhanced MRI. J Magn Reson Imaging 28:736–743PubMedCrossRef Cheng HLM (2008) Investigation and optimization of parameter accuracy in dynamic contrast-enhanced MRI. J Magn Reson Imaging 28:736–743PubMedCrossRef
16.
Zurück zum Zitat Hansen AE, Pedersen H, Rostrup E et al (2009) Partial volume effect (PVE) on the arterial input function (AIF) in T1-weighted perfusion imaging and limitations of the multiplicative rescaling approach. Magn Reson Med 62:1055–1059PubMedCrossRef Hansen AE, Pedersen H, Rostrup E et al (2009) Partial volume effect (PVE) on the arterial input function (AIF) in T1-weighted perfusion imaging and limitations of the multiplicative rescaling approach. Magn Reson Med 62:1055–1059PubMedCrossRef
17.
Zurück zum Zitat McGrath DM, Bradley DP, Tessier JL et al (2009) Comparison of model-based arterial input functions for dynamic contrast-enhanced MRI in tumour bearing rats. Magn Reson Med 61:1173–1184PubMedCrossRef McGrath DM, Bradley DP, Tessier JL et al (2009) Comparison of model-based arterial input functions for dynamic contrast-enhanced MRI in tumour bearing rats. Magn Reson Med 61:1173–1184PubMedCrossRef
18.
Zurück zum Zitat Weinmann H, Laniado M, Mutzel W (1984) Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 16:167–172PubMed Weinmann H, Laniado M, Mutzel W (1984) Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 16:167–172PubMed
19.
Zurück zum Zitat Shukla-Dave A, Lee N, Stambuk H et al (2009) Average arterial input function for quantitative dynamic contrast enhanced magnetic resonance imaging of neck nodal metastases. BMC Med Phys 9:4PubMedCrossRef Shukla-Dave A, Lee N, Stambuk H et al (2009) Average arterial input function for quantitative dynamic contrast enhanced magnetic resonance imaging of neck nodal metastases. BMC Med Phys 9:4PubMedCrossRef
20.
Zurück zum Zitat Yu YM, Jiang QA, Miao YW et al (2010) Quantitative analysis of clinical dynamic contrast-enhanced MR imaging for evaluating treatment response in human breast cancer. Radiology 257:47–55PubMedCrossRef Yu YM, Jiang QA, Miao YW et al (2010) Quantitative analysis of clinical dynamic contrast-enhanced MR imaging for evaluating treatment response in human breast cancer. Radiology 257:47–55PubMedCrossRef
21.
Zurück zum Zitat Thacker NA, Williamson DC, Pokric M (2004) Voxel based analysis of tissue volume from MRI data. Br J Radiol 77:S114–S125PubMedCrossRef Thacker NA, Williamson DC, Pokric M (2004) Voxel based analysis of tissue volume from MRI data. Br J Radiol 77:S114–S125PubMedCrossRef
22.
Zurück zum Zitat Ballester MAG, Zisserman AP, Brady M (2002) Estimation of the partial volume effect in MRI. Med Image Anal 6:389–405CrossRef Ballester MAG, Zisserman AP, Brady M (2002) Estimation of the partial volume effect in MRI. Med Image Anal 6:389–405CrossRef
23.
Zurück zum Zitat Mehrabian H, Pang I, Chandrana C et al (2011) Automatic mask generation using independent component analysis in dynamic contrast enhanced-MRI. Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium, Chicago, pp 1657–1661 Mehrabian H, Pang I, Chandrana C et al (2011) Automatic mask generation using independent component analysis in dynamic contrast enhanced-MRI. Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium, Chicago, pp 1657–1661
24.
Zurück zum Zitat Comon P (1994) Independent component analysis. A new concept? Signal Process 36:287–314CrossRef Comon P (1994) Independent component analysis. A new concept? Signal Process 36:287–314CrossRef
25.
Zurück zum Zitat Araujo A, Giné E (1980) The central limit theorem for real and Banach valued random variables. Wiley, New York Araujo A, Giné E (1980) The central limit theorem for real and Banach valued random variables. Wiley, New York
26.
Zurück zum Zitat Hyvärinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Networks 10:626–634CrossRef Hyvärinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Networks 10:626–634CrossRef
27.
Zurück zum Zitat Hyvärinen A, Oja E (2000) Independent component analysis: Algorithms and applications. Neural Netw 13:411–430PubMedCrossRef Hyvärinen A, Oja E (2000) Independent component analysis: Algorithms and applications. Neural Netw 13:411–430PubMedCrossRef
28.
Zurück zum Zitat Mehrabian H, Lindvere L, Stefanovic B et al (2012) A constrained independent component analysis technique for artery-vein separation of two-photon laser scanning microscopy images of the cerebral microvasculature. Med Image Anal 16:239–251 Mehrabian H, Lindvere L, Stefanovic B et al (2012) A constrained independent component analysis technique for artery-vein separation of two-photon laser scanning microscopy images of the cerebral microvasculature. Med Image Anal 16:239–251
29.
Zurück zum Zitat Lu W, Rajapakse JC (2005) Approach and applications of constrained ICA. IEEE Trans Neural Networks 16:203–212CrossRef Lu W, Rajapakse JC (2005) Approach and applications of constrained ICA. IEEE Trans Neural Networks 16:203–212CrossRef
30.
Zurück zum Zitat Williams R, Hudson JM, Lloyd BA et al (2011) Dynamic microbubble contrast-enhanced US to measure tumour response to targeted therapy: a proposed clinical protocol with results from renal cell carcinoma patients receiving antiangiogenic therapy. Radiology 260:581–590PubMedCrossRef Williams R, Hudson JM, Lloyd BA et al (2011) Dynamic microbubble contrast-enhanced US to measure tumour response to targeted therapy: a proposed clinical protocol with results from renal cell carcinoma patients receiving antiangiogenic therapy. Radiology 260:581–590PubMedCrossRef
31.
Zurück zum Zitat Ritschel WA, Kearns GL (1999) Handbook of basic pharmacokinetics—including clinical applications. American Pharmaceutical Association, Washington Ritschel WA, Kearns GL (1999) Handbook of basic pharmacokinetics—including clinical applications. American Pharmaceutical Association, Washington
32.
Zurück zum Zitat Curiel L, Huang Y, Vykhodtseva N et al (2009) Focused ultrasound treatment of VX2 tumours controlled by local harmonic motion. Phys Med Biol 54(11):3405–3419PubMedCrossRef Curiel L, Huang Y, Vykhodtseva N et al (2009) Focused ultrasound treatment of VX2 tumours controlled by local harmonic motion. Phys Med Biol 54(11):3405–3419PubMedCrossRef
33.
Zurück zum Zitat Chandrana C, Bevan P, Hudson J et al (2011) Development of a platform for co-registered ultrasound and MR contrast imaging in vivo. Phys Med Biol 56(3):861–877PubMedCrossRef Chandrana C, Bevan P, Hudson J et al (2011) Development of a platform for co-registered ultrasound and MR contrast imaging in vivo. Phys Med Biol 56(3):861–877PubMedCrossRef
34.
Zurück zum Zitat Curiel L, Chopra R, Hynynen K (2007) Progress in multimodality imaging: truly simultaneous ultrasound and magnetic resonance imaging. IEEE Trans Med Imaging 26(12):1740–1746PubMedCrossRef Curiel L, Chopra R, Hynynen K (2007) Progress in multimodality imaging: truly simultaneous ultrasound and magnetic resonance imaging. IEEE Trans Med Imaging 26(12):1740–1746PubMedCrossRef
35.
Zurück zum Zitat Viallon M, Terraz S, Roland J et al (2010) Observation and correction of transient cavitation-induced PRFS thermometry artifacts during radiofrequency ablation, using simultaneous ultrasound/MR imaging. Med Phys 37(4):1491–1506PubMedCrossRef Viallon M, Terraz S, Roland J et al (2010) Observation and correction of transient cavitation-induced PRFS thermometry artifacts during radiofrequency ablation, using simultaneous ultrasound/MR imaging. Med Phys 37(4):1491–1506PubMedCrossRef
36.
Zurück zum Zitat Koh TS, Thng CH, Ho JTS et al (2008) Independent component analysis of dynamic contrast-enhanced magnetic resonance images of breast carcinoma: a feasibility study. J Magn Reson Imaging 28:271–277PubMedCrossRef Koh TS, Thng CH, Ho JTS et al (2008) Independent component analysis of dynamic contrast-enhanced magnetic resonance images of breast carcinoma: a feasibility study. J Magn Reson Imaging 28:271–277PubMedCrossRef
37.
Zurück zum Zitat Calamante F, Mørup M, Hansen LK (2004) Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 52:789–797PubMedCrossRef Calamante F, Mørup M, Hansen LK (2004) Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 52:789–797PubMedCrossRef
38.
Zurück zum Zitat Canet E, Douek P, Janier M et al (1995) Influence of bolus volume and dose of gadolinium chelate for first-pass myocardial perfusion MR imaging studies. J Magn Reson Imaging 5:411–415PubMedCrossRef Canet E, Douek P, Janier M et al (1995) Influence of bolus volume and dose of gadolinium chelate for first-pass myocardial perfusion MR imaging studies. J Magn Reson Imaging 5:411–415PubMedCrossRef
Metadaten
Titel
Arterial input function calculation in dynamic contrast-enhanced MRI: an in vivo validation study using co-registered contrast-enhanced ultrasound imaging
verfasst von
Hatef Mehrabian
Chaitanya Chandrana
Ian Pang
Rajiv Chopra
Anne L. Martel
Publikationsdatum
01.08.2012
Verlag
Springer-Verlag
Erschienen in
European Radiology / Ausgabe 8/2012
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-012-2418-1

Weitere Artikel der Ausgabe 8/2012

European Radiology 8/2012 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.