Skip to main content
Erschienen in:

27.02.2024

Artificial Intelligence and IBD: Where are We Now and Where Will We Be in the Future?

verfasst von: Mehwish Ahmed, Molly L. Stone, Ryan W. Stidham

Erschienen in: Current Gastroenterology Reports | Ausgabe 5/2024

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

Artificial intelligence (AI) is quickly demonstrating the ability to address problems and challenges in the care of IBD. This review with commentary will highlight today’s advancements in AI applications for IBD in image analysis, understanding text, and replicating clinical knowledge and experience.

Recent Findings

Advancements in machine learning methods, availability of high-performance computing, and increasing digitization of medical data are providing opportunities for AI to assist in IBD care. Multiple groups have demonstrated the ability of AI to replicate expert endoscopic scoring in IBD, with expansion into automated capsule endoscopy, enterography, and histologic interpretations. Further, AI image analysis is being used to develop new endoscopic scoring with more granularity and detail than is possible using conventional methods. Advancements in natural language processing are proving to reduce laborious tasks required in the care of IBD, including documentation, information searches, and chart review. Finally, large language models and chatbots that can understand language and generate human-like replies are beginning to exhibit clinical intelligence that will revolutionize how we deliver IBD care.

Summary

Today, AI is being deployed to replicate expert judgement in specific tasks where disagreement, subjectivity, and bias are common. However, the near future will herald contributions of AI doing what we cannot, including new detailed measures of IBD, enhanced analysis of images, and perhaps even fully automating care. As we speculate on future technologic capabilities that may improve how we care for IBD, this review will also consider how we will implement and fairly use AI in practice.
Literatur
1.
Zurück zum Zitat Ben-Israel D, et al. The impact of machine learning on patient care: A systematic review. Artif Intell Med. 2020;103:101785.PubMed Ben-Israel D, et al. The impact of machine learning on patient care: A systematic review. Artif Intell Med. 2020;103:101785.PubMed
2.
Zurück zum Zitat Shah NH, Milstein A, PhD SCB. Making machine learning models clinically useful. JAMA J Am Med Assoc. 2019;322:1351–2. Shah NH, Milstein A, PhD SCB. Making machine learning models clinically useful. JAMA J Am Med Assoc. 2019;322:1351–2.
3.
Zurück zum Zitat •• Gottlieb K, et al. Central Reading of Ulcerative Colitis Clinical Trial Videos Using Neural Networks. Gastroenterology. 2021;160:710-719.e2. Key study highlighting ability of AI models to match the performance of expert reviewers in endoscopic severity scoring of ulcerative colitis using the Mayo endoscopic score and UCEIS instruments.PubMed •• Gottlieb K, et al. Central Reading of Ulcerative Colitis Clinical Trial Videos Using Neural Networks. Gastroenterology. 2021;160:710-719.e2. Key study highlighting ability of AI models to match the performance of expert reviewers in endoscopic severity scoring of ulcerative colitis using the Mayo endoscopic score and UCEIS instruments.PubMed
4.
Zurück zum Zitat Ungaro R, Colombel JF, Lissoos T, Peyrin-Biroulet L. A Treat-to-Target Update in Ulcerative Colitis: A Systematic Review. Am J Gastroenterol. 2019;114:874–83.PubMedPubMedCentral Ungaro R, Colombel JF, Lissoos T, Peyrin-Biroulet L. A Treat-to-Target Update in Ulcerative Colitis: A Systematic Review. Am J Gastroenterol. 2019;114:874–83.PubMedPubMedCentral
5.
Zurück zum Zitat Turner D, et al. STRIDE-II: An Update on the Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE) Initiative of the International Organization for the Study of IBD (IOIBD): Determining Therapeutic Goals for Treat-to-Target strategies in IBD. Gastroenterology. 2021;160:1570–83.PubMed Turner D, et al. STRIDE-II: An Update on the Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE) Initiative of the International Organization for the Study of IBD (IOIBD): Determining Therapeutic Goals for Treat-to-Target strategies in IBD. Gastroenterology. 2021;160:1570–83.PubMed
6.
Zurück zum Zitat Ferrante M, et al. Validation of endoscopic activity scores in patients with Crohn’s disease based on a post hoc analysis of data from SONIC. Gastroenterology. 2013;145:978-986.e5.PubMed Ferrante M, et al. Validation of endoscopic activity scores in patients with Crohn’s disease based on a post hoc analysis of data from SONIC. Gastroenterology. 2013;145:978-986.e5.PubMed
7.
Zurück zum Zitat Xie T, et al. Ulcerative Colitis Endoscopic Index of Severity (UCEIS) versus Mayo Endoscopic Score (MES) in guiding the need for colectomy in patients with acute severe colitis. Gastroenterol Rep (Oxf). 2018;6:38–44.PubMed Xie T, et al. Ulcerative Colitis Endoscopic Index of Severity (UCEIS) versus Mayo Endoscopic Score (MES) in guiding the need for colectomy in patients with acute severe colitis. Gastroenterol Rep (Oxf). 2018;6:38–44.PubMed
8.
Zurück zum Zitat Colombel J-F, et al. Quantitative measurement and visual assessment of ileal Crohn’s disease activity by computed tomography enterography: correlation with endoscopic severity and C reactive protein. Gut. 2006;55:1561–7.PubMedPubMedCentral Colombel J-F, et al. Quantitative measurement and visual assessment of ileal Crohn’s disease activity by computed tomography enterography: correlation with endoscopic severity and C reactive protein. Gut. 2006;55:1561–7.PubMedPubMedCentral
9.
Zurück zum Zitat Jairath V, et al. Reliability of measuring ileo-colonic disease activity in Crohn’s disease by magnetic resonance enterography. Inflamm Bowel Dis. 2018;24:440–9.PubMed Jairath V, et al. Reliability of measuring ileo-colonic disease activity in Crohn’s disease by magnetic resonance enterography. Inflamm Bowel Dis. 2018;24:440–9.PubMed
10.
Zurück zum Zitat Travis SPL, et al. Reliability and initial validation of the ulcerative colitis endoscopic index of severity. Gastroenterology. 2013;145:987–95.PubMed Travis SPL, et al. Reliability and initial validation of the ulcerative colitis endoscopic index of severity. Gastroenterology. 2013;145:987–95.PubMed
11.
Zurück zum Zitat Khanna R, et al. Reliability among central readers in the evaluation of endoscopic findings from patients with Crohn’s disease. Gut. 2016;65:1119–25.PubMed Khanna R, et al. Reliability among central readers in the evaluation of endoscopic findings from patients with Crohn’s disease. Gut. 2016;65:1119–25.PubMed
13.
Zurück zum Zitat Carin L, Pencina MJ. On deep learning for medical image analysis. JAMA J Am Med Assoc. 2018;320:1192–3. Carin L, Pencina MJ. On deep learning for medical image analysis. JAMA J Am Med Assoc. 2018;320:1192–3.
14.
Zurück zum Zitat Daperno M, et al. Development and validation of a new, simplified endoscopic activity score for Crohn’s disease: the SES-CD. Gastrointest Endosc. 2004;60:505–12.PubMed Daperno M, et al. Development and validation of a new, simplified endoscopic activity score for Crohn’s disease: the SES-CD. Gastrointest Endosc. 2004;60:505–12.PubMed
15.
Zurück zum Zitat Vashist NM, et al. Endoscopic scoring indices for evaluation of disease activity in ulcerative colitis. Cochrane Database Syst Rev. 2018;1:CD011450. Vashist NM, et al. Endoscopic scoring indices for evaluation of disease activity in ulcerative colitis. Cochrane Database Syst Rev. 2018;1:CD011450.
16.
Zurück zum Zitat Ozawa T, et al. Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis. Gastrointest Endosc. 2019;89:416-421.e1.PubMed Ozawa T, et al. Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis. Gastrointest Endosc. 2019;89:416-421.e1.PubMed
17.
Zurück zum Zitat Stidham RW, et al. Performance of a deep learning model vs human reviewers in grading endoscopic disease severity of patients with ulcerative colitis. JAMA Netw Open. 2019;2:e193963.PubMedPubMedCentral Stidham RW, et al. Performance of a deep learning model vs human reviewers in grading endoscopic disease severity of patients with ulcerative colitis. JAMA Netw Open. 2019;2:e193963.PubMedPubMedCentral
18.
Zurück zum Zitat Maeda Y, et al. Fully automated diagnostic system with artificial intelligence using endocytoscopy to identify the presence of histologic inflammation associated with ulcerative colitis (with video). Gastrointest Endosc. 2019;89:408–15.PubMed Maeda Y, et al. Fully automated diagnostic system with artificial intelligence using endocytoscopy to identify the presence of histologic inflammation associated with ulcerative colitis (with video). Gastrointest Endosc. 2019;89:408–15.PubMed
19.
Zurück zum Zitat Yao H, et al. Fully automated endoscopic disease activity assessment in ulcerative colitis. Gastrointest Endosc. 2021;93:728-736.e1.PubMed Yao H, et al. Fully automated endoscopic disease activity assessment in ulcerative colitis. Gastrointest Endosc. 2021;93:728-736.e1.PubMed
20.
Zurück zum Zitat Gottlieb K, et al. Endoscopy and central reading in inflammatory bowel disease clinical trials: achievements, challenges and future developments. Gut. 2021;70:418–26.PubMed Gottlieb K, et al. Endoscopy and central reading in inflammatory bowel disease clinical trials: achievements, challenges and future developments. Gut. 2021;70:418–26.PubMed
22.
Zurück zum Zitat Barash Y, et al. Ulcer severity grading in video capsule images of patients with Crohn’s disease: an ordinal neural network solution. Gastrointest Endosc. 2021;93:187–92.PubMed Barash Y, et al. Ulcer severity grading in video capsule images of patients with Crohn’s disease: an ordinal neural network solution. Gastrointest Endosc. 2021;93:187–92.PubMed
24.
Zurück zum Zitat •• Stidham RW, et al. Using computer vision to improve endoscopic disease quantification in therapeutic clinical trials of ulcerative colitis. Gastroenterology. 2023. https://doi.org/10.1053/j.gastro.2023.09.049. First study to demonstrate that artificial intelligence powered analysis of endoscopy can outperform traditional standard endoscopic measures of disease activity in ulcerative colitis.CrossRefPubMed •• Stidham RW, et al. Using computer vision to improve endoscopic disease quantification in therapeutic clinical trials of ulcerative colitis. Gastroenterology. 2023. https://​doi.​org/​10.​1053/​j.​gastro.​2023.​09.​049. First study to demonstrate that artificial intelligence powered analysis of endoscopy can outperform traditional standard endoscopic measures of disease activity in ulcerative colitis.CrossRefPubMed
25.
Zurück zum Zitat • Maeda Y, et al. Evaluation in real-time use of artificial intelligence during colonoscopy to predict relapse of ulcerative colitis: a prospective study. Gastrointest Endosc. 2022;95:747-756.e2. Demonstration of ability to use real-time endoscopic video analysis to predict clinical outcomes in UC, potentially offering an opportunity to modify care with machine intelligence assistance.PubMed • Maeda Y, et al. Evaluation in real-time use of artificial intelligence during colonoscopy to predict relapse of ulcerative colitis: a prospective study. Gastrointest Endosc. 2022;95:747-756.e2. Demonstration of ability to use real-time endoscopic video analysis to predict clinical outcomes in UC, potentially offering an opportunity to modify care with machine intelligence assistance.PubMed
26.
Zurück zum Zitat Iacucci M, et al. Artificial intelligence enabled histological prediction of remission or activity and clinical outcomes in ulcerative colitis. Gastroenterology. 2023;164:1180-1188.e2.PubMed Iacucci M, et al. Artificial intelligence enabled histological prediction of remission or activity and clinical outcomes in ulcerative colitis. Gastroenterology. 2023;164:1180-1188.e2.PubMed
27.
Zurück zum Zitat Vitali F, et al. Endocytoscopy for assessing histologic inflammation in ulcerative colitis: development and prospective validation of the ELECT (ErLangen Endocytoscopy in ColiTis) score (with videos). Gastrointest Endosc. 2023;97:100-111.e1.PubMed Vitali F, et al. Endocytoscopy for assessing histologic inflammation in ulcerative colitis: development and prospective validation of the ELECT (ErLangen Endocytoscopy in ColiTis) score (with videos). Gastrointest Endosc. 2023;97:100-111.e1.PubMed
29.
Zurück zum Zitat Remedios LW, et al. Predicting Crohn’s disease severity in the colon using mixed cell nucleus density from pseudo labels. Méd Imaging 2023: Digit Comput Pathol. 2023;12471:1247116–1247116-8. Remedios LW, et al. Predicting Crohn’s disease severity in the colon using mixed cell nucleus density from pseudo labels. Méd Imaging 2023: Digit Comput Pathol. 2023;12471:1247116–1247116-8.
30.
Zurück zum Zitat Panés J, Rimola J. Is the Objective of Treatment for Crohn’s Disease Mucosal or Transmural Healing? Clin Gastroenterol Hepatol. 2018;16:1037–9.PubMed Panés J, Rimola J. Is the Objective of Treatment for Crohn’s Disease Mucosal or Transmural Healing? Clin Gastroenterol Hepatol. 2018;16:1037–9.PubMed
31.
Zurück zum Zitat Geyl S, et al. Transmural healing as a therapeutic goal in Crohn’s disease: a systematic review. Lancet Gastroenterol Hepatol. 2021;6:659–67.PubMed Geyl S, et al. Transmural healing as a therapeutic goal in Crohn’s disease: a systematic review. Lancet Gastroenterol Hepatol. 2021;6:659–67.PubMed
32.
Zurück zum Zitat Ordás I, et al. Accuracy of magnetic resonance enterography in assessing response to therapy and mucosal healing in patients with Crohn’s disease. Gastroenterology. 2014;146:374-82.e1.PubMed Ordás I, et al. Accuracy of magnetic resonance enterography in assessing response to therapy and mucosal healing in patients with Crohn’s disease. Gastroenterology. 2014;146:374-82.e1.PubMed
33.
Zurück zum Zitat Roseira J, Ventosa AR, de Sousa HT, Brito J. The new simplified MARIA score applies beyond clinical trials: A suitable clinical practice tool for Crohn’s disease that parallels a simple endoscopic index and fecal calprotectin. United Eur Gastroenterol J. 2020;8:1208–16. Roseira J, Ventosa AR, de Sousa HT, Brito J. The new simplified MARIA score applies beyond clinical trials: A suitable clinical practice tool for Crohn’s disease that parallels a simple endoscopic index and fecal calprotectin. United Eur Gastroenterol J. 2020;8:1208–16.
34.
Zurück zum Zitat Puylaert CAJ, et al. Comparison of MRI Activity Scoring Systems and Features for the Terminal Ileum in Patients With Crohn Disease. Am J Roentgenol. 2019;212:W25–31. Puylaert CAJ, et al. Comparison of MRI Activity Scoring Systems and Features for the Terminal Ileum in Patients With Crohn Disease. Am J Roentgenol. 2019;212:W25–31.
35.
Zurück zum Zitat Lamash Y, Kurugol S, Warfield SK. Semi-Automated Extraction of Crohns Disease MR Imaging Markers using a 3D Residual CNN with Distance Prior. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support. 2018;2018(11045):218–26. Lamash Y, Kurugol S, Warfield SK. Semi-Automated Extraction of Crohns Disease MR Imaging Markers using a 3D Residual CNN with Distance Prior. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support. 2018;2018(11045):218–26.
36.
Zurück zum Zitat Enchakalody BE, et al. Machine learning methods to predict presence of intestine damage in patients with Crohn’s disease. in Medical Imaging 2020: Computer-Aided Diagnosis 11314:1131436 (Medical Imaging 2020: Computer-Aided Diagnosis, 2020). Enchakalody BE, et al. Machine learning methods to predict presence of intestine damage in patients with Crohn’s disease. in Medical Imaging 2020: Computer-Aided Diagnosis 11314:1131436 (Medical Imaging 2020: Computer-Aided Diagnosis, 2020).
37.
Zurück zum Zitat Stidham RW, et al. Assessing Small Bowel Stricturing and Morphology in Crohn’s Disease Using Semi-automated Image Analysis. Inflamm Bowel Dis. 2019;11:274. Stidham RW, et al. Assessing Small Bowel Stricturing and Morphology in Crohn’s Disease Using Semi-automated Image Analysis. Inflamm Bowel Dis. 2019;11:274.
38.
Zurück zum Zitat Bruining DH, et al. Consensus Recommendations for Evaluation, Interpretation, and Utilization of Computed Tomography and Magnetic Resonance Enterography in Patients With Small Bowel Crohn’s Disease. Gastroenterology. 2018;154:1172–94.PubMed Bruining DH, et al. Consensus Recommendations for Evaluation, Interpretation, and Utilization of Computed Tomography and Magnetic Resonance Enterography in Patients With Small Bowel Crohn’s Disease. Gastroenterology. 2018;154:1172–94.PubMed
39.
Zurück zum Zitat Kucharzik T, et al. Use of Intestinal Ultrasound to Monitor Crohn’s Disease Activity. Clin Gastroenterol Hepatol. 2017;15:535-542.e2.PubMed Kucharzik T, et al. Use of Intestinal Ultrasound to Monitor Crohn’s Disease Activity. Clin Gastroenterol Hepatol. 2017;15:535-542.e2.PubMed
41.
Zurück zum Zitat Yao J, et al. Computed tomography-based radiomics nomogram using machine learning for predicting 1-year surgical risk after diagnosis of Crohn’s disease. Méd Phys. 2023;50:3862–72.PubMed Yao J, et al. Computed tomography-based radiomics nomogram using machine learning for predicting 1-year surgical risk after diagnosis of Crohn’s disease. Méd Phys. 2023;50:3862–72.PubMed
43.
Zurück zum Zitat • Li X, et al. Development and Validation of a Novel Computed-Tomography Enterography Radiomic Approach for Characterization of Intestinal Fibrosis in Crohn’s Disease. Gastroenterology. 2021. https://doi.org/10.1053/j.gastro.2021.02.027. AI-powered radiomics analysis of cross sectional imaging was able to better discriminate inflammation from fibrosis in resected bowel specimens better than multiple experienced radiologists. This suggests that in specific tasks, AI may outperform clinical experts owing to ability to appreciate patterns unseen by human operators.CrossRefPubMedPubMedCentral • Li X, et al. Development and Validation of a Novel Computed-Tomography Enterography Radiomic Approach for Characterization of Intestinal Fibrosis in Crohn’s Disease. Gastroenterology. 2021. https://​doi.​org/​10.​1053/​j.​gastro.​2021.​02.​027. AI-powered radiomics analysis of cross sectional imaging was able to better discriminate inflammation from fibrosis in resected bowel specimens better than multiple experienced radiologists. This suggests that in specific tasks, AI may outperform clinical experts owing to ability to appreciate patterns unseen by human operators.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Kang T, Perotte A, Tang Y, Ta C, Weng C. UMLS-based data augmentation for natural language processing of clinical research literature. J Am Med Inform Assoc. 2021;28:812–23.PubMed Kang T, Perotte A, Tang Y, Ta C, Weng C. UMLS-based data augmentation for natural language processing of clinical research literature. J Am Med Inform Assoc. 2021;28:812–23.PubMed
46.
Zurück zum Zitat Ananthakrishnan AN, et al. Improving case definition of Crohn’s disease and ulcerative colitis in electronic medical records using natural language processing: a novel informatics approach. Inflamm Bowel Dis. 2013;19:1411–20.PubMed Ananthakrishnan AN, et al. Improving case definition of Crohn’s disease and ulcerative colitis in electronic medical records using natural language processing: a novel informatics approach. Inflamm Bowel Dis. 2013;19:1411–20.PubMed
47.
Zurück zum Zitat Stidham RW, et al. Identifying the presence, activity, and status of extraintestinal manifestations of inflammatory bowel disease using natural language processing of clinical notes. Inflamm Bowel Dis. 2022;29:503–10. Stidham RW, et al. Identifying the presence, activity, and status of extraintestinal manifestations of inflammatory bowel disease using natural language processing of clinical notes. Inflamm Bowel Dis. 2022;29:503–10.
48.
Zurück zum Zitat Kurowski JA, et al. Computable phenotype of a Crohn’s disease natural history model. Méd Decis Mak. 2022;42:937–44. Kurowski JA, et al. Computable phenotype of a Crohn’s disease natural history model. Méd Decis Mak. 2022;42:937–44.
50.
Zurück zum Zitat Lee T-C, et al. ChatGPT answers common patient questions about colonoscopy. Gastroenterology. 2023;165:509-511.e7.PubMed Lee T-C, et al. ChatGPT answers common patient questions about colonoscopy. Gastroenterology. 2023;165:509-511.e7.PubMed
51.
Zurück zum Zitat Mukherjee S, et al. Assessing ChatGPT’s Ability to Reply to Queries Regarding Colon Cancer Screening Based on Multisociety Guidelines. Gastro hep Adv. 2023;2:1040–3.PubMedPubMedCentral Mukherjee S, et al. Assessing ChatGPT’s Ability to Reply to Queries Regarding Colon Cancer Screening Based on Multisociety Guidelines. Gastro hep Adv. 2023;2:1040–3.PubMedPubMedCentral
53.
Zurück zum Zitat •• Brin D, et al. Comparing ChatGPT and GPT-4 performance in USMLE soft skill assessments. Sci Rep. 2023;13:16492. Major scientific technical paper elaborating on GPT capibilities to convincingly reproduce expert medical knowledge on standardized testing. This manuscript outlines the methods used by transformers to understand text-knowledge and highlights the generative nature of AI answers to medical questions.PubMedPubMedCentral •• Brin D, et al. Comparing ChatGPT and GPT-4 performance in USMLE soft skill assessments. Sci Rep. 2023;13:16492. Major scientific technical paper elaborating on GPT capibilities to convincingly reproduce expert medical knowledge on standardized testing. This manuscript outlines the methods used by transformers to understand text-knowledge and highlights the generative nature of AI answers to medical questions.PubMedPubMedCentral
54.
Zurück zum Zitat • Suchman K, Garg S, Trindade AJ. Chat generative pretrained transformer fails the multiple-choice American College of Gastroenterology Self-Assessment Test. Am J Gastroenterol. 2023;118:2280–2. Important manuscript highlighting that gastroenterology knowledge remains beyond the capabilities of current GPT tools. This work details poor non-passing performance of GPT on ACG self assessment questionnaire.PubMed • Suchman K, Garg S, Trindade AJ. Chat generative pretrained transformer fails the multiple-choice American College of Gastroenterology Self-Assessment Test. Am J Gastroenterol. 2023;118:2280–2. Important manuscript highlighting that gastroenterology knowledge remains beyond the capabilities of current GPT tools. This work details poor non-passing performance of GPT on ACG self assessment questionnaire.PubMed
55.
Zurück zum Zitat Levartovsky A, Ben-Horin S, Kopylov U, Klang E, Barash Y. Towards AI-Augmented Clinical Decision-Making: An Examination of ChatGPT’s Utility in Acute Ulcerative Colitis Presentations. Am J Gastroenterol. 2023;118:2283–9.PubMed Levartovsky A, Ben-Horin S, Kopylov U, Klang E, Barash Y. Towards AI-Augmented Clinical Decision-Making: An Examination of ChatGPT’s Utility in Acute Ulcerative Colitis Presentations. Am J Gastroenterol. 2023;118:2283–9.PubMed
Metadaten
Titel
Artificial Intelligence and IBD: Where are We Now and Where Will We Be in the Future?
verfasst von
Mehwish Ahmed
Molly L. Stone
Ryan W. Stidham
Publikationsdatum
27.02.2024
Verlag
Springer US
Erschienen in
Current Gastroenterology Reports / Ausgabe 5/2024
Print ISSN: 1522-8037
Elektronische ISSN: 1534-312X
DOI
https://doi.org/10.1007/s11894-024-00918-8

Kompaktes Leitlinien-Wissen Innere Medizin (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Innere Medizin

CDK4/6-Inhibitoren bei Brustkrebs in die Zweitlinie aufschieben?

Ergebnisse einer Phase-III-Studie sprechen dafür, dass die Behandlung mit CDK4/6-Inhibitoren bei fortgeschrittenem HR-positivem, HER2-negativem Brustkrebs auch auf die Zweitlinie verschoben werden könnte, ohne die onkologischen Ergebnisse zu kompromittieren.

Inhalative Steroide bei COPD nicht kardioprotektiv

  • 10.01.2025
  • COPD
  • Nachrichten

Ob inhalative Kortikosteroide (ICS) COPD-Kranke außer vor akuten Exazerbationen auch vor kardiovaskulären Komplikationen schützen können, ist unklar. Eine bevölkerungsbasierte Studie aus England spricht nicht dafür.

Kaffeegenuss sicher bei Vorhofflimmern

Menschen mit Vorhofflimmern fürchten oft, Kaffee könnte schlecht für ihr Herz sein. Solche Ängste sind offenbar unbegründet: Zwei Schweizer Untersuchungen deuten sogar auf eine reduzierte Rate von kardiovaskulären Ereignissen unter Kaffeetrinkern.

Cannabisextrakt verbessert Antiemese bei Chemotherapie

Sprechen Krebskranke auf die übliche Antiemese während einer Chemotherapie nicht ausreichend an, lohnt sich möglicherweise eine Behandlung mit Cannabisextrakt. In einer Phase-2/3-Studie ließ sich die antiemetische Response mit einem solchen Extrakt erheblich verbessern.

EKG Essentials: EKG befunden mit System (Link öffnet in neuem Fenster)

In diesem CME-Kurs können Sie Ihr Wissen zur EKG-Befundung anhand von zwölf Video-Tutorials auffrischen und 10 CME-Punkte sammeln.
Praxisnah, relevant und mit vielen Tipps & Tricks vom Profi.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.