Skip to main content
Erschienen in:

27.01.2022 | Ideas and Technical Innovations

Artificial intelligence and spine imaging: limitations, regulatory issues and future direction

verfasst von: Alexander L. Hornung, Christopher M. Hornung, G. Michael Mallow, J. Nicolas Barajas, Alejandro A. Espinoza Orías, Fabio Galbusera, Hans-Joachim Wilke, Matthew Colman, Frank M. Phillips, Howard S. An, Dino Samartzis

Erschienen in: European Spine Journal | Ausgabe 8/2022

Einloggen, um Zugang zu erhalten

Abstract

Background

As big data and artificial intelligence (AI) in spine care, and medicine as a whole, continue to be at the forefront of research, careful consideration to the quality and techniques utilized is necessary. Predictive modeling, data science, and deep analytics have taken center stage. Within that space, AI and machine learning (ML) approaches toward the use of spine imaging have gathered considerable attention in the past decade. Although several benefits of such applications exist, limitations are also present and need to be considered.

Purpose

The following narrative review presents the current status of AI, in particular, ML, with special regard to imaging studies, in the field of spinal research.

Methods

A multi-database assessment of the literature was conducted up to September 1, 2021, that addressed AI as it related to imaging of the spine. Articles written in English were selected and critically assessed.

Results

Overall, the review discussed the limitations, data quality and applications of ML models in the context of spine imaging. In particular, we addressed the data quality and ML algorithms in spine imaging research by describing preliminary results from a widely accessible imaging algorithm that is currently available for spine specialists to reference for information on severity of spine disease and degeneration which ultimately may alter clinical decision-making. In addition, awareness of the current, under-recognized regulation surrounding the execution of ML for spine imaging was raised.

Conclusions

Recommendations were provided for conducting high-quality, standardized AI applications for spine imaging.
Literatur
1.
Zurück zum Zitat Herzog RJ, Guyer RD, Graham-smith A, Simmons EDJ (1995) Contemporary concepts in spine care magnetic resonance imaging: use in patients with low back or radicular pain. Spine 20:1834–1838CrossRef Herzog RJ, Guyer RD, Graham-smith A, Simmons EDJ (1995) Contemporary concepts in spine care magnetic resonance imaging: use in patients with low back or radicular pain. Spine 20:1834–1838CrossRef
3.
Zurück zum Zitat Carrino JA, Campbell PD Jr, Lin DC et al (2011) Effect of spinal segment variants on numbering vertebral levels at lumbar MR imaging. Radiology 259:196–202CrossRef Carrino JA, Campbell PD Jr, Lin DC et al (2011) Effect of spinal segment variants on numbering vertebral levels at lumbar MR imaging. Radiology 259:196–202CrossRef
19.
Zurück zum Zitat Langerhuizen DWG, Janssen SJ, Mallee WH, et al (2019) What are the applications and limitations of artificial intelligence for fracture detection and classification in orthopaedic trauma imaging? A systematic review. Clin Orthop Relat Res® 477: 2482–2491 Langerhuizen DWG, Janssen SJ, Mallee WH, et al (2019) What are the applications and limitations of artificial intelligence for fracture detection and classification in orthopaedic trauma imaging? A systematic review. Clin Orthop Relat Res® 477: 2482–2491
20.
Zurück zum Zitat Joshi RS, Haddad AF, Lau D, Ames CP (2019) Artificial intelligence for adult spinal deformity. Neurospine 16:686–694CrossRef Joshi RS, Haddad AF, Lau D, Ames CP (2019) Artificial intelligence for adult spinal deformity. Neurospine 16:686–694CrossRef
21.
Zurück zum Zitat Harada GK, Siyaji ZK, Younis S et al (2020) Imaging in spine surgery: current concepts and future directions. Spine Surg Relat Res 4:99–110CrossRef Harada GK, Siyaji ZK, Younis S et al (2020) Imaging in spine surgery: current concepts and future directions. Spine Surg Relat Res 4:99–110CrossRef
26.
Zurück zum Zitat Badgeley MA, Zech JR, Oakden-Rayner L, et al (2018) Deep Learning Predicts Hip Fracture using Confounding Patient and Healthcare Variables. [cs] Badgeley MA, Zech JR, Oakden-Rayner L, et al (2018) Deep Learning Predicts Hip Fracture using Confounding Patient and Healthcare Variables. [cs]
27.
Zurück zum Zitat Panesar A (2019) Machine learning and ai for healthcare: big data for improved health outcomes. Apress, Berkeley, CACrossRef Panesar A (2019) Machine learning and ai for healthcare: big data for improved health outcomes. Apress, Berkeley, CACrossRef
30.
Zurück zum Zitat Dankers FJWM, Traverso A, Wee L, van Kuijk SMJ (2019) Prediction modeling methodology. In: Kubben P, Dumontier M, Dekker A (eds) Fundamentals of clinical data science. Springer, Cham (CH) Dankers FJWM, Traverso A, Wee L, van Kuijk SMJ (2019) Prediction modeling methodology. In: Kubben P, Dumontier M, Dekker A (eds) Fundamentals of clinical data science. Springer, Cham (CH)
32.
Zurück zum Zitat Banerjee I, Bhimireddy AR, Burns JL, et al (2021) Reading race: AI Recognises patient’s racial identity In: Medical Images. [cs, eess] Banerjee I, Bhimireddy AR, Burns JL, et al (2021) Reading race: AI Recognises patient’s racial identity In: Medical Images. [cs, eess]
38.
Zurück zum Zitat De Feo JA (2017) Juran’s quality handbook: the complete guide to performance excellence, seventh edition, 7th edn. McGraw-Hill Education, New York De Feo JA (2017) Juran’s quality handbook: the complete guide to performance excellence, seventh edition, 7th edn. McGraw-Hill Education, New York
40.
Zurück zum Zitat Scannapieco M, Missier P, Batini C (2005) Data Quality at a Glance. Datenbank-Spektrum 14:6–14 Scannapieco M, Missier P, Batini C (2005) Data Quality at a Glance. Datenbank-Spektrum 14:6–14
41.
Zurück zum Zitat Sidi F, Shariat Panahy PH, Affendey LS, et al (2012) Data quality: a survey of data quality dimensions. In: 2012 International Conference on Information Retrieval Knowledge Management. pp 300–304 Sidi F, Shariat Panahy PH, Affendey LS, et al (2012) Data quality: a survey of data quality dimensions. In: 2012 International Conference on Information Retrieval Knowledge Management. pp 300–304
44.
Zurück zum Zitat Health C for D and R (2021) Artificial intelligence and machine learning in software as a medical device. FDA Health C for D and R (2021) Artificial intelligence and machine learning in software as a medical device. FDA
59.
Metadaten
Titel
Artificial intelligence and spine imaging: limitations, regulatory issues and future direction
verfasst von
Alexander L. Hornung
Christopher M. Hornung
G. Michael Mallow
J. Nicolas Barajas
Alejandro A. Espinoza Orías
Fabio Galbusera
Hans-Joachim Wilke
Matthew Colman
Frank M. Phillips
Howard S. An
Dino Samartzis
Publikationsdatum
27.01.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Spine Journal / Ausgabe 8/2022
Print ISSN: 0940-6719
Elektronische ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-021-07108-4

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie erweitert durch Fallbeispiele, Videos und Abbildungen. Zur Fortbildung und Wissenserweiterung, verfasst und geprüft von Expertinnen und Experten der Gesellschaft für Arthroskopie und Gelenkchirurgie (AGA).


Jetzt entdecken!

Neu im Fachgebiet Orthopädie und Unfallchirurgie

Nackenschmerzen nach Bandscheibenvorfall: Muskeltraining hilft!

Bei hartnäckigen Schmerzen aufgrund einer zervikalen Radikulopathie schlägt ein Team der Universität Istanbul vor, lokale Steroidinjektionen mit einem speziellen Trainingsprogramm zur Stabilisierung der Nackenmuskulatur zu kombinieren.

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Was sich Menschen mit Frozen Shoulder wünschen

Die Capsulitis adhaesiva des Glenohumeralgelenks, auch als Frozen Shoulder bezeichnet, belastet die Betroffenen weit über die körperlichen Beschwerden hinaus, wie eine italienische Studie ergeben hat.

Restriktive Sauerstoffgabe ohne Vorteil bei schwerem Trauma

Ob schwer verletzte Personen besser restriktiv oder liberal mit Sauerstoff versorgt werden sollten, hat die Arbeitsgruppe der TRAUMOX2-Studie untersucht – mit klarem Ergebnis.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.