Skip to main content
Erschienen in:

26.03.2020 | Endoscopy (P Siersema, Section Editor)

Artificial Intelligence for Colorectal Polyp Detection and Characterization

verfasst von: Yuichi Mori, MD, PhD, Shin-ei Kudo, MD, PhD, Masashi Misawa, MD, PhD, Kenichi Takeda, MD, PhD, Toyoki Kudo, MD, PhD, Hayato Itoh, PhD, Masahiro Oda, PhD, Kensaku Mori, PhD

Erschienen in: Current Treatment Options in Gastroenterology | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose of review

To elucidate the advantages and limitations of existing artificial intelligence technologies for colonoscopy by evaluating the currently available eight prospective studies (two for automated polyp detection and six for automated polyp characterization).

Recent findings

AI is expected to mitigate the inherent risk of human error causing a polyp to be missed or mischaracterized by assisting polyp detection and characterization (i.e., pathological prediction). Some of the prospective studies clearly demonstrate the potential for AI to improve adenoma detection rates, which is considered one of the most important quality indicators for colonoscopies, or achieve a > 90% negative predictive value in differentiating diminutive (≤ 5 mm) rectosigmoid adenomas which is considered as a threshold required for optical diagnosis. However, it is also important to consider the negative impacts of AI, such as the deskilling effect on healthcare providers, which has yet to be sufficiently addressed.

Summary

We believe that AI can become standard practice in colonoscopy procedures within several years, given its rapid spread and its expected low implementation cost. However, considering the limited evidence supporting the use of AI for colonoscopy, additional studies should be done to explore the long-term efficacy and safety of AI in colonoscopy and implement robust endpoints such as colorectal cancer incidence and mortality.
Literatur
1.
Zurück zum Zitat Zauber AG, Winawer SJ, O'Brien MJ, et al. Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths. N Engl J Med. 2012;366:687–96.PubMedPubMedCentralCrossRef Zauber AG, Winawer SJ, O'Brien MJ, et al. Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths. N Engl J Med. 2012;366:687–96.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Winawer SJ, Zauber AG, Ho MN, O'Brien MJ, Gottlieb LS, Sternberg SS, et al. Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup. N Engl J Med. 1993;329:1977–81.PubMedCrossRef Winawer SJ, Zauber AG, Ho MN, O'Brien MJ, Gottlieb LS, Sternberg SS, et al. Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup. N Engl J Med. 1993;329:1977–81.PubMedCrossRef
3.
4.
Zurück zum Zitat Hassan C, Quintero E, Dumonceau JM, Regula J, Brandão C, Chaussade S, et al. Post-polypectomy colonoscopy surveillance: European Society of Gastrointestinal Endoscopy (ESGE) guideline. Endoscopy. 2013;45:842–51.PubMedCrossRef Hassan C, Quintero E, Dumonceau JM, Regula J, Brandão C, Chaussade S, et al. Post-polypectomy colonoscopy surveillance: European Society of Gastrointestinal Endoscopy (ESGE) guideline. Endoscopy. 2013;45:842–51.PubMedCrossRef
5.
Zurück zum Zitat • Bisschops R, East JE, Hassan C, et al. Advanced imaging for detection and differentiation of colorectal neoplasia: European Society of Gastrointestinal Endoscopy (ESGE) guideline - Update 2019. Endoscopy. 2019. https://doi.org/10.1055/a-1031-7657.The first clinical guideline mentioning the advantages and limitations of artificial intelligence (AI). • Bisschops R, East JE, Hassan C, et al. Advanced imaging for detection and differentiation of colorectal neoplasia: European Society of Gastrointestinal Endoscopy (ESGE) guideline - Update 2019. Endoscopy. 2019. https://​doi.​org/​10.​1055/​a-1031-7657.The first clinical guideline mentioning the advantages and limitations of artificial intelligence (AI).
6.
Zurück zum Zitat • Vinsard DG, Mori Y, Misawa M, et al. Quality assurance of computer-aided detection and diagnosis in colonoscopy. Gastrointest Endosc. 2019;90:55–63 A review article focused on how we should improve the quality of AI in colonoscopy in terms of technology and study design.PubMedCrossRef • Vinsard DG, Mori Y, Misawa M, et al. Quality assurance of computer-aided detection and diagnosis in colonoscopy. Gastrointest Endosc. 2019;90:55–63 A review article focused on how we should improve the quality of AI in colonoscopy in terms of technology and study design.PubMedCrossRef
9.
Zurück zum Zitat • Rath T, Tontini GE, Vieth M, et al. In vivo real-time assessment of colorectal polyp histology using an optical biopsy forceps system based on laser-induced fluorescence spectroscopy. Endoscopy. 2016;48:557–62. A prospective study investigating the performance of AI for the laser-induced fluorescence spectroscopy.PubMedCrossRef • Rath T, Tontini GE, Vieth M, et al. In vivo real-time assessment of colorectal polyp histology using an optical biopsy forceps system based on laser-induced fluorescence spectroscopy. Endoscopy. 2016;48:557–62. A prospective study investigating the performance of AI for the laser-induced fluorescence spectroscopy.PubMedCrossRef
10.
Zurück zum Zitat Fernandez-Esparrach G, Bernal J, Lopez-Ceron M, et al. Exploring the clinical potential of an automatic colonic polyp detection method based on the creation of energy maps. Endoscopy. 2016;48:837–42.PubMedCrossRef Fernandez-Esparrach G, Bernal J, Lopez-Ceron M, et al. Exploring the clinical potential of an automatic colonic polyp detection method based on the creation of energy maps. Endoscopy. 2016;48:837–42.PubMedCrossRef
11.
Zurück zum Zitat Misawa M, Kudo SE, Mori Y, et al. Artificial intelligence-assisted polyp detection for colonoscopy: initial experience. Gastroenterology. 2018;154:2027–9 e2023.PubMedCrossRef Misawa M, Kudo SE, Mori Y, et al. Artificial intelligence-assisted polyp detection for colonoscopy: initial experience. Gastroenterology. 2018;154:2027–9 e2023.PubMedCrossRef
12.
Zurück zum Zitat Urban G, Tripathi P, Alkayali T, et al. Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy. Gastroenterology. 2018;155:1069–78 e1068.PubMedPubMedCentralCrossRef Urban G, Tripathi P, Alkayali T, et al. Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy. Gastroenterology. 2018;155:1069–78 e1068.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Figueiredo PN, Figueiredo IN, Pinto L, Kumar S, Tsai YR, Mamonov AV. Polyp detection with computer-aided diagnosis in white light colonoscopy: comparison of three different methods. Endosc Int Open. 2019;7:E209–e215.PubMedPubMedCentralCrossRef Figueiredo PN, Figueiredo IN, Pinto L, Kumar S, Tsai YR, Mamonov AV. Polyp detection with computer-aided diagnosis in white light colonoscopy: comparison of three different methods. Endosc Int Open. 2019;7:E209–e215.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Yamada M, Saito Y, Imaoka H, et al. Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy. Sci Rep. 2019;9:14465.PubMedPubMedCentralCrossRef Yamada M, Saito Y, Imaoka H, et al. Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy. Sci Rep. 2019;9:14465.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat •• Wang P, Berzin TM, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut. in press.Largest-ever prospective study (N = 1058) of automated polyp detection. •• Wang P, Berzin TM, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut. in press.Largest-ever prospective study (N = 1058) of automated polyp detection.
17.
Zurück zum Zitat Takemura Y, Yoshida S, Tanaka S, Onji K, Oka S, Tamaki T, et al. Quantitative analysis and development of a computer-aided system for identification of regular pit patterns of colorectal lesions. Gastrointest Endosc. 2010;72:1047–51.PubMedCrossRef Takemura Y, Yoshida S, Tanaka S, Onji K, Oka S, Tamaki T, et al. Quantitative analysis and development of a computer-aided system for identification of regular pit patterns of colorectal lesions. Gastrointest Endosc. 2010;72:1047–51.PubMedCrossRef
18.
Zurück zum Zitat Tischendorf JJ, Gross S, Winograd R, Hecker H, Auer R, Behrens A, et al. Computer-aided classification of colorectal polyps based on vascular patterns: a pilot study. Endoscopy. 2010;42:203–7.PubMedCrossRef Tischendorf JJ, Gross S, Winograd R, Hecker H, Auer R, Behrens A, et al. Computer-aided classification of colorectal polyps based on vascular patterns: a pilot study. Endoscopy. 2010;42:203–7.PubMedCrossRef
19.
Zurück zum Zitat Gross S, Trautwein C, Behrens A, Winograd R, Palm S, Lutz HH, et al. Computer-based classification of small colorectal polyps by using narrow-band imaging with optical magnification. Gastrointest Endosc. 2011;74:1354–9.PubMedCrossRef Gross S, Trautwein C, Behrens A, Winograd R, Palm S, Lutz HH, et al. Computer-based classification of small colorectal polyps by using narrow-band imaging with optical magnification. Gastrointest Endosc. 2011;74:1354–9.PubMedCrossRef
20.
Zurück zum Zitat Takemura Y, Yoshida S, Tanaka S, Kawase R, Onji K, Oka S, et al. Computer-aided system for predicting the histology of colorectal tumors by using narrow-band imaging magnifying colonoscopy (with video). Gastrointest Endosc. 2012;75:179–85.PubMedCrossRef Takemura Y, Yoshida S, Tanaka S, Kawase R, Onji K, Oka S, et al. Computer-aided system for predicting the histology of colorectal tumors by using narrow-band imaging magnifying colonoscopy (with video). Gastrointest Endosc. 2012;75:179–85.PubMedCrossRef
21.
Zurück zum Zitat • Kominami Y, Yoshida S, Tanaka S, et al. Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy. Gastrointest Endosc. 2016;83:643–9.A prospective study investigating the performance of AI for magnified narrow-band imaging.PubMedCrossRef • Kominami Y, Yoshida S, Tanaka S, et al. Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy. Gastrointest Endosc. 2016;83:643–9.A prospective study investigating the performance of AI for magnified narrow-band imaging.PubMedCrossRef
22.
Zurück zum Zitat Tamai N, Saito Y, Sakamoto T, et al. Effectiveness of computer-aided diagnosis of colorectal lesions using novel software for magnifying narrow-band imaging: a pilot study. Endosc Int Open. 2017;5:E690–4.PubMedPubMedCentralCrossRef Tamai N, Saito Y, Sakamoto T, et al. Effectiveness of computer-aided diagnosis of colorectal lesions using novel software for magnifying narrow-band imaging: a pilot study. Endosc Int Open. 2017;5:E690–4.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Chen PJ, Lin MC, Lai MJ, Lin JC, Lu HH, Tseng VS. Accurate classification of diminutive colorectal polyps using computer-aided analysis. Gastroenterology. 2018;154:568–75.PubMedCrossRef Chen PJ, Lin MC, Lai MJ, Lin JC, Lu HH, Tseng VS. Accurate classification of diminutive colorectal polyps using computer-aided analysis. Gastroenterology. 2018;154:568–75.PubMedCrossRef
24.
Zurück zum Zitat Byrne MF, Chapados N, Soudan F, Oertel C, Linares Pérez M, Kelly R, et al. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut. 2019;68:94–100.PubMedCrossRef Byrne MF, Chapados N, Soudan F, Oertel C, Linares Pérez M, Kelly R, et al. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut. 2019;68:94–100.PubMedCrossRef
25.
Zurück zum Zitat Min M, Su S, He W, et al. Computer-aided diagnosis of colorectal polyps using linked color imaging colonoscopy to predict histology. Sci Rep. 2019;9:2881.PubMedPubMedCentralCrossRef Min M, Su S, He W, et al. Computer-aided diagnosis of colorectal polyps using linked color imaging colonoscopy to predict histology. Sci Rep. 2019;9:2881.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Mori Y, Kudo SE, Wakamura K, Misawa M, Ogawa Y, Kutsukawa M, et al. Novel computer-aided diagnostic system for colorectal lesions by using endocytoscopy (with videos). Gastrointest Endosc. 2015;81:621–9.PubMedCrossRef Mori Y, Kudo SE, Wakamura K, Misawa M, Ogawa Y, Kutsukawa M, et al. Novel computer-aided diagnostic system for colorectal lesions by using endocytoscopy (with videos). Gastrointest Endosc. 2015;81:621–9.PubMedCrossRef
27.
Zurück zum Zitat Mori Y, Kudo SE, Chiu PW, Singh R, Misawa M, Wakamura K, et al. Impact of an automated system for endocytoscopic diagnosis of small colorectal lesions: an international web-based study. Endoscopy. 2016;48:1110–8.PubMedCrossRef Mori Y, Kudo SE, Chiu PW, Singh R, Misawa M, Wakamura K, et al. Impact of an automated system for endocytoscopic diagnosis of small colorectal lesions: an international web-based study. Endoscopy. 2016;48:1110–8.PubMedCrossRef
28.
Zurück zum Zitat Misawa M, Kudo SE, Mori Y, et al. Characterization of colorectal lesions using a computer-aided diagnostic system for narrow-band imaging endocytoscopy. Gastroenterology. 2016;150:1531–2 e1533.PubMedCrossRef Misawa M, Kudo SE, Mori Y, et al. Characterization of colorectal lesions using a computer-aided diagnostic system for narrow-band imaging endocytoscopy. Gastroenterology. 2016;150:1531–2 e1533.PubMedCrossRef
29.
Zurück zum Zitat Takeda K, Kudo S, Mori Y, Misawa M, Kudo T, Wakamura K, et al. Accuracy of diagnosing invasie colorectal cancer using computer-aided endocytoscopy. Endoscopy. 2017;49:798–802.PubMedCrossRef Takeda K, Kudo S, Mori Y, Misawa M, Kudo T, Wakamura K, et al. Accuracy of diagnosing invasie colorectal cancer using computer-aided endocytoscopy. Endoscopy. 2017;49:798–802.PubMedCrossRef
30.
Zurück zum Zitat •• Mori Y, Kudo SE, Misawa M, et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy: a prospective study. Ann Intern Med. 2018;169:357–66.Largest-ever prospective study (N = 791) of automated polyp characterization.PubMedCrossRef •• Mori Y, Kudo SE, Misawa M, et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy: a prospective study. Ann Intern Med. 2018;169:357–66.Largest-ever prospective study (N = 791) of automated polyp characterization.PubMedCrossRef
31.
Zurück zum Zitat Andre B, Vercauteren T, Buchner AM, et al. Software for automated classification of probe-based confocal laser endomicroscopy videos of colorectal polyps. World J Gastroenterol. 2012;18:5560–9.PubMedPubMedCentralCrossRef Andre B, Vercauteren T, Buchner AM, et al. Software for automated classification of probe-based confocal laser endomicroscopy videos of colorectal polyps. World J Gastroenterol. 2012;18:5560–9.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Stefanescu D, Streba C, Cartana ET, et al. Computer aided diagnosis for confocal laser endomicroscopy in advanced colorectal adenocarcinoma. PLoS One. 2016;11:e0154863.PubMedPubMedCentralCrossRef Stefanescu D, Streba C, Cartana ET, et al. Computer aided diagnosis for confocal laser endomicroscopy in advanced colorectal adenocarcinoma. PLoS One. 2016;11:e0154863.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat • Kuiper T, Alderlieste YA, Tytgat KM, et al. Automatic optical diagnosis of small colorectal lesions by laser-induced autofluorescence. Endoscopy. 2015;47:56–62.Another prospective study investigating the performance of AI for the laser-induced fluorescence spectroscopy.PubMed • Kuiper T, Alderlieste YA, Tytgat KM, et al. Automatic optical diagnosis of small colorectal lesions by laser-induced autofluorescence. Endoscopy. 2015;47:56–62.Another prospective study investigating the performance of AI for the laser-induced fluorescence spectroscopy.PubMed
34.
Zurück zum Zitat • Aihara H, Saito S, Inomata H, et al. Computer-aided diagnosis of neoplastic colorectal lesions using 'real-time' numerical color analysis during autofluorescence endoscopy. Eur J Gastroenterol Hepatol. 2013;25:488–94 A prospective study investigating the performance of AI for autofluorescence endoscopy.PubMedCrossRef • Aihara H, Saito S, Inomata H, et al. Computer-aided diagnosis of neoplastic colorectal lesions using 'real-time' numerical color analysis during autofluorescence endoscopy. Eur J Gastroenterol Hepatol. 2013;25:488–94 A prospective study investigating the performance of AI for autofluorescence endoscopy.PubMedCrossRef
35.
Zurück zum Zitat Inomata H, Tamai N, Aihara H, Sumiyama K, Saito S, Kato T, et al. Efficacy of a novel auto-fluorescence imaging system with computer-assisted color analysis for assessment of colorectal lesions. World J Gastroenterol. 2013;19:7146–53.PubMedPubMedCentralCrossRef Inomata H, Tamai N, Aihara H, Sumiyama K, Saito S, Kato T, et al. Efficacy of a novel auto-fluorescence imaging system with computer-assisted color analysis for assessment of colorectal lesions. World J Gastroenterol. 2013;19:7146–53.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat • Horiuchi H, Tamai N, Kamba S et al. Real-time computer-aided diagnosis of diminutive rectosigmoid polyps using an auto-fluorescence imaging system and novel color intensity analysis software. Scand J Gastroenterol. 2019;1–6. https://doi.org/10.1080/00365521.2019.1627407.The larger-scale prospective study investigating the performance of AI for autofluorescence endoscopy. • Horiuchi H, Tamai N, Kamba S et al. Real-time computer-aided diagnosis of diminutive rectosigmoid polyps using an auto-fluorescence imaging system and novel color intensity analysis software. Scand J Gastroenterol. 2019;1–6. https://​doi.​org/​10.​1080/​00365521.​2019.​1627407.The larger-scale prospective study investigating the performance of AI for autofluorescence endoscopy.
37.
Zurück zum Zitat Komeda Y, Handa H, Watanabe T, et al. Computer-aided diagnosis based on convolutional neural network system for colorectal polyp classification: preliminary experience. Oncology. 2017;93(Suppl 1):30–4.PubMedCrossRef Komeda Y, Handa H, Watanabe T, et al. Computer-aided diagnosis based on convolutional neural network system for colorectal polyp classification: preliminary experience. Oncology. 2017;93(Suppl 1):30–4.PubMedCrossRef
39.
Zurück zum Zitat Renner J, Phlipsen H, Haller B, Navarro-Avila F, Saint-Hill-Febles Y, Mateus D, et al. Optical classification of neoplastic colorectal polyps - a computer-assisted approach (the COACH study). Scand J Gastroenterol. 2018;53:1100–6.PubMedCrossRef Renner J, Phlipsen H, Haller B, Navarro-Avila F, Saint-Hill-Febles Y, Mateus D, et al. Optical classification of neoplastic colorectal polyps - a computer-assisted approach (the COACH study). Scand J Gastroenterol. 2018;53:1100–6.PubMedCrossRef
40.
Zurück zum Zitat Sanchez-Montes C, Sanchez FJ, Bernal J, et al. Computer-aided prediction of polyp histology on white light colonoscopy using surface pattern analysis. Endoscopy. 2019;51:261–5.PubMedCrossRef Sanchez-Montes C, Sanchez FJ, Bernal J, et al. Computer-aided prediction of polyp histology on white light colonoscopy using surface pattern analysis. Endoscopy. 2019;51:261–5.PubMedCrossRef
41.
Zurück zum Zitat Lui TKL, Wong KKY, Mak LLY, et al. Endoscopic prediction of deeply submucosal invasive carcinoma with use of artificial intelligence. Endosc Int Open. 2019;7:E514–e520.PubMedPubMedCentralCrossRef Lui TKL, Wong KKY, Mak LLY, et al. Endoscopic prediction of deeply submucosal invasive carcinoma with use of artificial intelligence. Endosc Int Open. 2019;7:E514–e520.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Rex DK, Kahi C, O'Brien M, Levin TR, Pohl H, Rastogi A, et al. The American Society for Gastrointestinal Endoscopy PIVI (preservation and incorporation of valuable endoscopic innovations) on real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc. 2011;73:419–22.PubMedCrossRef Rex DK, Kahi C, O'Brien M, Levin TR, Pohl H, Rastogi A, et al. The American Society for Gastrointestinal Endoscopy PIVI (preservation and incorporation of valuable endoscopic innovations) on real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc. 2011;73:419–22.PubMedCrossRef
43.
Zurück zum Zitat Committee AT, Abu Dayyeh BK, Thosani N, et al. ASGE Technology Committee systematic review and meta-analysis assessing the ASGE PIVI thresholds for adopting real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc. 2015;81:502 e501–16. Committee AT, Abu Dayyeh BK, Thosani N, et al. ASGE Technology Committee systematic review and meta-analysis assessing the ASGE PIVI thresholds for adopting real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc. 2015;81:502 e501–16.
44.
Zurück zum Zitat Ladabaum U, Fioritto A, Mitani A, Desai M, Kim JP, Rex DK, et al. Real-time optical biopsy of colon polyps with narrow band imaging in community practice does not yet meet key thresholds for clinical decisions. Gastroenterology. 2013;144:81–91.PubMedCrossRef Ladabaum U, Fioritto A, Mitani A, Desai M, Kim JP, Rex DK, et al. Real-time optical biopsy of colon polyps with narrow band imaging in community practice does not yet meet key thresholds for clinical decisions. Gastroenterology. 2013;144:81–91.PubMedCrossRef
45.
Zurück zum Zitat Rees CJ, Rajasekhar PT, Wilson A, Close H, Rutter MD, Saunders BP, et al. Narrow band imaging optical diagnosis of small colorectal polyps in routine clinical practice: the detect inspect characterise resect and Discard 2 (DISCARD 2) study. Gut. 2017;66:887–95.PubMedCrossRef Rees CJ, Rajasekhar PT, Wilson A, Close H, Rutter MD, Saunders BP, et al. Narrow band imaging optical diagnosis of small colorectal polyps in routine clinical practice: the detect inspect characterise resect and Discard 2 (DISCARD 2) study. Gut. 2017;66:887–95.PubMedCrossRef
46.
Zurück zum Zitat Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology. 2018;286:800–9.PubMedCrossRef Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology. 2018;286:800–9.PubMedCrossRef
47.
Zurück zum Zitat Mori Y, Kudo S, Ikehara N, Wakamura K, Wada Y, Kutsukawa M, et al. Comprehensive diagnostic ability of endocytoscopy compared with biopsy for colorectal neoplasms: a prospective randomized noninferiority trial. Endoscopy. 2013;45:98–105.PubMedCrossRef Mori Y, Kudo S, Ikehara N, Wakamura K, Wada Y, Kutsukawa M, et al. Comprehensive diagnostic ability of endocytoscopy compared with biopsy for colorectal neoplasms: a prospective randomized noninferiority trial. Endoscopy. 2013;45:98–105.PubMedCrossRef
48.
Zurück zum Zitat Renkoski TE, Banerjee B, Graves LR, et al. Ratio images and ultraviolet C excitation in autofluorescence imaging of neoplasms of the human colon. J Biomed Opt. 2013;18:16005.PubMedCrossRef Renkoski TE, Banerjee B, Graves LR, et al. Ratio images and ultraviolet C excitation in autofluorescence imaging of neoplasms of the human colon. J Biomed Opt. 2013;18:16005.PubMedCrossRef
49.
Zurück zum Zitat Arita K, Mitsuyama K, Kawano H, et al. Quantitative analysis of colorectal mucosal lesions by autofluorescence endoscopy: discrimination of carcinomas from other lesions. Oncol Rep. 2011;26:43–8.PubMed Arita K, Mitsuyama K, Kawano H, et al. Quantitative analysis of colorectal mucosal lesions by autofluorescence endoscopy: discrimination of carcinomas from other lesions. Oncol Rep. 2011;26:43–8.PubMed
51.
Zurück zum Zitat Park SH. Regulatory approval versus clinical validation of artificial intelligence diagnostic tools. Radiology. 2018;288:910–1.PubMedCrossRef Park SH. Regulatory approval versus clinical validation of artificial intelligence diagnostic tools. Radiology. 2018;288:910–1.PubMedCrossRef
52.
Zurück zum Zitat Chinzei K, Shimizu A, Mori K, et al. Regulatory science on AI-based medical devices and systems. Adv Biomed Eng. 2018;7:118–23.CrossRef Chinzei K, Shimizu A, Mori K, et al. Regulatory science on AI-based medical devices and systems. Adv Biomed Eng. 2018;7:118–23.CrossRef
Metadaten
Titel
Artificial Intelligence for Colorectal Polyp Detection and Characterization
verfasst von
Yuichi Mori, MD, PhD
Shin-ei Kudo, MD, PhD
Masashi Misawa, MD, PhD
Kenichi Takeda, MD, PhD
Toyoki Kudo, MD, PhD
Hayato Itoh, PhD
Masahiro Oda, PhD
Kensaku Mori, PhD
Publikationsdatum
26.03.2020
Verlag
Springer US
Erschienen in
Current Treatment Options in Gastroenterology / Ausgabe 2/2020
Print ISSN: 1092-8472
Elektronische ISSN: 1534-309X
DOI
https://doi.org/10.1007/s11938-020-00287-x

Kompaktes Leitlinien-Wissen Innere Medizin (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Innere Medizin

Mit Lidocain kommt der Darm nicht schneller in Schwung

Verzögertes Wiederanspringen der Darmfunktion ist ein Hauptfaktor dafür, wenn Patientinnen und Patienten nach einer Kolonresektion länger als geplant im Krankenhaus bleiben müssen. Ob man diesem Problem mit Lidocain vorbeugen kann, war Thema einer Studie.

Koronare Herzkrankheit: Das waren die Top-Studien in 2024

Zum Thema Koronare Herzkrankheit gab es 2024 wichtige neue Studien. Beleuchtet wurden darin unter anderem der Stellenwert von Betablockern nach Herzinfarkt, neue Optionen für eine Lipidsenkung sowie die Therapie bei infarktbedingtem kardiogenem Schock.

CDK4/6-Inhibitoren bei Brustkrebs in die Zweitlinie aufschieben?

Ergebnisse einer Phase-III-Studie sprechen dafür, dass die Behandlung mit CDK4/6-Inhibitoren bei fortgeschrittenem HR-positivem, HER2-negativem Brustkrebs auch auf die Zweitlinie verschoben werden könnte, ohne die onkologischen Ergebnisse zu kompromittieren.

Inhalative Steroide bei COPD nicht kardioprotektiv

  • 10.01.2025
  • COPD
  • Nachrichten

Ob inhalative Kortikosteroide (ICS) COPD-Kranke außer vor akuten Exazerbationen auch vor kardiovaskulären Komplikationen schützen können, ist unklar. Eine bevölkerungsbasierte Studie aus England spricht nicht dafür.

EKG Essentials: EKG befunden mit System (Link öffnet in neuem Fenster)

In diesem CME-Kurs können Sie Ihr Wissen zur EKG-Befundung anhand von zwölf Video-Tutorials auffrischen und 10 CME-Punkte sammeln.
Praxisnah, relevant und mit vielen Tipps & Tricks vom Profi.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.