Skip to main content
Erschienen in:

02.05.2023

Artificial Intelligence in Colonoscopy

verfasst von: Nabil M. Mansour

Erschienen in: Current Gastroenterology Reports | Ausgabe 6/2023

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

Artificial intelligence (AI) is a rapidly growing field in gastrointestinal endoscopy, and its potential applications are virtually endless, with studies demonstrating use of AI for early gastric cancer, inflammatory bowel disease, Barrett’s esophagus, capsule endoscopy, as well as other areas in gastroenterology. Much of the early studies and applications of AI in gastroenterology have revolved around colonoscopy, particularly with regards to real-time polyp detection and characterization. This review will cover much of the existing data on computer-aided detection (CADe), computer-aided diagnosis (CADx), and briefly discuss some other interesting applications of AI for colonoscopy, while also considering some of the challenges and limitations that exist around the use of AI for colonoscopy.

Recent Findings

Multiple randomized controlled trials have now been published which show a statistically significant improvement when using AI to improve adenoma detection and reduce adenoma miss rates during colonoscopy. There is also a growing pool of literature showing that AI can be helpful for characterizing/diagnosing colorectal polyps in real time. AI has also shown promise in other areas of colonoscopy, including polyp sizing and automated measurement and monitoring of quality metrics during colonoscopy.

Summary

AI is a promising tool that has the ability to shape the future of gastrointestinal endoscopy, with much of the early data showing significant benefits to use of AI during colonoscopy. However, there remain several challenges that may delay or hamper the widespread use of AI in the field.
Literatur
1.
Zurück zum Zitat Kröner PT, Engels MM, Glicksberg BS, Johnson KW, Mzaik O, van Hooft JE, et al. Artificial intelligence in gastroenterology: a state-of-the-art review. World J Gastroenterol. 2021;27:6794–824.PubMedPubMedCentralCrossRef Kröner PT, Engels MM, Glicksberg BS, Johnson KW, Mzaik O, van Hooft JE, et al. Artificial intelligence in gastroenterology: a state-of-the-art review. World J Gastroenterol. 2021;27:6794–824.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Berre CL, Sandborn WJ, Aridhi S, Devignes M-D, Fournier L, Smaïl-Tabbone M, et al. Application of artificial intelligence to gastroenterology and hepatology. Gastroenterology. 2020;158:76-94.e2 (Elsevier).PubMedCrossRef Berre CL, Sandborn WJ, Aridhi S, Devignes M-D, Fournier L, Smaïl-Tabbone M, et al. Application of artificial intelligence to gastroenterology and hepatology. Gastroenterology. 2020;158:76-94.e2 (Elsevier).PubMedCrossRef
3.
Zurück zum Zitat Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.PubMedCrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.PubMedCrossRef
4.
Zurück zum Zitat Corley DA, Jensen CD, Marks AR, Zhao WK, Lee JK, Doubeni CA, et al. Adenoma detection rate and risk of colorectal cancer and death. N Engl J Med. 2014;370:1298–306 (Massachusetts Medical Society).PubMedPubMedCentralCrossRef Corley DA, Jensen CD, Marks AR, Zhao WK, Lee JK, Doubeni CA, et al. Adenoma detection rate and risk of colorectal cancer and death. N Engl J Med. 2014;370:1298–306 (Massachusetts Medical Society).PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Zhao S, Wang S, Pan P, Xia T, Chang X, Yang X, et al. Magnitude, risk factors, and factors associated with adenoma miss rate of tandem colonoscopy: a systematic review and meta-analysis. Gastroenterology. 2019;156:1661-1674.e11 (Elsevier).PubMedCrossRef Zhao S, Wang S, Pan P, Xia T, Chang X, Yang X, et al. Magnitude, risk factors, and factors associated with adenoma miss rate of tandem colonoscopy: a systematic review and meta-analysis. Gastroenterology. 2019;156:1661-1674.e11 (Elsevier).PubMedCrossRef
6.
Zurück zum Zitat le Clercq CMC, Bouwens MWE, Rondagh EJA, Bakker CM, Keulen ETP, de Ridder RJ, et al. Postcolonoscopy colorectal cancers are preventable: a population-based study. Gut. 2014;63:957–63 (BMJ Publishing Group).PubMedCrossRef le Clercq CMC, Bouwens MWE, Rondagh EJA, Bakker CM, Keulen ETP, de Ridder RJ, et al. Postcolonoscopy colorectal cancers are preventable: a population-based study. Gut. 2014;63:957–63 (BMJ Publishing Group).PubMedCrossRef
7.
Zurück zum Zitat Robertson DJ, Lieberman DA, Winawer SJ, Ahnen DJ, Baron JA, Schatzkin A, et al. Colorectal cancers soon after colonoscopy: a pooled multicohort analysis. Gut. 2014;63:949–56 (BMJ Publishing Group).PubMedCrossRef Robertson DJ, Lieberman DA, Winawer SJ, Ahnen DJ, Baron JA, Schatzkin A, et al. Colorectal cancers soon after colonoscopy: a pooled multicohort analysis. Gut. 2014;63:949–56 (BMJ Publishing Group).PubMedCrossRef
8.
Zurück zum Zitat Aslanian HR, Shieh FK, Chan FW, Ciarleglio MM, Deng Y, Rogart JN, et al. Nurse observation during colonoscopy increases polyp detection: a randomized prospective study. Am J Gastroenterol. 2013;108:166–72.PubMedCrossRef Aslanian HR, Shieh FK, Chan FW, Ciarleglio MM, Deng Y, Rogart JN, et al. Nurse observation during colonoscopy increases polyp detection: a randomized prospective study. Am J Gastroenterol. 2013;108:166–72.PubMedCrossRef
9.
Zurück zum Zitat Maroulis DE, Iakovidis DK, Karkanis SA, Karras DA. CoLD: a versatile detection system for colorectal lesions in endoscopy video-frames. Comput Methods Programs Biomed. 2003;70:151–66.PubMedCrossRef Maroulis DE, Iakovidis DK, Karkanis SA, Karras DA. CoLD: a versatile detection system for colorectal lesions in endoscopy video-frames. Comput Methods Programs Biomed. 2003;70:151–66.PubMedCrossRef
10.
Zurück zum Zitat Iakovidis DK, Maroulis DE, Karkanis SA. An intelligent system for automatic detection of gastrointestinal adenomas in video endoscopy. Comput Biol Med. 2006;36:1084–103.PubMedCrossRef Iakovidis DK, Maroulis DE, Karkanis SA. An intelligent system for automatic detection of gastrointestinal adenomas in video endoscopy. Comput Biol Med. 2006;36:1084–103.PubMedCrossRef
11.
Zurück zum Zitat Urban G, Tripathi P, Alkayali T, Mittal M, Jalali F, Karnes W, et al. Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy. Gastroenterology. 2018;155:1069-1078.e8 (Elsevier).PubMedCrossRef Urban G, Tripathi P, Alkayali T, Mittal M, Jalali F, Karnes W, et al. Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy. Gastroenterology. 2018;155:1069-1078.e8 (Elsevier).PubMedCrossRef
12.
Zurück zum Zitat •• Wang P, Berzin TM, Glissen Brown JR, Bharadwaj S, Becq A, Xiao X, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut. 2019;68:1813–9. This was the first randomized controlled trial evaluating CADe in colonoscopy, showing a statistically significant benefit with AI.PubMedCrossRef •• Wang P, Berzin TM, Glissen Brown JR, Bharadwaj S, Becq A, Xiao X, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut. 2019;68:1813–9. This was the first randomized controlled trial evaluating CADe in colonoscopy, showing a statistically significant benefit with AI.PubMedCrossRef
13.
Zurück zum Zitat • Repici A, Badalamenti M, Maselli R, Correale L, Radaelli F, Rondonotti E, et al. Efficacy of real-time computer-aided detection of colorectal neoplasia in a randomized trial. Gastroenterology. 2020;159:512-520.e7. This was the first randomized trial from a western country with high baseline ADR. This study showed a statistically significant increase in ADR in the AI group, despite a high baseline ADR in the control group.PubMedCrossRef • Repici A, Badalamenti M, Maselli R, Correale L, Radaelli F, Rondonotti E, et al. Efficacy of real-time computer-aided detection of colorectal neoplasia in a randomized trial. Gastroenterology. 2020;159:512-520.e7. This was the first randomized trial from a western country with high baseline ADR. This study showed a statistically significant increase in ADR in the AI group, despite a high baseline ADR in the control group.PubMedCrossRef
14.
Zurück zum Zitat • Glissen Brown JR, Mansour NM, Wang P, Chuchuca MA, Minchenberg SB, Chandnani M, et al. Deep learning computer-aided polyp detection reduces adenoma miss rate: a United States multi-center randomized tandem colonoscopy study (CADeT-CS Trial). Clin Gastroenterol Hepatol. 2022;20:1499-1507.e4. (Elsevier). This was the first randomized controlled trial on CADe from the United States. This study showed lower adenoma miss rate with use of CADe.PubMedCrossRef • Glissen Brown JR, Mansour NM, Wang P, Chuchuca MA, Minchenberg SB, Chandnani M, et al. Deep learning computer-aided polyp detection reduces adenoma miss rate: a United States multi-center randomized tandem colonoscopy study (CADeT-CS Trial). Clin Gastroenterol Hepatol. 2022;20:1499-1507.e4. (Elsevier). This was the first randomized controlled trial on CADe from the United States. This study showed lower adenoma miss rate with use of CADe.PubMedCrossRef
15.
Zurück zum Zitat • Wallace MB, Sharma P, Bhandari P, East J, Antonelli G, Lorenzetti R, et al. Impact of artificial intelligence on miss rate of colorectal neoplasia. Gastroenterology. 2022;163:295-304.e5. (Elsevier). Important study from the US and Europe that showed that CADe led to a 50% reduction in adenoma miss rate.PubMedCrossRef • Wallace MB, Sharma P, Bhandari P, East J, Antonelli G, Lorenzetti R, et al. Impact of artificial intelligence on miss rate of colorectal neoplasia. Gastroenterology. 2022;163:295-304.e5. (Elsevier). Important study from the US and Europe that showed that CADe led to a 50% reduction in adenoma miss rate.PubMedCrossRef
16.
Zurück zum Zitat Shaukat A, Lichtenstein DR, Somers SC, Chung DC, Perdue DG, Gopal M, et al. Computer-aided detection improves adenomas per colonoscopy for screening and surveillance colonoscopy: a randomized trial. Gastroenterology Elsevier. 2022;163:732–41.CrossRef Shaukat A, Lichtenstein DR, Somers SC, Chung DC, Perdue DG, Gopal M, et al. Computer-aided detection improves adenomas per colonoscopy for screening and surveillance colonoscopy: a randomized trial. Gastroenterology Elsevier. 2022;163:732–41.CrossRef
18.
Zurück zum Zitat Aziz M, Haghbin H, Sayeh W, Alfatlawi H, Gangwani MK, Sohail AH, et al. Comparison of artificial intelligence with other interventions to improve adenoma detection rate for colonoscopy: a network meta-analysis. J Clin Gastroenterol [Internet]. 2022 [cited 2023 Jan 16];Publish Ahead of Print. Available from: https://journals.lww.com/10.1097/MCG.0000000000001813. Aziz M, Haghbin H, Sayeh W, Alfatlawi H, Gangwani MK, Sohail AH, et al. Comparison of artificial intelligence with other interventions to improve adenoma detection rate for colonoscopy: a network meta-analysis. J Clin Gastroenterol [Internet]. 2022 [cited 2023 Jan 16];Publish Ahead of Print. Available from: https://​journals.​lww.​com/​10.​1097/​MCG.​0000000000001813​.
19.
Zurück zum Zitat • Wang P, Liu X, Berzin TM, Glissen Brown JR, Liu P, Zhou C, et al. Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study. Lancet Gastroenterol Hepatol. 2020;5:343–51. This is the only double-blind study on CADe using a sham system. The study showed a statistically significant benefit with CADe.PubMedCrossRef • Wang P, Liu X, Berzin TM, Glissen Brown JR, Liu P, Zhou C, et al. Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study. Lancet Gastroenterol Hepatol. 2020;5:343–51. This is the only double-blind study on CADe using a sham system. The study showed a statistically significant benefit with CADe.PubMedCrossRef
20.
Zurück zum Zitat Liu W-N, Zhang Y-Y, Bian X-Q, Wang L-J, Yang Q, Zhang X-D, et al. Study on detection rate of polyps and adenomas in artificial-intelligence-aided colonoscopy. Saudi J Gastroenterol. 2020;26:13.PubMedCrossRef Liu W-N, Zhang Y-Y, Bian X-Q, Wang L-J, Yang Q, Zhang X-D, et al. Study on detection rate of polyps and adenomas in artificial-intelligence-aided colonoscopy. Saudi J Gastroenterol. 2020;26:13.PubMedCrossRef
21.
Zurück zum Zitat Wang P, Liu P, Glissen Brown JR, Berzin TM, Zhou G, Lei S, et al. Lower adenoma miss rate of computer-aided detection-assisted colonoscopy vs routine white-light colonoscopy in a prospective tandem study. Gastroenterology. 2020;159:1252-1261.e5.PubMedCrossRef Wang P, Liu P, Glissen Brown JR, Berzin TM, Zhou G, Lei S, et al. Lower adenoma miss rate of computer-aided detection-assisted colonoscopy vs routine white-light colonoscopy in a prospective tandem study. Gastroenterology. 2020;159:1252-1261.e5.PubMedCrossRef
22.
Zurück zum Zitat Kamba S, Tamai N, Saitoh I, Matsui H, Horiuchi H, Kobayashi M, et al. Reducing adenoma miss rate of colonoscopy assisted by artificial intelligence: a multicenter randomized controlled trial. J Gastroenterol. 2021;56:746–57.PubMedCrossRef Kamba S, Tamai N, Saitoh I, Matsui H, Horiuchi H, Kobayashi M, et al. Reducing adenoma miss rate of colonoscopy assisted by artificial intelligence: a multicenter randomized controlled trial. J Gastroenterol. 2021;56:746–57.PubMedCrossRef
24.
Zurück zum Zitat Repici A, Spadaccini M, Antonelli G, Correale L, Maselli R, Galtieri PA, et al. Artificial intelligence and colonoscopy experience: lessons from two randomised trials. Gut. 2022;71:757–65.PubMedCrossRef Repici A, Spadaccini M, Antonelli G, Correale L, Maselli R, Galtieri PA, et al. Artificial intelligence and colonoscopy experience: lessons from two randomised trials. Gut. 2022;71:757–65.PubMedCrossRef
25.
Zurück zum Zitat Levy I, Bruckmayer L, Klang E, Ben-Horin S, Kopylov U. Artificial intelligence-aided colonoscopy does not increase adenoma detection rate in routine clinical practice. Am J Gastroenterol. 2022;117:1871–3.PubMedCrossRef Levy I, Bruckmayer L, Klang E, Ben-Horin S, Kopylov U. Artificial intelligence-aided colonoscopy does not increase adenoma detection rate in routine clinical practice. Am J Gastroenterol. 2022;117:1871–3.PubMedCrossRef
26.
Zurück zum Zitat • Ladabaum U, Shepard J, Weng Y, Desai M, Singer SJ, Mannalithara A. Computer-aided detection of polyps does not improve colonoscopist performance in a pragmatic implementation trial. Gastroenterology [Internet]. 2022 [cited 2023 Jan 16]; Available from: https://www.sciencedirect.com/science/article/pii/S0016508522013889. This is an important recent study showing negative results for CADe. While it is not a randomized trial, it was a well-designed pragmatic implementation trial, and we need to consider the reasons why the results here were different than randomized trials. • Ladabaum U, Shepard J, Weng Y, Desai M, Singer SJ, Mannalithara A. Computer-aided detection of polyps does not improve colonoscopist performance in a pragmatic implementation trial. Gastroenterology [Internet]. 2022 [cited 2023 Jan 16]; Available from: https://​www.​sciencedirect.​com/​science/​article/​pii/​S001650852201388​9. This is an important recent study showing negative results for CADe. While it is not a randomized trial, it was a well-designed pragmatic implementation trial, and we need to consider the reasons why the results here were different than randomized trials.
27.
Zurück zum Zitat Rex DK, Kahi C, O’Brien M, Levin TR, Pohl H, Rastogi A, et al. The American Society for Gastrointestinal Endoscopy PIVI (Preservation and Incorporation of Valuable Endoscopic Innovations) on real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc. 2011;73:419–22.PubMedCrossRef Rex DK, Kahi C, O’Brien M, Levin TR, Pohl H, Rastogi A, et al. The American Society for Gastrointestinal Endoscopy PIVI (Preservation and Incorporation of Valuable Endoscopic Innovations) on real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc. 2011;73:419–22.PubMedCrossRef
28.
Zurück zum Zitat Abu Dayyeh BK, Thosani N, Konda V, Wallace MB, Rex DK, Chauhan SS, et al. ASGE Technology Committee systematic review and meta-analysis assessing the ASGE PIVI thresholds for adopting real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc. 2015;81:502.e1-502.e16.PubMedCrossRef Abu Dayyeh BK, Thosani N, Konda V, Wallace MB, Rex DK, Chauhan SS, et al. ASGE Technology Committee systematic review and meta-analysis assessing the ASGE PIVI thresholds for adopting real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc. 2015;81:502.e1-502.e16.PubMedCrossRef
29.
Zurück zum Zitat Tischendorf JJW, Gross S, Winograd R, Hecker H, Auer R, Behrens A, et al. Computer-aided classification of colorectal polyps based on vascular patterns: a pilot study. Endoscopy. © Georg Thieme Verlag KG Stuttgart New York; 2010;203–7. Tischendorf JJW, Gross S, Winograd R, Hecker H, Auer R, Behrens A, et al. Computer-aided classification of colorectal polyps based on vascular patterns: a pilot study. Endoscopy. © Georg Thieme Verlag KG Stuttgart New York; 2010;203–7.
30.
Zurück zum Zitat Kominami Y, Yoshida S, Tanaka S, Sanomura Y, Hirakawa T, Raytchev B, et al. Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy. Gastrointest Endosc. 2016;83:643–9.PubMedCrossRef Kominami Y, Yoshida S, Tanaka S, Sanomura Y, Hirakawa T, Raytchev B, et al. Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy. Gastrointest Endosc. 2016;83:643–9.PubMedCrossRef
31.
Zurück zum Zitat •• Mori Y, Kudo S, Misawa M, Saito Y, Ikematsu H, Hotta K, et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy. Ann Intern Med. 2018;169:357–66. (American College of Physicians). Large prospective study showing benefit of CADx for polyp characterization.PubMedCrossRef •• Mori Y, Kudo S, Misawa M, Saito Y, Ikematsu H, Hotta K, et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy. Ann Intern Med. 2018;169:357–66. (American College of Physicians). Large prospective study showing benefit of CADx for polyp characterization.PubMedCrossRef
32.
Zurück zum Zitat Byrne MF, Chapados N, Soudan F, Oertel C, Pérez ML, Kelly R, et al. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut. 2019;68:94–100 (BMJ Publishing Group).PubMedCrossRef Byrne MF, Chapados N, Soudan F, Oertel C, Pérez ML, Kelly R, et al. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut. 2019;68:94–100 (BMJ Publishing Group).PubMedCrossRef
33.
Zurück zum Zitat • Hassan C, Balsamo G, Lorenzetti R, Zullo A, Antonelli G. Artificial intelligence allows leaving-in-situ colorectal polyps. Clin Gastroenterol Hepatol. 2022;20:2505-2513.e4. (Elsevier). Prospective study showing CADx could support resect and discard and diagnose and leave strategies using current standard colonoscopy technology.PubMedCrossRef • Hassan C, Balsamo G, Lorenzetti R, Zullo A, Antonelli G. Artificial intelligence allows leaving-in-situ colorectal polyps. Clin Gastroenterol Hepatol. 2022;20:2505-2513.e4. (Elsevier). Prospective study showing CADx could support resect and discard and diagnose and leave strategies using current standard colonoscopy technology.PubMedCrossRef
34.
Zurück zum Zitat Chaptini L, Chaaya A, Depalma F, Hunter K, Peikin S, Laine L. Variation in polyp size estimation among endoscopists and impact on surveillance intervals. Gastrointestinal Endoscopy. 2014;80:652–9 (Elsevier).PubMedCrossRef Chaptini L, Chaaya A, Depalma F, Hunter K, Peikin S, Laine L. Variation in polyp size estimation among endoscopists and impact on surveillance intervals. Gastrointestinal Endoscopy. 2014;80:652–9 (Elsevier).PubMedCrossRef
35.
Zurück zum Zitat Rex DK, Rabinovitz R. Variable interpretation of polyp size by using open forceps by experienced colonoscopists. Gastrointestinal Endoscopy. 2014;79:402–7 (Elsevier).PubMedCrossRef Rex DK, Rabinovitz R. Variable interpretation of polyp size by using open forceps by experienced colonoscopists. Gastrointestinal Endoscopy. 2014;79:402–7 (Elsevier).PubMedCrossRef
36.
Zurück zum Zitat Abdelrahim M, Saiga H, Maeda N, Hossain E, Ikeda H, Bhandari P. Automated sizing of colorectal polyps using computer vision. Gut. 2022;71:7–9.PubMedCrossRef Abdelrahim M, Saiga H, Maeda N, Hossain E, Ikeda H, Bhandari P. Automated sizing of colorectal polyps using computer vision. Gut. 2022;71:7–9.PubMedCrossRef
37.
Zurück zum Zitat Kwak MS, Cha JM, Jeon JW, Yoon JY, Park JW. Artificial intelligence-based measurement outperforms current methods for colorectal polyp size measurement. Dig Endosc. 2022;34:1188–95.PubMedCrossRef Kwak MS, Cha JM, Jeon JW, Yoon JY, Park JW. Artificial intelligence-based measurement outperforms current methods for colorectal polyp size measurement. Dig Endosc. 2022;34:1188–95.PubMedCrossRef
38.
Zurück zum Zitat Desai M, Rex DK, Bohm ME, Davitkov P, DeWitt JM, Fischer M, et al. Impact of withdrawal time on adenoma detection rate: results from a prospective multicenter trial. Gastrointest Endosc. 2022;S0016–5107(22):02039–49. Desai M, Rex DK, Bohm ME, Davitkov P, DeWitt JM, Fischer M, et al. Impact of withdrawal time on adenoma detection rate: results from a prospective multicenter trial. Gastrointest Endosc. 2022;S0016–5107(22):02039–49.
39.
Zurück zum Zitat Barua I, Misawa M, Glissen Brown JR, Walradt T, Kudo S, Sheth SG, et al. Speedometer for withdrawal time monitoring during colonoscopy: a clinical implementation trial. Scand J Gastroenterol. 2022;0:1–7 (Taylor & Francis). Barua I, Misawa M, Glissen Brown JR, Walradt T, Kudo S, Sheth SG, et al. Speedometer for withdrawal time monitoring during colonoscopy: a clinical implementation trial. Scand J Gastroenterol. 2022;0:1–7 (Taylor & Francis).
40.
Zurück zum Zitat Gong D, Wu L, Zhang J, Mu G, Shen L, Liu J, et al. Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study. Lancet Gastroenterol Hepatol. 2020;5:352–61.PubMedCrossRef Gong D, Wu L, Zhang J, Mu G, Shen L, Liu J, et al. Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study. Lancet Gastroenterol Hepatol. 2020;5:352–61.PubMedCrossRef
41.
Zurück zum Zitat Su J-R, Li Z, Shao X-J, Ji C-R, Ji R, Zhou R-C, et al. Impact of a real-time automatic quality control system on colorectal polyp and adenoma detection: a prospective randomized controlled study (with videos). Gastrointest Endosc. 2020;91:415-424.e4.PubMedCrossRef Su J-R, Li Z, Shao X-J, Ji C-R, Ji R, Zhou R-C, et al. Impact of a real-time automatic quality control system on colorectal polyp and adenoma detection: a prospective randomized controlled study (with videos). Gastrointest Endosc. 2020;91:415-424.e4.PubMedCrossRef
43.
Zurück zum Zitat Hassan C, Spadaccini M, Iannone A, Maselli R, Jovani M, Chandrasekar VT, et al. Performance of artificial intelligence in colonoscopy for adenoma and polyp detection: a systematic review and meta-analysis. Gastrointest Endosc. 2021;93:77-85.e6.PubMedCrossRef Hassan C, Spadaccini M, Iannone A, Maselli R, Jovani M, Chandrasekar VT, et al. Performance of artificial intelligence in colonoscopy for adenoma and polyp detection: a systematic review and meta-analysis. Gastrointest Endosc. 2021;93:77-85.e6.PubMedCrossRef
44.
Zurück zum Zitat Areia M, Mori Y, Correale L, Repici A, Bretthauer M, Sharma P, et al. Cost-effectiveness of artificial intelligence for screening colonoscopy: a modelling study. Lancet Digital Health. 2022;4:e436–44.PubMedCrossRef Areia M, Mori Y, Correale L, Repici A, Bretthauer M, Sharma P, et al. Cost-effectiveness of artificial intelligence for screening colonoscopy: a modelling study. Lancet Digital Health. 2022;4:e436–44.PubMedCrossRef
45.
Zurück zum Zitat Rex DK, Berzin TM, Mori Y. Artificial intelligence improves detection at colonoscopy: why aren’t we all already using it? Gastroenterology. 2022;163:35–7 (Elsevier).PubMedCrossRef Rex DK, Berzin TM, Mori Y. Artificial intelligence improves detection at colonoscopy: why aren’t we all already using it? Gastroenterology. 2022;163:35–7 (Elsevier).PubMedCrossRef
47.
49.
Zurück zum Zitat Barua I, Wieszczy P, Kudo S, Misawa M, Holme Ø, Gulati S, et al. Real-time artificial intelligence-based optical diagnosis of neoplastic polyps during colonoscopy. NEJM Evidence. 2022;1:EVIDoa2200003 (Massachusetts Medical Society).CrossRef Barua I, Wieszczy P, Kudo S, Misawa M, Holme Ø, Gulati S, et al. Real-time artificial intelligence-based optical diagnosis of neoplastic polyps during colonoscopy. NEJM Evidence. 2022;1:EVIDoa2200003 (Massachusetts Medical Society).CrossRef
50.
Zurück zum Zitat Rondonotti E, Hassan C, Tamanini G, Antonelli G, Andrisani G, Leonetti G, et al. Artificial intelligence-assisted optical diagnosis for the resect-and-discard strategy in clinical practice: the artificial intelligence BLI characterization (ABC) study. Endoscopy. 2022;14–22. (Georg Thieme Verlag KG). Rondonotti E, Hassan C, Tamanini G, Antonelli G, Andrisani G, Leonetti G, et al. Artificial intelligence-assisted optical diagnosis for the resect-and-discard strategy in clinical practice: the artificial intelligence BLI characterization (ABC) study. Endoscopy. 2022;14–22. (Georg Thieme Verlag KG).
Metadaten
Titel
Artificial Intelligence in Colonoscopy
verfasst von
Nabil M. Mansour
Publikationsdatum
02.05.2023
Verlag
Springer US
Erschienen in
Current Gastroenterology Reports / Ausgabe 6/2023
Print ISSN: 1522-8037
Elektronische ISSN: 1534-312X
DOI
https://doi.org/10.1007/s11894-023-00872-x

Kompaktes Leitlinien-Wissen Innere Medizin (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Innere Medizin

CDK4/6-Inhibitoren bei Brustkrebs in die Zweitlinie aufschieben?

Ergebnisse einer Phase-III-Studie sprechen dafür, dass die Behandlung mit CDK4/6-Inhibitoren bei fortgeschrittenem HR-positivem, HER2-negativem Brustkrebs auch auf die Zweitlinie verschoben werden könnte, ohne die onkologischen Ergebnisse zu kompromittieren.

Inhalative Steroide bei COPD nicht kardioprotektiv

  • 10.01.2025
  • COPD
  • Nachrichten

Ob inhalative Kortikosteroide (ICS) COPD-Kranke außer vor akuten Exazerbationen auch vor kardiovaskulären Komplikationen schützen können, ist unklar. Eine bevölkerungsbasierte Studie aus England spricht nicht dafür.

Kaffeegenuss sicher bei Vorhofflimmern

Menschen mit Vorhofflimmern fürchten oft, Kaffee könnte schlecht für ihr Herz sein. Solche Ängste sind offenbar unbegründet: Zwei Schweizer Untersuchungen deuten sogar auf eine reduzierte Rate von kardiovaskulären Ereignissen unter Kaffeetrinkern.

Cannabisextrakt verbessert Antiemese bei Chemotherapie

Sprechen Krebskranke auf die übliche Antiemese während einer Chemotherapie nicht ausreichend an, lohnt sich möglicherweise eine Behandlung mit Cannabisextrakt. In einer Phase-2/3-Studie ließ sich die antiemetische Response mit einem solchen Extrakt erheblich verbessern.

EKG Essentials: EKG befunden mit System (Link öffnet in neuem Fenster)

In diesem CME-Kurs können Sie Ihr Wissen zur EKG-Befundung anhand von zwölf Video-Tutorials auffrischen und 10 CME-Punkte sammeln.
Praxisnah, relevant und mit vielen Tipps & Tricks vom Profi.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.