Skip to main content
Erschienen in:

27.08.2023 | Spleen

Artificial intelligence tool detection of intravenous contrast enhancement using spleen attenuation

verfasst von: B. Dustin Pooler, Cullen J. Fleming, John W. Garrett, Ronald M. Summers, Perry J. Pickhardt

Erschienen in: Abdominal Radiology | Ausgabe 11/2023

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To assess the ability of an automated AI tool to detect intravenous contrast material (IVCM) in abdominal CT examinations using spleen attenuation.

Methods

A previously validated automated AI tool measuring the attenuation of the spleen was deployed on a sample of 32,994 adult (age ≥ 18) patients (mean age, 61.9 ± 14.7 years; 13,869 men, 19,125 women) undergoing 65,449 supine position CT examinations (41,020 with and 24,429 without IVCM by DICOM header) from January 1, 2000 to December 31, 2021. After exclusions, receiver operating characteristic (ROC) curve analysis was performed to determine the optimal threshold for binary classification of IVCM status (non-contrast vs IVCM enhanced), which was then applied to the sample. Discordant examinations (i.e., IVCM status determined by AI tool did not match DICOM header) were manually reviewed to establish ground truth. Repeat ROC curve and contingency table analysis were performed to assess AI tool performance.

Results

ROC analysis of the initial study sample of 61,783 CT examinations yielded AUC of 0.970 with Youden index suggesting an optimal spleen attenuation threshold of 65 Hounsfield units (HU). Manual review of 2094 discordant CT examinations revealed discordance due to DICOM header error in 1278 (61.0%) and AI tool misclassification in 410 (19.6%), with 406 (9.4%) meeting exclusion criteria. Analysis of 61,377 CT examinations in the final study sample yielded AUC of 0.999 with accuracy of 99.3% at the 65 HU threshold. Error rate for DICOM header information was 2.1% (1278/61,377) versus 0.7% (410/61,377) for the AI tool.

Conclusion

The automated spleen attenuation AI tool was highly accurate for detection of IVCM at a threshold of 65 HU.
Literatur
2.
Zurück zum Zitat Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019; 25:44-56CrossRefPubMed Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019; 25:44-56CrossRefPubMed
4.
Zurück zum Zitat Pickhardt PJ, Graffy PM, Perez AA, Lubner MG, Elton DC, Summers RM. Opportunistic Screening at Abdominal CT: Use of Automated Body Composition Biomarkers for Added Cardiometabolic Value. Radiographics 2021; 41:524-542CrossRefPubMed Pickhardt PJ, Graffy PM, Perez AA, Lubner MG, Elton DC, Summers RM. Opportunistic Screening at Abdominal CT: Use of Automated Body Composition Biomarkers for Added Cardiometabolic Value. Radiographics 2021; 41:524-542CrossRefPubMed
5.
Zurück zum Zitat Pickhardt PJ, Graffy PM, Zea R, et al. Automated CT biomarkers for opportunistic prediction of future cardiovascular events and mortality in an asymptomatic screening population: a retrospective cohort study. Lancet Digit Health 2020; 2:e192-e200CrossRefPubMedPubMedCentral Pickhardt PJ, Graffy PM, Zea R, et al. Automated CT biomarkers for opportunistic prediction of future cardiovascular events and mortality in an asymptomatic screening population: a retrospective cohort study. Lancet Digit Health 2020; 2:e192-e200CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Pickhardt PJ, Graffy PM, Zea R, et al. Automated Abdominal CT Imaging Biomarkers for Opportunistic Prediction of Future Major Osteoporotic Fractures in Asymptomatic Adults. Radiology 2020; 297:64-72CrossRefPubMed Pickhardt PJ, Graffy PM, Zea R, et al. Automated Abdominal CT Imaging Biomarkers for Opportunistic Prediction of Future Major Osteoporotic Fractures in Asymptomatic Adults. Radiology 2020; 297:64-72CrossRefPubMed
7.
Zurück zum Zitat Pickhardt PJ, Graffy PM, Zea R, et al. Utilizing Fully Automated Abdominal CT-Based Biomarkers for Opportunistic Screening for Metabolic Syndrome in Adults Without Symptoms. AJR Am J Roentgenol 2021; 216:85-92CrossRefPubMed Pickhardt PJ, Graffy PM, Zea R, et al. Utilizing Fully Automated Abdominal CT-Based Biomarkers for Opportunistic Screening for Metabolic Syndrome in Adults Without Symptoms. AJR Am J Roentgenol 2021; 216:85-92CrossRefPubMed
8.
Zurück zum Zitat Magudia K, Bridge CP, Andriole KP, Rosenthal MH. The Trials and Tribulations of Assembling Large Medical Imaging Datasets for Machine Learning Applications. J Digit Imaging 2021; 34:1424-1429CrossRefPubMedPubMedCentral Magudia K, Bridge CP, Andriole KP, Rosenthal MH. The Trials and Tribulations of Assembling Large Medical Imaging Datasets for Machine Learning Applications. J Digit Imaging 2021; 34:1424-1429CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Perez AA, Pickhardt PJ, Elton DC, Sandfort V, Summers RM. Fully automated CT imaging biomarkers of bone, muscle, and fat: correcting for the effect of intravenous contrast. Abdominal radiology (New York) 2021; 46:1229-1235CrossRefPubMed Perez AA, Pickhardt PJ, Elton DC, Sandfort V, Summers RM. Fully automated CT imaging biomarkers of bone, muscle, and fat: correcting for the effect of intravenous contrast. Abdominal radiology (New York) 2021; 46:1229-1235CrossRefPubMed
10.
11.
Zurück zum Zitat Elsayes KM, Narra VR, Mukundan G, Lewis JS, Menias CO, Heiken JP. MR imaging of the spleen: Spectrum of abnormalities. Radiographics 2005; 25:967-982CrossRefPubMed Elsayes KM, Narra VR, Mukundan G, Lewis JS, Menias CO, Heiken JP. MR imaging of the spleen: Spectrum of abnormalities. Radiographics 2005; 25:967-982CrossRefPubMed
12.
Zurück zum Zitat Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W, eds. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. Cham: Springer International Publishing, 2016:424-432CrossRef Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W, eds. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. Cham: Springer International Publishing, 2016:424-432CrossRef
13.
Zurück zum Zitat Kayalıbay B, Jensen G, van der Smagt P. CNN-based Segmentation of Medical Imaging Data. 2017 Kayalıbay B, Jensen G, van der Smagt P. CNN-based Segmentation of Medical Imaging Data. 2017
14.
Zurück zum Zitat Lee S, Elton DC, Yang AH, et al. Fully Automated and Explainable Liver Segmental Volume Ratio and Spleen Segmentation at CT for Diagnosing Cirrhosis. Radiol Artif Intell 2022; 4:e210268CrossRefPubMedPubMedCentral Lee S, Elton DC, Yang AH, et al. Fully Automated and Explainable Liver Segmental Volume Ratio and Spleen Segmentation at CT for Diagnosing Cirrhosis. Radiol Artif Intell 2022; 4:e210268CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Sandfort V, Yan K, Pickhardt P, Summers R. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Scientific Reports 2019; 9 Sandfort V, Yan K, Pickhardt P, Summers R. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Scientific Reports 2019; 9
16.
Zurück zum Zitat Lubner MG, Graffy PM, Said A, et al. Utility of Multiparametric CT for Identification of High-Risk NAFLD. AJR Am J Roentgenol 2021; 216:659-668CrossRefPubMed Lubner MG, Graffy PM, Said A, et al. Utility of Multiparametric CT for Identification of High-Risk NAFLD. AJR Am J Roentgenol 2021; 216:659-668CrossRefPubMed
17.
Zurück zum Zitat Yan K, Lu L, Summers RM. Unsupervised body part regression via spatially self-ordering convolutional neural networks. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) 2018:1022-1025 Yan K, Lu L, Summers RM. Unsupervised body part regression via spatially self-ordering convolutional neural networks. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) 2018:1022-1025
18.
Zurück zum Zitat Yan K, Wang X, Lu L, et al. Deep Lesion Graphs in the Wild: Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-scale Lesion Database. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2018:9261-9270 Yan K, Wang X, Lu L, et al. Deep Lesion Graphs in the Wild: Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-scale Lesion Database. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2018:9261-9270
19.
Zurück zum Zitat Hanley JA, McNeil BJ. The Meaning and Use of the Area Under a Receiver Operating Characteristic (ROC) Curve. Radiology 1982; 143:29-36CrossRefPubMed Hanley JA, McNeil BJ. The Meaning and Use of the Area Under a Receiver Operating Characteristic (ROC) Curve. Radiology 1982; 143:29-36CrossRefPubMed
20.
Zurück zum Zitat Hanley JA, McNeil BJ. Method of Comparing the Areas Under Receiver Operating Characteristic Curves Derived from the Same Cases. Radiology 1983; 148:839-843CrossRefPubMed Hanley JA, McNeil BJ. Method of Comparing the Areas Under Receiver Operating Characteristic Curves Derived from the Same Cases. Radiology 1983; 148:839-843CrossRefPubMed
21.
Zurück zum Zitat Smith AD. Automated Screening for Future Osteoporotic Fractures on Abdominal CT: Opportunistic or an Outstanding Opportunity? Radiology 2020; 297:73-74CrossRefPubMed Smith AD. Automated Screening for Future Osteoporotic Fractures on Abdominal CT: Opportunistic or an Outstanding Opportunity? Radiology 2020; 297:73-74CrossRefPubMed
22.
Zurück zum Zitat Ye Z, Qian JM, Hosny A, et al. Deep Learning-based Detection of Intravenous Contrast Enhancement on CT Scans. Radiol Artif Intell 2022; 4:e210285CrossRefPubMedPubMedCentral Ye Z, Qian JM, Hosny A, et al. Deep Learning-based Detection of Intravenous Contrast Enhancement on CT Scans. Radiol Artif Intell 2022; 4:e210285CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Dietvorst BJ, Simmons JP, Massey C. Algorithm aversion: people erroneously avoid algorithms after seeing them err. J Exp Psychol Gen 2015; 144:114-126CrossRefPubMed Dietvorst BJ, Simmons JP, Massey C. Algorithm aversion: people erroneously avoid algorithms after seeing them err. J Exp Psychol Gen 2015; 144:114-126CrossRefPubMed
24.
Zurück zum Zitat Pooler BD, Garrett JW, Southard AM, Summers RM, Pickhardt PJ. Technical Adequacy of Fully Automated Artificial Intelligence Body Composition Tools: Assessment in a Heterogeneous Sample of External CT Examinations. AJR Am J Roentgenol 2023:1-9 Pooler BD, Garrett JW, Southard AM, Summers RM, Pickhardt PJ. Technical Adequacy of Fully Automated Artificial Intelligence Body Composition Tools: Assessment in a Heterogeneous Sample of External CT Examinations. AJR Am J Roentgenol 2023:1-9
Metadaten
Titel
Artificial intelligence tool detection of intravenous contrast enhancement using spleen attenuation
verfasst von
B. Dustin Pooler
Cullen J. Fleming
John W. Garrett
Ronald M. Summers
Perry J. Pickhardt
Publikationsdatum
27.08.2023
Verlag
Springer US
Erschienen in
Abdominal Radiology / Ausgabe 11/2023
Print ISSN: 2366-004X
Elektronische ISSN: 2366-0058
DOI
https://doi.org/10.1007/s00261-023-04020-x

Neu im Fachgebiet Radiologie

Hölzerner Fremdkörper in der Orbita? Zuerst eine CT!

Besteht der Verdacht, dass ein Fremdkörper aus Holz in den Orbitalraum eingedrungen ist, spielt die Bildgebung eine entscheidende diagnostische Rolle. Was von CT und MRT zu erwarten ist, hat ein chinesisches Radiologenteam untersucht.

Diagnostik von Rippenfrakturen: KI schlägt Radiologen

Mensch gegen Maschine: Beim Erkennen von Rippenfrakturen in Röntgen- und CT-Aufnahmen entschied sich dieses Duell zugunsten der künstlichen Intelligenz (KI). Die Algorithmen zeigten eine höhere Sensitivität als ihre menschlichen Kollegen.

Ärztinnen überholen Ärzte bei Praxisgründungen

Bei Praxisgründungen haben inzwischen die Frauen deutlich die Nase vorn: Seit zehn Jahren wagen laut apoBank mehr Ärztinnen als Ärzte den Schritt in die Selbstständigkeit. In puncto Finanzierung sind sie aber vorsichtiger als die männlichen Kollegen.

Ambulante Behandlung darf länger dauern als stationäre

Ambulante Behandlungen haben Vorrang vor stationären - auch wenn diese läner dauern. Das hat das Bundessozialgericht klargestellt. Konkret ging es um Liposuktionen der Ober- und Unterschenkel.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.