Skip to main content
main-content

01.12.2012 | Research article | Ausgabe 1/2012 Open Access

BMC Medical Informatics and Decision Making 1/2012

Artificial neural network aided non-invasive grading evaluation of hepatic fibrosis by duplex ultrasonography

Zeitschrift:
BMC Medical Informatics and Decision Making > Ausgabe 1/2012
Autoren:
Li Zhang, Qiao-ying LI, Yun-you Duan, Guo-zhen Yan, Yi-lin Yang, Rui-jing Yang
Wichtige Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1472-6947-12-55) contains supplementary material, which is available to authorized users.
Li Zhang, Qiao-ying LI contributed equally to this work.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

LZ performed the ultrasound examinations and imaging analysis. QYL performed the data analysis. YLY and GZY participated in the ultrasound imaging analysis. YLY and RJY performed the liver biopsy under the guidance of ultrasound. YYD edited the article. All authors read and approved the final manuscript.

Abstract

Background

Artificial neural networks (ANNs) are widely studied for evaluating diseases. This paper discusses the intelligence mode of an ANN in grading the diagnosis of liver fibrosis by duplex ultrasonogaphy.

Methods

239 patients who were confirmed as having liver fibrosis or cirrhosis by ultrasound guided liver biopsy were investigated in this study. We quantified ultrasonographic parameters as significant parameters using a data optimization procedure applied to an ANN. 179 patients were typed at random as the training group; 60 additional patients were consequently enrolled as the validating group. Performance of the ANN was evaluated according to accuracy, sensitivity, specificity, Youden’s index and receiver operating characteristic (ROC) analysis.

Results

5 ultrasonographic parameters; i.e., the liver parenchyma, thickness of spleen, hepatic vein (HV) waveform, hepatic artery pulsatile index (HAPI) and HV damping index (HVDI), were enrolled as the input neurons in the ANN model. The sensitivity, specificity and accuracy of the ANN model for quantitative diagnosis of liver fibrosis were 95.0%, 85.0% and 88.3%, respectively. The Youden’s index (YI) was 0.80.

Conclusions

The established ANN model had good sensitivity and specificity in quantitative diagnosis of hepatic fibrosis or liver cirrhosis. Our study suggests that the ANN model based on duplex ultrasound may help non-invasive grading diagnosis of liver fibrosis in clinical practice.
Zusatzmaterial
Authors’ original file for figure 1
12911_2011_520_MOESM1_ESM.jpeg
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2012

BMC Medical Informatics and Decision Making 1/2012 Zur Ausgabe