Skip to main content
main-content

01.12.2012 | Proceedings | Sonderheft 1/2012 Open Access

BMC Medical Informatics and Decision Making 1/2012

ASCOT: a text mining-based web-service for efficient search and assisted creation of clinical trials

Zeitschrift:
BMC Medical Informatics and Decision Making > Sonderheft 1/2012
Autoren:
Ioannis Korkontzelos, Tingting Mu, Sophia Ananiadou
Wichtige Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The first author is the sole developer of ASCOT system and led the writing up of the present paper. The second author has developed the UTC (Unigram and Term-based Clustering) algorithm, employed by ASCOT and presented in subsection "Clusters and cluster labels". The third author supervised both preceding authors, is the principal investigator of the clinical trials project in the National Centre for Text Mining (NaCTeM) and provided the research directions for ASCOT.

Abstract

Clinical trials are mandatory protocols describing medical research on humans and among the most valuable sources of medical practice evidence. Searching for trials relevant to some query is laborious due to the immense number of existing protocols. Apart from search, writing new trials includes composing detailed eligibility criteria, which might be time-consuming, especially for new researchers. In this paper we present ASCOT, an efficient search application customised for clinical trials. ASCOT uses text mining and data mining methods to enrich clinical trials with metadata, that in turn serve as effective tools to narrow down search. In addition, ASCOT integrates a component for recommending eligibility criteria based on a set of selected protocols.
Literatur
Über diesen Artikel

Weitere Artikel der Sonderheft 1/2012

BMC Medical Informatics and Decision Making 1/2012 Zur Ausgabe