Skip to main content
Erschienen in: Inflammation 1/2015

01.02.2015

Aspalathin and Nothofagin from Rooibos (Aspalathus linearis) Inhibits High Glucose-Induced Inflammation In Vitro and In Vivo

verfasst von: Sae-Kwang Ku, Soyoung Kwak, Yaesol Kim, Jong-Sup Bae

Erschienen in: Inflammation | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

Vascular inflammation plays a key role in the initiation and progression of atherosclerosis, a major complication of diabetes mellitus. Aspalathin (Asp) and nothofagin (Not) are two major active dihydrochalcones found in green rooibos, which have been reported for their antioxidant activity. In this study, we assessed whether Asp or Not can suppress vascular inflammation induced by high glucose (HG) in human umbilical vein endothelial cells (HUVECs) and mice. We monitored the effects of Asp or Not on HG-induced vascular hyperpermeability, expression of cell adhesion molecules (CAMs), formation of reactive oxygen species (ROS), and activation of nuclear factor (NF)-κB in vitro and in vivo. Our data indicate that HG markedly increased vascular permeability, monocyte adhesion, expression of CAMs, formation of ROS, and activation of NF-κB. Remarkably, treatment of Asp or Not inhibited HG-mediated vascular hyperpermeability, adhesion of monocytes toward HUVECs, and expression of CAMs. In addition, Asp or Not suppressed the formation of ROS and the activation of NF-κB. Since vascular inflammation induced by HG is critical in the development of diabetic complications, our results suggest that Asp or Not may have significant benefits in the treatment of diabetic complications.
Literatur
1.
Zurück zum Zitat Whiting, D.R., L. Guariguata, C. Weil, and J. Shaw. 2011. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice 94: 311–321.CrossRefPubMed Whiting, D.R., L. Guariguata, C. Weil, and J. Shaw. 2011. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice 94: 311–321.CrossRefPubMed
2.
Zurück zum Zitat Grundy, S.M., I.J. Benjamin, G.L. Burke, et al. 1999. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 100: 1134–1146.CrossRefPubMed Grundy, S.M., I.J. Benjamin, G.L. Burke, et al. 1999. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 100: 1134–1146.CrossRefPubMed
3.
Zurück zum Zitat Thomas, J.E., and J.M. Foody. 2007. The pathophysiology of cardiovascular disease in diabetes mellitus and the future of therapy. Journal of the Cardiometabolic Syndrome 2: 108–113.CrossRefPubMed Thomas, J.E., and J.M. Foody. 2007. The pathophysiology of cardiovascular disease in diabetes mellitus and the future of therapy. Journal of the Cardiometabolic Syndrome 2: 108–113.CrossRefPubMed
4.
Zurück zum Zitat Roglic, G., N. Unwin, P.H. Bennett, et al. 2005. The burden of mortality attributable to diabetes: realistic estimates for the year 2000. Diabetes Care 28: 2130–2135.CrossRefPubMed Roglic, G., N. Unwin, P.H. Bennett, et al. 2005. The burden of mortality attributable to diabetes: realistic estimates for the year 2000. Diabetes Care 28: 2130–2135.CrossRefPubMed
6.
Zurück zum Zitat Day, C. 1998. Traditional plant treatments for diabetes mellitus: pharmaceutical foods. British Journal of Nutrition 80: 5–6.CrossRefPubMed Day, C. 1998. Traditional plant treatments for diabetes mellitus: pharmaceutical foods. British Journal of Nutrition 80: 5–6.CrossRefPubMed
7.
Zurück zum Zitat Li, G.Q., A. Kam, K.H. Wong, et al. 2012. Herbal medicines for the management of diabetes. Advances in Experimental Medicine and Biology 771: 396–413.PubMed Li, G.Q., A. Kam, K.H. Wong, et al. 2012. Herbal medicines for the management of diabetes. Advances in Experimental Medicine and Biology 771: 396–413.PubMed
8.
Zurück zum Zitat Prior, R.L., and G. Cao. 1999. Antioxidant capacity and polyphenolic components of teas: implications for altering in vivo antioxidant status. Proceedings of the Society for Experimental Biology and Medicine 220: 255–261.CrossRefPubMed Prior, R.L., and G. Cao. 1999. Antioxidant capacity and polyphenolic components of teas: implications for altering in vivo antioxidant status. Proceedings of the Society for Experimental Biology and Medicine 220: 255–261.CrossRefPubMed
10.
Zurück zum Zitat McKay, D.L., and J.B. Blumberg. 2007. A review of the bioactivity of South African herbal teas: rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia). Phytotherapy Research 21: 1–16.CrossRefPubMed McKay, D.L., and J.B. Blumberg. 2007. A review of the bioactivity of South African herbal teas: rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia). Phytotherapy Research 21: 1–16.CrossRefPubMed
11.
Zurück zum Zitat Kazuno, S., M. Yanagida, N. Shindo, and K. Murayama. 2005. Mass spectrometric identification and quantification of glycosyl flavonoids, including dihydrochalcones with neutral loss scan mode. Analytical Biochemistry 347: 182–192.CrossRefPubMed Kazuno, S., M. Yanagida, N. Shindo, and K. Murayama. 2005. Mass spectrometric identification and quantification of glycosyl flavonoids, including dihydrochalcones with neutral loss scan mode. Analytical Biochemistry 347: 182–192.CrossRefPubMed
12.
Zurück zum Zitat Lee, W., S.K. Ku, and J.S. Bae. 2013. Emodin-6-O-beta-D-glucoside down-regulates endothelial protein C receptor shedding. Archives of Pharmacal Research 36: 1160–1165.CrossRefPubMed Lee, W., S.K. Ku, and J.S. Bae. 2013. Emodin-6-O-beta-D-glucoside down-regulates endothelial protein C receptor shedding. Archives of Pharmacal Research 36: 1160–1165.CrossRefPubMed
13.
Zurück zum Zitat Bae, J.S., and A.R. Rezaie. 2013. Thrombin inhibits HMGB1-mediated proinflammatory signaling responses when endothelial protein C receptor is occupied by its natural ligand. BMB Reports 46: 544–549.CrossRefPubMedCentralPubMed Bae, J.S., and A.R. Rezaie. 2013. Thrombin inhibits HMGB1-mediated proinflammatory signaling responses when endothelial protein C receptor is occupied by its natural ligand. BMB Reports 46: 544–549.CrossRefPubMedCentralPubMed
14.
Zurück zum Zitat Kim, T.H., S.K. Ku, I.C. Lee, and J.S. Bae. 2012. Anti-inflammatory functions of purpurogallin in LPS-activated human endothelial cells. BMB Reports 45: 200–205.CrossRefPubMed Kim, T.H., S.K. Ku, I.C. Lee, and J.S. Bae. 2012. Anti-inflammatory functions of purpurogallin in LPS-activated human endothelial cells. BMB Reports 45: 200–205.CrossRefPubMed
15.
Zurück zum Zitat Bae, J.S., W. Lee, and A.R. Rezaie. 2012. Polyphosphate elicits proinflammatory responses that are counteracted by activated protein C in both cellular and animal models. Journal of Thrombosis and Haemostasis 10: 1145–1151.CrossRefPubMedCentralPubMed Bae, J.S., W. Lee, and A.R. Rezaie. 2012. Polyphosphate elicits proinflammatory responses that are counteracted by activated protein C in both cellular and animal models. Journal of Thrombosis and Haemostasis 10: 1145–1151.CrossRefPubMedCentralPubMed
16.
Zurück zum Zitat Lee, J.D., J.E. Huh, G. Jeon, et al. 2009. Flavonol-rich RVHxR from Rhus verniciflua Stokes and its major compound fisetin inhibits inflammation-related cytokines and angiogenic factor in rheumatoid arthritic fibroblast-like synovial cells and in vivo models. International Immunopharmacology 9: 268–276.CrossRefPubMed Lee, J.D., J.E. Huh, G. Jeon, et al. 2009. Flavonol-rich RVHxR from Rhus verniciflua Stokes and its major compound fisetin inhibits inflammation-related cytokines and angiogenic factor in rheumatoid arthritic fibroblast-like synovial cells and in vivo models. International Immunopharmacology 9: 268–276.CrossRefPubMed
17.
Zurück zum Zitat Bae, J.S., W. Lee, J.O. Nam, J.E. Kim, S.W. Kim, and I.S. Kim. 2014. Transforming growth factor beta-induced protein promotes severe vascular inflammatory responses. American Journal of Respiratory and Critical Care Medicine 189: 779–786.CrossRefPubMed Bae, J.S., W. Lee, J.O. Nam, J.E. Kim, S.W. Kim, and I.S. Kim. 2014. Transforming growth factor beta-induced protein promotes severe vascular inflammatory responses. American Journal of Respiratory and Critical Care Medicine 189: 779–786.CrossRefPubMed
18.
Zurück zum Zitat Lee, W., S.K. Ku, D. Lee, T. Lee, and J.S. Bae. 2014. Emodin-6-O-beta-D–glucoside inhibits high-glucose-induced vascular inflammation. Inflammation 37: 306–313.CrossRefPubMed Lee, W., S.K. Ku, D. Lee, T. Lee, and J.S. Bae. 2014. Emodin-6-O-beta-D–glucoside inhibits high-glucose-induced vascular inflammation. Inflammation 37: 306–313.CrossRefPubMed
19.
Zurück zum Zitat Mackman, N., K. Brand, and T.S. Edgington. 1991. Lipopolysaccharide-mediated transcriptional activation of the human tissue factor gene in THP-1 monocytic cells requires both activator protein 1 and nuclear factor kappa B binding sites. Journal of Experimental Medicine 174: 1517–1526.CrossRefPubMed Mackman, N., K. Brand, and T.S. Edgington. 1991. Lipopolysaccharide-mediated transcriptional activation of the human tissue factor gene in THP-1 monocytic cells requires both activator protein 1 and nuclear factor kappa B binding sites. Journal of Experimental Medicine 174: 1517–1526.CrossRefPubMed
20.
Zurück zum Zitat Fuseler, J.W., D.M. Merrill, J.A. Rogers, M.B. Grisham, and R.E. Wolf. 2006. Analysis and quantitation of NF-kappaB nuclear translocation in tumor necrosis factor alpha (TNF-alpha) activated vascular endothelial cells. Microscopy and Microanalysis 12: 269–276.CrossRefPubMed Fuseler, J.W., D.M. Merrill, J.A. Rogers, M.B. Grisham, and R.E. Wolf. 2006. Analysis and quantitation of NF-kappaB nuclear translocation in tumor necrosis factor alpha (TNF-alpha) activated vascular endothelial cells. Microscopy and Microanalysis 12: 269–276.CrossRefPubMed
21.
Zurück zum Zitat Lee, W., S.K. Ku, and J.S. Bae. 2014. Vascular barrier protective effects of orientin and isoorientin in LPS-induced inflammation in vitro and in vivo. Vascular Pharmacology 62: 3–14.CrossRefPubMed Lee, W., S.K. Ku, and J.S. Bae. 2014. Vascular barrier protective effects of orientin and isoorientin in LPS-induced inflammation in vitro and in vivo. Vascular Pharmacology 62: 3–14.CrossRefPubMed
22.
Zurück zum Zitat Joubert, E., W.C. Gelderblom, A. Louw, and D. de Beer. 2008. South African herbal teas: aspalathus linearis, Cyclopia spp. and Athrixia phylicoides—a review. Journal of Ethnopharmacology 119: 376–412.CrossRefPubMed Joubert, E., W.C. Gelderblom, A. Louw, and D. de Beer. 2008. South African herbal teas: aspalathus linearis, Cyclopia spp. and Athrixia phylicoides—a review. Journal of Ethnopharmacology 119: 376–412.CrossRefPubMed
23.
Zurück zum Zitat Ku, S.K., S. Kwak, and J.S. Bae. 2014. Orientin inhibits high glucose-induced vascular inflammation in vitro and in vivo. Inflammation. (in press). Ku, S.K., S. Kwak, and J.S. Bae. 2014. Orientin inhibits high glucose-induced vascular inflammation in vitro and in vivo. Inflammation. (in press).
24.
Zurück zum Zitat Kim, J.A., J.A. Berliner, R.D. Natarajan, and J.L. Nadler. 1994. Evidence that glucose increases monocyte binding to human aortic endothelial cells. Diabetes 43: 1103–1107.CrossRefPubMed Kim, J.A., J.A. Berliner, R.D. Natarajan, and J.L. Nadler. 1994. Evidence that glucose increases monocyte binding to human aortic endothelial cells. Diabetes 43: 1103–1107.CrossRefPubMed
25.
Zurück zum Zitat Lee, Y.J., D.G. Kang, J.S. Kim, and H.S. Lee. 2008. Lycopus lucidus inhibits high glucose-induced vascular inflammation in human umbilical vein endothelial cells. Vascular Pharmacology 48: 38–46.CrossRefPubMed Lee, Y.J., D.G. Kang, J.S. Kim, and H.S. Lee. 2008. Lycopus lucidus inhibits high glucose-induced vascular inflammation in human umbilical vein endothelial cells. Vascular Pharmacology 48: 38–46.CrossRefPubMed
26.
Zurück zum Zitat Takaishi, H., T. Taniguchi, A. Takahashi, Y. Ishikawa, and M. Yokoyama. 2003. High glucose accelerates MCP-1 production via p38 MAPK in vascular endothelial cells. Biochemical and Biophysical Research Communications 305: 122–128.CrossRefPubMed Takaishi, H., T. Taniguchi, A. Takahashi, Y. Ishikawa, and M. Yokoyama. 2003. High glucose accelerates MCP-1 production via p38 MAPK in vascular endothelial cells. Biochemical and Biophysical Research Communications 305: 122–128.CrossRefPubMed
27.
Zurück zum Zitat Morigi, M., S. Angioletti, B. Imberti, et al. 1998. Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion. Journal of Clinical Investigation 101: 1905–1915.CrossRefPubMedCentralPubMed Morigi, M., S. Angioletti, B. Imberti, et al. 1998. Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion. Journal of Clinical Investigation 101: 1905–1915.CrossRefPubMedCentralPubMed
28.
Zurück zum Zitat Kashiwagi, A., T. Asahina, Y. Nishio, et al. 1996. Glycation, oxidative stress, and scavenger activity: glucose metabolism and radical scavenger dysfunction in endothelial cells. Diabetes 45(Suppl 3): S84–S86.CrossRefPubMed Kashiwagi, A., T. Asahina, Y. Nishio, et al. 1996. Glycation, oxidative stress, and scavenger activity: glucose metabolism and radical scavenger dysfunction in endothelial cells. Diabetes 45(Suppl 3): S84–S86.CrossRefPubMed
29.
Zurück zum Zitat Du, X., K. Stocklauser-Farber, and P. Rosen. 1999. Generation of reactive oxygen intermediates, activation of NF-kappaB, and induction of apoptosis in human endothelial cells by glucose: role of nitric oxide synthase? Free Radical Biology and Medicine 27: 752–763.CrossRefPubMed Du, X., K. Stocklauser-Farber, and P. Rosen. 1999. Generation of reactive oxygen intermediates, activation of NF-kappaB, and induction of apoptosis in human endothelial cells by glucose: role of nitric oxide synthase? Free Radical Biology and Medicine 27: 752–763.CrossRefPubMed
30.
Zurück zum Zitat Laakso, M. 1999. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 48: 937–942.CrossRefPubMed Laakso, M. 1999. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 48: 937–942.CrossRefPubMed
31.
Zurück zum Zitat Kannel, W.B., and D.L. McGee. 1979. Diabetes and cardiovascular disease. The Framingham study. JAMA 241: 2035–2038.CrossRefPubMed Kannel, W.B., and D.L. McGee. 1979. Diabetes and cardiovascular disease. The Framingham study. JAMA 241: 2035–2038.CrossRefPubMed
32.
Zurück zum Zitat Nannipieri, M., L. Rizzo, A. Rapuano, A. Pilo, G. Penno, and R. Navalesi. 1995. Increased transcapillary escape rate of albumin in microalbuminuric type II diabetic patients. Diabetes Care 18: 1–9.CrossRefPubMed Nannipieri, M., L. Rizzo, A. Rapuano, A. Pilo, G. Penno, and R. Navalesi. 1995. Increased transcapillary escape rate of albumin in microalbuminuric type II diabetic patients. Diabetes Care 18: 1–9.CrossRefPubMed
33.
Zurück zum Zitat Wardle, E.N. 1994. Vascular permeability in diabetics and implications for therapy. Diabetes Research and Clinical Practice 23: 135–139.CrossRefPubMed Wardle, E.N. 1994. Vascular permeability in diabetics and implications for therapy. Diabetes Research and Clinical Practice 23: 135–139.CrossRefPubMed
34.
Zurück zum Zitat Tooke, J.E. 1995. Microvascular function in human diabetes. A physiological perspective. Diabetes 44: 721–726.CrossRefPubMed Tooke, J.E. 1995. Microvascular function in human diabetes. A physiological perspective. Diabetes 44: 721–726.CrossRefPubMed
35.
Zurück zum Zitat Gerrity, R.G. 1981. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. American Journal of Pathology 103: 181–190.PubMedCentralPubMed Gerrity, R.G. 1981. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. American Journal of Pathology 103: 181–190.PubMedCentralPubMed
36.
Zurück zum Zitat Esposito, C., G. Fasoli, A.R. Plati, et al. 2001. Long-term exposure to high glucose up-regulates VCAM-induced endothelial cell adhesiveness to PBMC. Kidney International 59: 1842–1849.CrossRefPubMed Esposito, C., G. Fasoli, A.R. Plati, et al. 2001. Long-term exposure to high glucose up-regulates VCAM-induced endothelial cell adhesiveness to PBMC. Kidney International 59: 1842–1849.CrossRefPubMed
37.
Zurück zum Zitat Hamuro, M., J. Polan, M. Natarajan, and S. Mohan. 2002. High glucose induced nuclear factor kappa B mediated inhibition of endothelial cell migration. Atherosclerosis 162: 277–287.CrossRefPubMed Hamuro, M., J. Polan, M. Natarajan, and S. Mohan. 2002. High glucose induced nuclear factor kappa B mediated inhibition of endothelial cell migration. Atherosclerosis 162: 277–287.CrossRefPubMed
38.
Zurück zum Zitat Lopes-Virella, M.F., and G. Virella. 1992. Immune mechanisms of atherosclerosis in diabetes mellitus. Diabetes 41(Suppl 2): 86–91.CrossRefPubMed Lopes-Virella, M.F., and G. Virella. 1992. Immune mechanisms of atherosclerosis in diabetes mellitus. Diabetes 41(Suppl 2): 86–91.CrossRefPubMed
39.
Zurück zum Zitat Bae, J.S. 2012. Role of high mobility group box 1 in inflammatory disease: focus on sepsis. Archives of Pharmacal Research 35: 1511–1523.CrossRefPubMed Bae, J.S. 2012. Role of high mobility group box 1 in inflammatory disease: focus on sepsis. Archives of Pharmacal Research 35: 1511–1523.CrossRefPubMed
40.
Zurück zum Zitat Kado, S., T. Wakatsuki, M. Yamamoto, and N. Nagata. 2001. Expression of intercellular adhesion molecule-1 induced by high glucose concentrations in human aortic endothelial cells. Life Sciences 68: 727–737.CrossRefPubMed Kado, S., T. Wakatsuki, M. Yamamoto, and N. Nagata. 2001. Expression of intercellular adhesion molecule-1 induced by high glucose concentrations in human aortic endothelial cells. Life Sciences 68: 727–737.CrossRefPubMed
41.
Zurück zum Zitat Hansson, G.K., and P. Libby. 2006. The immune response in atherosclerosis: a double-edged sword. Nature Reviews Immunology 6: 508–519.CrossRefPubMed Hansson, G.K., and P. Libby. 2006. The immune response in atherosclerosis: a double-edged sword. Nature Reviews Immunology 6: 508–519.CrossRefPubMed
42.
Zurück zum Zitat Boisvert, W.A. 2004. Modulation of atherogenesis by chemokines. Trends in Cardiovascular Medicine 14: 161–165.CrossRefPubMed Boisvert, W.A. 2004. Modulation of atherogenesis by chemokines. Trends in Cardiovascular Medicine 14: 161–165.CrossRefPubMed
43.
Zurück zum Zitat Inoguchi, T., P. Li, F. Umeda, et al. 2000. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49: 1939–1945.CrossRefPubMed Inoguchi, T., P. Li, F. Umeda, et al. 2000. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49: 1939–1945.CrossRefPubMed
44.
Zurück zum Zitat Dunlop, M. 2000. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney International. Supplement 77: S3–S12.CrossRefPubMed Dunlop, M. 2000. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney International. Supplement 77: S3–S12.CrossRefPubMed
45.
Zurück zum Zitat Han, H.J., Y.J. Lee, S.H. Park, J.H. Lee, and M. Taub. 2005. High glucose-induced oxidative stress inhibits Na+/glucose cotransporter activity in renal proximal tubule cells. American Journal of Physiology. Renal Physiology 288: F988–F996.CrossRefPubMed Han, H.J., Y.J. Lee, S.H. Park, J.H. Lee, and M. Taub. 2005. High glucose-induced oxidative stress inhibits Na+/glucose cotransporter activity in renal proximal tubule cells. American Journal of Physiology. Renal Physiology 288: F988–F996.CrossRefPubMed
46.
Zurück zum Zitat Rimbach, G., G. Valacchi, R. Canali, and F. Virgili. 2000. Macrophages stimulated with IFN-gamma activate NF-kappa B and induce MCP-1 gene expression in primary human endothelial cells. Molecular Cell Biology Research Communications 3: 238–242.CrossRefPubMed Rimbach, G., G. Valacchi, R. Canali, and F. Virgili. 2000. Macrophages stimulated with IFN-gamma activate NF-kappa B and induce MCP-1 gene expression in primary human endothelial cells. Molecular Cell Biology Research Communications 3: 238–242.CrossRefPubMed
47.
Zurück zum Zitat Uemura, S., H. Matsushita, W. Li, et al. 2001. Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circulation Research 88: 1291–1298.CrossRefPubMed Uemura, S., H. Matsushita, W. Li, et al. 2001. Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circulation Research 88: 1291–1298.CrossRefPubMed
48.
Zurück zum Zitat Nakamura, Y., S. Watanabe, N. Miyake, H. Kohno, and T. Osawa. 2003. Dihydrochalcones: evaluation as novel radical scavenging antioxidants. Journal of Agricultural and Food Chemistry 51: 3309–3312.CrossRefPubMed Nakamura, Y., S. Watanabe, N. Miyake, H. Kohno, and T. Osawa. 2003. Dihydrochalcones: evaluation as novel radical scavenging antioxidants. Journal of Agricultural and Food Chemistry 51: 3309–3312.CrossRefPubMed
49.
Zurück zum Zitat Rezk, B.M., G.R. Haenen, W.J. van der Vijgh, and A. Bast. 2002. The antioxidant activity of phloretin: the disclosure of a new antioxidant pharmacophore in flavonoids. Biochemical and Biophysical Research Communications 295: 9–13.CrossRefPubMed Rezk, B.M., G.R. Haenen, W.J. van der Vijgh, and A. Bast. 2002. The antioxidant activity of phloretin: the disclosure of a new antioxidant pharmacophore in flavonoids. Biochemical and Biophysical Research Communications 295: 9–13.CrossRefPubMed
50.
Zurück zum Zitat Krafczyk, N., F. Woyand, and M.A. Glomb. 2009. Structure-antioxidant relationship of flavonoids from fermented rooibos. Molecular Nutrition & Food Research 53: 635–642.CrossRef Krafczyk, N., F. Woyand, and M.A. Glomb. 2009. Structure-antioxidant relationship of flavonoids from fermented rooibos. Molecular Nutrition & Food Research 53: 635–642.CrossRef
51.
Zurück zum Zitat Snijman, P.W., E. Joubert, D. Ferreira, et al. 2009. Antioxidant activity of the dihydrochalcones aspalathin and nothofagin and their corresponding flavones in relation to other rooibos (Aspalathus linearis) flavonoids, epigallocatechin gallate, and trolox. Journal of Agricultural and Food Chemistry 57: 6678–6684.CrossRefPubMed Snijman, P.W., E. Joubert, D. Ferreira, et al. 2009. Antioxidant activity of the dihydrochalcones aspalathin and nothofagin and their corresponding flavones in relation to other rooibos (Aspalathus linearis) flavonoids, epigallocatechin gallate, and trolox. Journal of Agricultural and Food Chemistry 57: 6678–6684.CrossRefPubMed
Metadaten
Titel
Aspalathin and Nothofagin from Rooibos (Aspalathus linearis) Inhibits High Glucose-Induced Inflammation In Vitro and In Vivo
verfasst von
Sae-Kwang Ku
Soyoung Kwak
Yaesol Kim
Jong-Sup Bae
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2015
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-0049-1

Weitere Artikel der Ausgabe 1/2015

Inflammation 1/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.