Skip to main content
Erschienen in: Journal of Gastroenterology 7/2016

03.11.2015 | Original Article—Alimentary Tract

Aspirin-induced gastrointestinal damage is associated with an inhibition of epithelial cell autophagy

verfasst von: Carlos Hernández, Maria Dolores Barrachina, Jorge Vallecillo-Hernández, Ángeles Álvarez, Dolores Ortiz-Masiá, Jesús Cosín-Roger, Juan Vicente Esplugues, Sara Calatayud

Erschienen in: Journal of Gastroenterology | Ausgabe 7/2016

Einloggen, um Zugang zu erhalten

Abstract

Background

Aspirin (ASA) causes gastrotoxicity by hampering the epithelial defense against luminal contents through cyclooxygenase inhibition. Since cell survival in tough conditions may depend on rescue mechanisms like autophagy, we analyzed whether epithelial cells rely on this process to defend themselves from aspirin’s damaging action.

Methods

Rats received a single dose of ASA (150 mg/kg, p.o.) with or without pretreatment with the autophagy inhibitor 3-methyladenine, and gastric injury and epithelial autophagy were evaluated 3 h later. The effects of ASA on cell viability and autophagy were also evaluated in gastric epithelial AGS cells.

Results

Basal autophagy in the gastric mucosa was inhibited by ASA as demonstrated by increased levels of p62 and ubiquitinated proteins and total LC3 and a reduced LC3-II/LC3-I ratio. Similarly, ASA increased p62 and decreased LC3-II accumulation and the number of EmGFP/LC3B puncta in AGS cells. ASA activated the PI3K/Akt-GSK3-mTOR pathway, which phosphorylates ULK1 to prevent autophagy initiation, changes that were inhibited by the PI3K-inhibitor wortmannin. Autophagy inhibition seems to enhance the vulnerability of gastric epithelial cells as a combination of ASA with 3-methyladenine exacerbated rat gastric damage and AGS cell apoptosis.

Conclusions

Our data highlight the importance of autophagy in the gastric mucosa as a protective mechanism when the epithelium is injured. In the stomach, aspirin induces mucosal damage and reduces autophagy, thus, eliminating a protective mechanism that epithelial cells could use to escape death. We hypothesize that the combination of aspirin with drugs that activate autophagy could protect against gastric damage.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
2.
Zurück zum Zitat Leung Ki EL, Chan FK. Interaction of Helicobacter pylori infection and low-dose aspirin in the upper gastrointestinal tract: implications for clinical practice. Best Pract Res Clin Gastroenterol. 2012;26:163–72.CrossRefPubMed Leung Ki EL, Chan FK. Interaction of Helicobacter pylori infection and low-dose aspirin in the upper gastrointestinal tract: implications for clinical practice. Best Pract Res Clin Gastroenterol. 2012;26:163–72.CrossRefPubMed
3.
Zurück zum Zitat Sostres C, Lanas A. Gastrointestinal effects of aspirin. Nat Rev Gastroenterol Hepatol. 2011;8:385–94.CrossRefPubMed Sostres C, Lanas A. Gastrointestinal effects of aspirin. Nat Rev Gastroenterol Hepatol. 2011;8:385–94.CrossRefPubMed
4.
Zurück zum Zitat Valkhoff VE, Sturkenboom MC, Kuipers EJ. Risk factors for gastrointestinal bleeding associated with low-dose aspirin. Best Pract Res Clin Gastroenterol. 2012;26:125–40.CrossRefPubMed Valkhoff VE, Sturkenboom MC, Kuipers EJ. Risk factors for gastrointestinal bleeding associated with low-dose aspirin. Best Pract Res Clin Gastroenterol. 2012;26:125–40.CrossRefPubMed
5.
Zurück zum Zitat Starodub OT, Demitrack ES, Baumgartner HK, et al. Disruption of the Cox-1 gene slows repair of microscopic lesions in the mouse gastric epithelium. Am J Physiol Cell Physiol. 2008;294:C223–32.CrossRefPubMed Starodub OT, Demitrack ES, Baumgartner HK, et al. Disruption of the Cox-1 gene slows repair of microscopic lesions in the mouse gastric epithelium. Am J Physiol Cell Physiol. 2008;294:C223–32.CrossRefPubMed
6.
Zurück zum Zitat Tegeder I, Pfeilschifter J, Geisslinger G. Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J. 2001;15:2057–72.CrossRefPubMed Tegeder I, Pfeilschifter J, Geisslinger G. Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J. 2001;15:2057–72.CrossRefPubMed
9.
Zurück zum Zitat Marino G, Niso-Santano M, Baehrecke EH, et al. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 2014;15:81–94.CrossRefPubMedPubMedCentral Marino G, Niso-Santano M, Baehrecke EH, et al. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 2014;15:81–94.CrossRefPubMedPubMedCentral
10.
11.
12.
13.
Zurück zum Zitat Inoki K, Ouyang H, Zhu T, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell. 2006;126:955–68.CrossRefPubMed Inoki K, Ouyang H, Zhu T, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell. 2006;126:955–68.CrossRefPubMed
14.
Zurück zum Zitat Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22:659–61.CrossRefPubMed Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22:659–61.CrossRefPubMed
15.
Zurück zum Zitat Hernandez C, Santamatilde E, McCreath KJ, et al. Induction of trefoil factor (TFF)1, TFF2 and TFF3 by hypoxia is mediated by hypoxia inducible factor-1: implications for gastric mucosal healing. Br J Pharmacol. 2009;156:262–72.CrossRefPubMed Hernandez C, Santamatilde E, McCreath KJ, et al. Induction of trefoil factor (TFF)1, TFF2 and TFF3 by hypoxia is mediated by hypoxia inducible factor-1: implications for gastric mucosal healing. Br J Pharmacol. 2009;156:262–72.CrossRefPubMed
16.
Zurück zum Zitat Ortiz-Masia D, Cosin-Roger J, Calatayud S, et al. Hypoxic macrophages impair autophagy in epithelial cells through Wnt1: relevance in IBD. Mucosal Immunol. 2013;. doi:10.1038/mi.2013.108.PubMed Ortiz-Masia D, Cosin-Roger J, Calatayud S, et al. Hypoxic macrophages impair autophagy in epithelial cells through Wnt1: relevance in IBD. Mucosal Immunol. 2013;. doi:10.​1038/​mi.​2013.​108.PubMed
17.
Zurück zum Zitat Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441:880–4.CrossRefPubMed Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441:880–4.CrossRefPubMed
18.
Zurück zum Zitat Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441:885–9.CrossRefPubMed Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441:885–9.CrossRefPubMed
19.
Zurück zum Zitat Komatsu M, Waguri S, Ueno T, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005;169:425–34.CrossRefPubMedPubMedCentral Komatsu M, Waguri S, Ueno T, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005;169:425–34.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Cross DA, Alessi DR, Cohen P, et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378:785–9.CrossRefPubMed Cross DA, Alessi DR, Cohen P, et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378:785–9.CrossRefPubMed
21.
Zurück zum Zitat Mizushima N, Yamamoto A, Matsui M, et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004;15:1101–11.CrossRefPubMedPubMedCentral Mizushima N, Yamamoto A, Matsui M, et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004;15:1101–11.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Alers S, Loffler AS, Wesselborg S, et al. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol. 2012;32:2–11.CrossRefPubMedPubMedCentral Alers S, Loffler AS, Wesselborg S, et al. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol. 2012;32:2–11.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Nave BT, Ouwens M, Withers DJ, et al. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J. 1999;344(Pt 2):427–31.CrossRefPubMedPubMedCentral Nave BT, Ouwens M, Withers DJ, et al. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J. 1999;344(Pt 2):427–31.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Peterson RT, Beal PA, Comb MJ, et al. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem. 2000;275:7416–23.CrossRefPubMed Peterson RT, Beal PA, Comb MJ, et al. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem. 2000;275:7416–23.CrossRefPubMed
27.
28.
Zurück zum Zitat Din FV, Valanciute A, Houde VP, et al. Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology. 2012;142:1504–15.CrossRefPubMedPubMedCentral Din FV, Valanciute A, Houde VP, et al. Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology. 2012;142:1504–15.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Overholtzer M, Mailleux AA, Mouneimne G, et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell. 2007;131:966–79.CrossRefPubMed Overholtzer M, Mailleux AA, Mouneimne G, et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell. 2007;131:966–79.CrossRefPubMed
30.
Zurück zum Zitat Florey O, Kim SE, Sandoval CP, et al. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat Cell Biol. 2011;13:1335–43.CrossRefPubMedPubMedCentral Florey O, Kim SE, Sandoval CP, et al. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat Cell Biol. 2011;13:1335–43.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Fiorucci S, Antonelli E, Morelli A. Mechanism of non-steroidal anti-inflammatory drug-gastropathy. Dig Liver Dis. 2001;33(Suppl 2):S35–43.CrossRefPubMed Fiorucci S, Antonelli E, Morelli A. Mechanism of non-steroidal anti-inflammatory drug-gastropathy. Dig Liver Dis. 2001;33(Suppl 2):S35–43.CrossRefPubMed
33.
Zurück zum Zitat Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122:927–39.CrossRefPubMed Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122:927–39.CrossRefPubMed
34.
35.
Zurück zum Zitat Yu L, Alva A, Su H, et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science. 2004;304:1500–2.CrossRefPubMed Yu L, Alva A, Su H, et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science. 2004;304:1500–2.CrossRefPubMed
36.
Zurück zum Zitat Cadwell K, Liu JY, Brown SL, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature. 2008;456:259–63.CrossRefPubMedPubMedCentral Cadwell K, Liu JY, Brown SL, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature. 2008;456:259–63.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456:264–8.CrossRefPubMed Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456:264–8.CrossRefPubMed
38.
Zurück zum Zitat Cadwell K, Patel KK, Maloney NS, et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell. 2010;141:1135–45.CrossRefPubMedPubMedCentral Cadwell K, Patel KK, Maloney NS, et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell. 2010;141:1135–45.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Cabrera S, Fernandez AF, Marino G, et al. ATG4B/autophagin-1 regulates intestinal homeostasis and protects mice from experimental colitis. Autophagy. 2013;9:1188–200.CrossRefPubMedPubMedCentral Cabrera S, Fernandez AF, Marino G, et al. ATG4B/autophagin-1 regulates intestinal homeostasis and protects mice from experimental colitis. Autophagy. 2013;9:1188–200.CrossRefPubMedPubMedCentral
Metadaten
Titel
Aspirin-induced gastrointestinal damage is associated with an inhibition of epithelial cell autophagy
verfasst von
Carlos Hernández
Maria Dolores Barrachina
Jorge Vallecillo-Hernández
Ángeles Álvarez
Dolores Ortiz-Masiá
Jesús Cosín-Roger
Juan Vicente Esplugues
Sara Calatayud
Publikationsdatum
03.11.2015
Verlag
Springer Japan
Erschienen in
Journal of Gastroenterology / Ausgabe 7/2016
Print ISSN: 0944-1174
Elektronische ISSN: 1435-5922
DOI
https://doi.org/10.1007/s00535-015-1137-1

Weitere Artikel der Ausgabe 7/2016

Journal of Gastroenterology 7/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.