Skip to main content
main-content

01.12.2014 | Research article | Ausgabe 1/2014 Open Access

BMC Medical Research Methodology 1/2014

Assessing discriminative ability of risk models in clustered data

Zeitschrift:
BMC Medical Research Methodology > Ausgabe 1/2014
Autoren:
David van Klaveren, Ewout W Steyerberg, Pablo Perel, Yvonne Vergouwe
Wichtige Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2288-14-5) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

DK, ES and YV designed the study. PP participated in the collection of data and organisation of the databases from which this manuscript was developed. DK and YV analysed the data and wrote the first draft of the manuscript. All authors contributed to writing the manuscript and read and approved the final manuscript.

Abstract

Background

The discriminative ability of a risk model is often measured by Harrell’s concordance-index (c-index). The c-index estimates for two randomly chosen subjects the probability that the model predicts a higher risk for the subject with poorer outcome (concordance probability). When data are clustered, as in multicenter data, two types of concordance are distinguished: concordance in subjects from the same cluster (within-cluster concordance probability) and concordance in subjects from different clusters (between-cluster concordance probability). We argue that the within-cluster concordance probability is most relevant when a risk model supports decisions within clusters (e.g. who should be treated in a particular center). We aimed to explore different approaches to estimate the within-cluster concordance probability in clustered data.

Methods

We used data of the CRASH trial (2,081 patients clustered in 35 centers) to develop a risk model for mortality after traumatic brain injury. To assess the discriminative ability of the risk model within centers we first calculated cluster-specific c-indexes. We then pooled the cluster-specific c-indexes into a summary estimate with different meta-analytical techniques. We considered fixed effect meta-analysis with different weights (equal; inverse variance; number of subjects, events or pairs) and random effects meta-analysis. We reflected on pooling the estimates on the log-odds scale rather than the probability scale.

Results

The cluster-specific c-index varied substantially across centers (IQR = 0.70-0.81; I 2 = 0.76 with 95% confidence interval 0.66 to 0.82). Summary estimates resulting from fixed effect meta-analysis ranged from 0.75 (equal weights) to 0.84 (inverse variance weights). With random effects meta-analysis – accounting for the observed heterogeneity in c-indexes across clusters – we estimated a mean of 0.77, a between-cluster variance of 0.0072 and a 95% prediction interval of 0.60 to 0.95. The normality assumptions for derivation of a prediction interval were better met on the probability than on the log-odds scale.

Conclusion

When assessing the discriminative ability of risk models used to support decisions at cluster level we recommend meta-analysis of cluster-specific c-indexes. Particularly, random effects meta-analysis should be considered.
Zusatzmaterial
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2014

BMC Medical Research Methodology 1/2014 Zur Ausgabe

Neu im Fachgebiet AINS

Meistgelesene Bücher aus dem Fachgebiet AINS

  • 2014 | Buch

    Komplikationen in der Anästhesie

    Fallbeispiele Analyse Prävention

    Aus Fehlern lernen und dadurch Zwischenfälle vermeiden! Komplikationen oder Zwischenfälle in der Anästhesie können für Patienten schwerwiegende Folgen haben. Häufig sind sie eine Kombination menschlicher, organisatorischer und technischer Fehler.

    Herausgeber:
    Matthias Hübler, Thea Koch
  • 2013 | Buch

    Anästhesie Fragen und Antworten

    1655 Fakten für die Facharztprüfung und das Europäische Diplom für Anästhesiologie und Intensivmedizin (DESA)

    Mit Sicherheit erfolgreich in Prüfung und Praxis! Effektiv wiederholen und im entscheidenden Moment die richtigen Antworten parat haben - dafür ist dieses beliebte Prüfungsbuch garantiert hilfreich. Anhand der Multiple-Choice-Fragen ist die optimale Vorbereitung auf das Prüfungsprinzip der D.E.A.A. gewährleistet.

    Autoren:
    Prof. Dr. Franz Kehl, Dr. Hans-Joachim Wilke
  • 2011 | Buch

    Pharmakotherapie in der Anästhesie und Intensivmedizin

    Wie und wieso wirken vasoaktive Substanzen und wie werden sie wirksam eingesetzt Welche Substanzen eignen sich zur perioperativen Myokardprojektion? 
    Kenntnisse zur Pharmakologie und deren Anwendung sind das notwendige Rüstzeug für den Anästhesisten und Intensivmediziner. Lernen Sie von erfahrenen Anästhesisten und Pharmakologen.

    Herausgeber:
    Prof. Dr. Peter H. Tonner, Prof. Dr. Lutz Hein
  • 2019 | Buch

    Anästhesie und Intensivmedizin - Prüfungswissen für die Fachpflege

    Egal ob Teilnehmer der Fachweiterbildung oder langjähriger Mitarbeiter: Mit diesem Arbeitsbuch können Sie alle Fakten der Intensivmedizin und Anästhesie für die Fachpflege gezielt überprüfen, vertiefen und festigen. Multiple-Choice-Fragen …

    Autor:
    Reinhard Larsen

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update AINS und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise