Skip to main content
Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine 6/2020

28.05.2020 | Research Article

Assessment of brain volumes obtained from MP-RAGE and MP2RAGE images, quantified using different segmentation methods

verfasst von: Juli Alonso, Deborah Pareto, Manel Alberich, Tobias Kober, Bénédicte Maréchal, Xavier Lladó, Alex Rovira

Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine | Ausgabe 6/2020

Einloggen, um Zugang zu erhalten

Abstract

Objective

For clinical purposes and research projects in neurological disease, it is of interest to evaluate the performance and comparability of available sequences and software packages for brain volume assessment to determine whether they provide equivalent results. This study compares cross-sectional brain volume values derived from images obtained with MP-RAGE or MP2RAGE sequences, using SIENA/X, SPM, or MorphoBox.

Materials and methods

MP-RAGE and MP2RAGE T1-weighted images were obtained from 24 healthy volunteers. Back-to-back scans were performed in 12 of them. Brain volumes, coefficients of variation, and concordance coefficients were determined.

Results

Significant differences were found for most brain volumes derived from MP-RAGE and MP2RAGE images. MP2RAGE-derived measures showed a non-significant trend to larger coefficients of variation. There were statistical differences between brain volumes determined with the three software packages, whereas coefficients of variation were comparable for most brain volumes. Correlation and concordance values were lower for CSF and brain parenchyma fraction measures.

Conclusion

The results obtained advise caution when comparing brain volumes obtained by different sequences and software packages. Of note, for most brain volume measures, the MP2RAGE and MorphoBox coefficients of variation were similar to those obtained with MP-RAGE, SIENA/X or SPM, accepted tools for clinical research.
Literatur
1.
Zurück zum Zitat Giorgio A, De Stefano N (2013) Clinical use of brain volumetry. J Magn Reson Imaging 37:1–14CrossRef Giorgio A, De Stefano N (2013) Clinical use of brain volumetry. J Magn Reson Imaging 37:1–14CrossRef
2.
Zurück zum Zitat Rocca MA, Battaglini M, Benedict RHB, De Stefano N, Geurts JJG, Henry RG et al (2017) Brain MRI atrophy quantification in MS from methods to clinical application. Neurology 88:403–413CrossRef Rocca MA, Battaglini M, Benedict RHB, De Stefano N, Geurts JJG, Henry RG et al (2017) Brain MRI atrophy quantification in MS from methods to clinical application. Neurology 88:403–413CrossRef
3.
Zurück zum Zitat Agosta F, Galantucci S, Filippi M (2017) Advanced magnetic resonance imaging of neurodegenerative diseases. Neurol Sci 38:41–51CrossRef Agosta F, Galantucci S, Filippi M (2017) Advanced magnetic resonance imaging of neurodegenerative diseases. Neurol Sci 38:41–51CrossRef
4.
Zurück zum Zitat De Guio F, Jouvent E, Biessels GJ, Black SE, Brayne C, Chen C et al (2016) Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease. J Cereb Blood Flow Metab 36:1319–1337CrossRef De Guio F, Jouvent E, Biessels GJ, Black SE, Brayne C, Chen C et al (2016) Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease. J Cereb Blood Flow Metab 36:1319–1337CrossRef
5.
Zurück zum Zitat Mugler JP III, Epstein FH, Brookeman JR (1992) Shaping the signal response during the approach to steady state in three-dimensional magnetization-prepared rapid gradient-echo imaging using variable flip angles. Magn Reson Med 28:165–185CrossRef Mugler JP III, Epstein FH, Brookeman JR (1992) Shaping the signal response during the approach to steady state in three-dimensional magnetization-prepared rapid gradient-echo imaging using variable flip angles. Magn Reson Med 28:165–185CrossRef
6.
Zurück zum Zitat Marques J, Kober T, Krueger G, van der Zwaag W, Van de Moortele P, Gruetter R (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 49:1271–1281CrossRef Marques J, Kober T, Krueger G, van der Zwaag W, Van de Moortele P, Gruetter R (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 49:1271–1281CrossRef
7.
Zurück zum Zitat Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–851CrossRef Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–851CrossRef
8.
Zurück zum Zitat Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A et al (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17:479–489CrossRef Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A et al (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17:479–489CrossRef
9.
Zurück zum Zitat Schmitter D, Roche A, Maréchal B, Ribes D, Abdulkadir A, Bach-Cuadra M et al (2015) An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease. Neuroimage Clin 7:7–17CrossRef Schmitter D, Roche A, Maréchal B, Ribes D, Abdulkadir A, Bach-Cuadra M et al (2015) An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease. Neuroimage Clin 7:7–17CrossRef
11.
Zurück zum Zitat Boto J, Gkinis G, Roche A, Kober T, Marechal B, Ortiz N et al (2017) Evaluating anorexia-related brain atrophy using MP2RAGE-based morphometry. Eur Radiol 27:5064–5072CrossRef Boto J, Gkinis G, Roche A, Kober T, Marechal B, Ortiz N et al (2017) Evaluating anorexia-related brain atrophy using MP2RAGE-based morphometry. Eur Radiol 27:5064–5072CrossRef
12.
Zurück zum Zitat Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208–S219CrossRef Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208–S219CrossRef
13.
Zurück zum Zitat O’Brien KR, Kober T, Hagmann P, Maeder P, Marques J, Lazeyras F et al (2014) Robust T1-weighted structural brain imaging and morphometry at 7T using MP2RAGE. PLoS ONE 9:e99676CrossRef O’Brien KR, Kober T, Hagmann P, Maeder P, Marques J, Lazeyras F et al (2014) Robust T1-weighted structural brain imaging and morphometry at 7T using MP2RAGE. PLoS ONE 9:e99676CrossRef
14.
Zurück zum Zitat Lin LI (1989) A concordance correlation-coefficient to evaluate reproducibility. Biometrics 45:255–268CrossRef Lin LI (1989) A concordance correlation-coefficient to evaluate reproducibility. Biometrics 45:255–268CrossRef
15.
Zurück zum Zitat McBride GB (2005) A proposal for strength-of-agreement criteria for Lin's concordance correlation coefficient. NIWA client report: HAM2005-062 McBride GB (2005) A proposal for strength-of-agreement criteria for Lin's concordance correlation coefficient. NIWA client report: HAM2005-062
16.
Zurück zum Zitat Leigh R, Ostuni J, Pham D, Goldszal A, Lewis BK, Howard T et al (2002) Estimating cerebral atrophy in multiple sclerosis patients from various MR pulse sequences. Mult Scler 8:420–429CrossRef Leigh R, Ostuni J, Pham D, Goldszal A, Lewis BK, Howard T et al (2002) Estimating cerebral atrophy in multiple sclerosis patients from various MR pulse sequences. Mult Scler 8:420–429CrossRef
17.
Zurück zum Zitat Horsfield MA, Rovaris M, Rocca MA, Rossi P, Benedict RHB, Filippi M et al (2003) Whole-brain atrophy in multiple sclerosis measured by two segmentation processes from various MRI sequences. J Neurol Sci 216:169–177CrossRef Horsfield MA, Rovaris M, Rocca MA, Rossi P, Benedict RHB, Filippi M et al (2003) Whole-brain atrophy in multiple sclerosis measured by two segmentation processes from various MRI sequences. J Neurol Sci 216:169–177CrossRef
18.
Zurück zum Zitat Chu RX, Tauhid S, Glanz BI, Healy BC, Kim G, Oommen VV et al (2016) Whole brain volume measured from 1.5T versus 3T MRI in healthy subjects and patients with multiple sclerosis. J Neuroimaging 26:62–67CrossRef Chu RX, Tauhid S, Glanz BI, Healy BC, Kim G, Oommen VV et al (2016) Whole brain volume measured from 1.5T versus 3T MRI in healthy subjects and patients with multiple sclerosis. J Neuroimaging 26:62–67CrossRef
19.
Zurück zum Zitat Haller S, Falkovskiy P, Meuli R, Thiran J, Krueger G, Lovblad K et al (2016) Basic MR sequence parameters systematically bias automated brain volume estimation. Neuroradiology 58:1153–1160CrossRef Haller S, Falkovskiy P, Meuli R, Thiran J, Krueger G, Lovblad K et al (2016) Basic MR sequence parameters systematically bias automated brain volume estimation. Neuroradiology 58:1153–1160CrossRef
20.
Zurück zum Zitat Steenwijk MD, Amiri H, Schoonheim MM, De Sitter A, Barkhof F, Pouwels PJW et al (2017) Agreement of MSmetrix with established methods for measuring cross-sectional and longitudinal brain atrophy. Neuroimage Clin 15:843–853CrossRef Steenwijk MD, Amiri H, Schoonheim MM, De Sitter A, Barkhof F, Pouwels PJW et al (2017) Agreement of MSmetrix with established methods for measuring cross-sectional and longitudinal brain atrophy. Neuroimage Clin 15:843–853CrossRef
21.
Zurück zum Zitat Fujimoto K, Polimeni JR, van der Kouwe AJW, Reuter M, Kober T, Benner T et al (2014) Quantitative comparison of cortical surface reconstructions from MP2RAGE and multi-echo MPRAGE data at 3 and 7 T. Neuroimage 90:60–73CrossRef Fujimoto K, Polimeni JR, van der Kouwe AJW, Reuter M, Kober T, Benner T et al (2014) Quantitative comparison of cortical surface reconstructions from MP2RAGE and multi-echo MPRAGE data at 3 and 7 T. Neuroimage 90:60–73CrossRef
22.
Zurück zum Zitat Seiger R, Hahn A, Hummer A, Kranz GS, Ganger S, Küblböck M et al (2015) Voxel-based morphometry at ultra-high fields. A comparison of 7T and 3T MRI data. Neuroimage 113:207–216CrossRef Seiger R, Hahn A, Hummer A, Kranz GS, Ganger S, Küblböck M et al (2015) Voxel-based morphometry at ultra-high fields. A comparison of 7T and 3T MRI data. Neuroimage 113:207–216CrossRef
23.
Zurück zum Zitat Streitbuerger D, Pampel A, Krueger G, Lepsien J, Schroeter ML, Mueller K et al (2014) Impact of image acquisition on voxel-based-morphometry investigations of age-related structural brain changes. Neuroimage 87:170–182CrossRef Streitbuerger D, Pampel A, Krueger G, Lepsien J, Schroeter ML, Mueller K et al (2014) Impact of image acquisition on voxel-based-morphometry investigations of age-related structural brain changes. Neuroimage 87:170–182CrossRef
24.
Zurück zum Zitat Klauschen F, Goldman A, Barra V, Meyer-Lindenberg A, Lundervold A (2009) Evaluation of automated brain MR image segmentation and volumetry methods. Hum Brain Mapp 30:1310–1327CrossRef Klauschen F, Goldman A, Barra V, Meyer-Lindenberg A, Lundervold A (2009) Evaluation of automated brain MR image segmentation and volumetry methods. Hum Brain Mapp 30:1310–1327CrossRef
25.
Zurück zum Zitat Eggert LD, Sommer J, Jansen A, Kircher T, Konrad C (2012) Accuracy and reliability of automated gray matter segmentation pathways on real and simulated structural magnetic resonance images of the human brain. PLoS ONE 7:e45081CrossRef Eggert LD, Sommer J, Jansen A, Kircher T, Konrad C (2012) Accuracy and reliability of automated gray matter segmentation pathways on real and simulated structural magnetic resonance images of the human brain. PLoS ONE 7:e45081CrossRef
26.
Zurück zum Zitat Tudorascu DL, Karim HT, Maronge JM, Alhilali L, Fakhran S, Aizenstein HJ et al (2016) Reproducibility and bias in healthy brain segmentation: comparison of two popular neuroimaging platforms. Front Neurosci 10:503CrossRef Tudorascu DL, Karim HT, Maronge JM, Alhilali L, Fakhran S, Aizenstein HJ et al (2016) Reproducibility and bias in healthy brain segmentation: comparison of two popular neuroimaging platforms. Front Neurosci 10:503CrossRef
27.
Zurück zum Zitat Wang C, Beadnall HN, Hatton SN, Bader G, Tomic D, Silva DG et al (2016) Automated brain volumetrics in multiple sclerosis: a step closer to clinical application. J Neurol Neurosurg Psychiatry 87:754–757CrossRef Wang C, Beadnall HN, Hatton SN, Bader G, Tomic D, Silva DG et al (2016) Automated brain volumetrics in multiple sclerosis: a step closer to clinical application. J Neurol Neurosurg Psychiatry 87:754–757CrossRef
28.
Zurück zum Zitat Duche Q, Raniga P, Egan GF, Acosta O, Gambarota G, Salvado O et al (2014) New partial volume estimation methods for MRI MP2RAGE. Med Image Comput Comput Assist Interv 17:129–136PubMed Duche Q, Raniga P, Egan GF, Acosta O, Gambarota G, Salvado O et al (2014) New partial volume estimation methods for MRI MP2RAGE. Med Image Comput Comput Assist Interv 17:129–136PubMed
29.
Zurück zum Zitat Rudick RA, Fisher E, Lee JC, Simon J, Jacobs L (1999) Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. multiple sclerosis collaborative research group. Neurology 53:1698–1704CrossRef Rudick RA, Fisher E, Lee JC, Simon J, Jacobs L (1999) Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. multiple sclerosis collaborative research group. Neurology 53:1698–1704CrossRef
30.
Zurück zum Zitat Cardenas VA, Ezekiel F, Di Sclafani V, Gomberg B, Fein G (2001) Reliability of tissue volumes and their spatial distribution for segmented magnetic resonance images. Psychiatry Res Neuroimaging 106:193–205CrossRef Cardenas VA, Ezekiel F, Di Sclafani V, Gomberg B, Fein G (2001) Reliability of tissue volumes and their spatial distribution for segmented magnetic resonance images. Psychiatry Res Neuroimaging 106:193–205CrossRef
31.
Zurück zum Zitat Bermel RA, Sharma J, Tjoa CW, Puli S, Bakshi R (2003) A semiautomated measure of whole-brain atrophy in multiple sclerosis. J Neurol Sci 208:57–65CrossRef Bermel RA, Sharma J, Tjoa CW, Puli S, Bakshi R (2003) A semiautomated measure of whole-brain atrophy in multiple sclerosis. J Neurol Sci 208:57–65CrossRef
32.
Zurück zum Zitat Lemieux L, Hammers A, Mackinnon T, Liu RSN (2003) Automatic segmentation of the brain and intracranial cerebrospinal fluid in T1-weighted volume MRI scans of the head, and its application to serial cerebral and intracranial volumetry. Magn Reson Med 49:872–884CrossRef Lemieux L, Hammers A, Mackinnon T, Liu RSN (2003) Automatic segmentation of the brain and intracranial cerebrospinal fluid in T1-weighted volume MRI scans of the head, and its application to serial cerebral and intracranial volumetry. Magn Reson Med 49:872–884CrossRef
33.
Zurück zum Zitat Fotenos AF, Snyder AZ, Girton LE, Morris JC, Buckner RL (2005) Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology 64:1032–1039CrossRef Fotenos AF, Snyder AZ, Girton LE, Morris JC, Buckner RL (2005) Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology 64:1032–1039CrossRef
34.
Zurück zum Zitat Zivadinov R, Grop A, Sharma J, Bratina A, Tjoa CW, Dwyer M et al (2005) Reproducibility and accuracy of quantitative magnetic resonance imaging techniques of whole-brain atrophy measurement in multiple sclerosis. J Neuroimaging 15:27–36CrossRef Zivadinov R, Grop A, Sharma J, Bratina A, Tjoa CW, Dwyer M et al (2005) Reproducibility and accuracy of quantitative magnetic resonance imaging techniques of whole-brain atrophy measurement in multiple sclerosis. J Neuroimaging 15:27–36CrossRef
35.
Zurück zum Zitat Nakamura K, Fisher E (2009) Segmentation of brain magnetic resonance images for measurement of gray matter atrophy in multiple sclerosis patients. Neuroimage 44:769–776CrossRef Nakamura K, Fisher E (2009) Segmentation of brain magnetic resonance images for measurement of gray matter atrophy in multiple sclerosis patients. Neuroimage 44:769–776CrossRef
36.
Zurück zum Zitat de Boer R, Vrooman HA, Ikram MA, Vernooij MW, Breteler MMB, van der Lugt A et al (2010) Accuracy and reproducibility study of automatic MRI brain tissue segmentation methods. Neuroimage 51:1047–1056CrossRef de Boer R, Vrooman HA, Ikram MA, Vernooij MW, Breteler MMB, van der Lugt A et al (2010) Accuracy and reproducibility study of automatic MRI brain tissue segmentation methods. Neuroimage 51:1047–1056CrossRef
37.
Zurück zum Zitat Huppertz HJ, Kroll-Seger J, Kloppel S, Ganz RE, Kassubek J (2010) Intra- and interscanner variability of automated voxel-based volumetry based on a 3D probabilistic atlas of human cerebral structures. Neuroimage 49:2216–2224CrossRef Huppertz HJ, Kroll-Seger J, Kloppel S, Ganz RE, Kassubek J (2010) Intra- and interscanner variability of automated voxel-based volumetry based on a 3D probabilistic atlas of human cerebral structures. Neuroimage 49:2216–2224CrossRef
38.
Zurück zum Zitat Sampat MP, Healy BC, Meier DS, Dell'Oglio E, Liguori M, Guttmann CRG (2010) Disease modeling in multiple sclerosis: assessment and quantification of sources of variability in brain parenchymal fraction measurements. Neuroimage 52:1367–1373CrossRef Sampat MP, Healy BC, Meier DS, Dell'Oglio E, Liguori M, Guttmann CRG (2010) Disease modeling in multiple sclerosis: assessment and quantification of sources of variability in brain parenchymal fraction measurements. Neuroimage 52:1367–1373CrossRef
39.
Zurück zum Zitat Landman BA, Huang AJ, Gifford A, Vikram DS, Lim IAL, Farrell JAD et al (2011) Multi-parametric neuroimaging reproducibility: a 3-T resource study. Neuroimage 54:2854–2866CrossRef Landman BA, Huang AJ, Gifford A, Vikram DS, Lim IAL, Farrell JAD et al (2011) Multi-parametric neuroimaging reproducibility: a 3-T resource study. Neuroimage 54:2854–2866CrossRef
Metadaten
Titel
Assessment of brain volumes obtained from MP-RAGE and MP2RAGE images, quantified using different segmentation methods
verfasst von
Juli Alonso
Deborah Pareto
Manel Alberich
Tobias Kober
Bénédicte Maréchal
Xavier Lladó
Alex Rovira
Publikationsdatum
28.05.2020
Verlag
Springer International Publishing
Erschienen in
Magnetic Resonance Materials in Physics, Biology and Medicine / Ausgabe 6/2020
Print ISSN: 0968-5243
Elektronische ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-020-00854-4

Weitere Artikel der Ausgabe 6/2020

Magnetic Resonance Materials in Physics, Biology and Medicine 6/2020 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.