Skip to main content
Erschienen in: Journal of Clinical Monitoring and Computing 1/2019

04.04.2018 | Original Research

Assessment of cerebral hemodynamic parameters using pulsatile versus non-pulsatile cerebral blood outflow models

verfasst von: Agnieszka Uryga, Magdalena Kasprowicz, Leanne Calviello, Rolf R. Diehl, Katarzyna Kaczmarska, Marek Czosnyka

Erschienen in: Journal of Clinical Monitoring and Computing | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Background

Prior methods evaluating the changes in cerebral arterial blood volume (∆CaBV) assumed that brain blood transport distal to big cerebral arteries can be approximated with a non-pulsatile flow (CFF) model. In this study, a modified ∆CaBV calculation that accounts for pulsatile blood flow forward (PFF) from large cerebral arteries to resistive arterioles was investigated. The aim was to assess cerebral hemodynamic indices estimated by both CFF and PFF models while changing arterial blood carbon dioxide concentration (EtCO2) in healthy volunteers.

Materials and methods

Continuous recordings of non-invasive arterial blood pressure (ABP), transcranial Doppler blood flow velocity (CBFVa), and EtCO2 were performed in 53 young volunteers at baseline and during both hypo- and hypercapnia. The time constant of the cerebral arterial bed (τ) and critical closing pressure (CrCP) were estimated using mathematical transformations of the pulse waveforms of ABP and CBFVa, and with both pulsatile and non-pulsatile models of ∆CaBV estimation. Results are presented as median values ± interquartile range.

Results

Both CrCP and τ gave significantly lower values with the PFF model when compared with the CFF model (p ≪ 0.001 for both). In comparison to normocapnia, both CrCP and τ determined with the PFF model increased during hypocapnia [CrCPPFF (mm Hg): 5.52 ± 8.78 vs. 14.36 ± 14.47, p = 0.00006; τPFF (ms): 47.4 ± 53.9 vs. 72.8 ± 45.7, p = 0.002] and decreased during hypercapnia [CrCPPFF (mm Hg): 5.52 ± 8.78 vs. 2.36 ± 7.05, p = 0.0001; τPFF (ms): 47.4 ± 53.9 vs. 29.0 ± 31.3, p = 0.0003]. When the CFF model was applied, no changes were found for CrCP during hypercapnia or in τ during hypocapnia.

Conclusion

Our results suggest that the pulsatile flow forward model better reflects changes in CrCP and in τ induced by controlled alterations in EtCO2.
Literatur
1.
Zurück zum Zitat Avezaat CJJ, van Eijndhoven JHM. The role of the pulsatile pressure variations in intracranial pressure monitoring. Neurosurg Rev. 1986;9:113–20.CrossRefPubMed Avezaat CJJ, van Eijndhoven JHM. The role of the pulsatile pressure variations in intracranial pressure monitoring. Neurosurg Rev. 1986;9:113–20.CrossRefPubMed
2.
Zurück zum Zitat Alperin N, Sivaramakrishnan A, Lichtor T. Magnetic resonance imaging-based measurements of cerebrospinal fluid and blood flow as indicators of intracranial compliance in patients with Chiari malformation. J Neurosurg. 2005;103:46–52.CrossRefPubMed Alperin N, Sivaramakrishnan A, Lichtor T. Magnetic resonance imaging-based measurements of cerebrospinal fluid and blood flow as indicators of intracranial compliance in patients with Chiari malformation. J Neurosurg. 2005;103:46–52.CrossRefPubMed
3.
Zurück zum Zitat Stoquart-Elsankari S, Lehmann P, Villette A, Czosnyka M, Meyer M-E, Deramond H, et al. A phase-contrast MRI study of physiologic cerebral venous flow. J Cereb Blood Flow Metab. 2009;29:1208–15.CrossRefPubMed Stoquart-Elsankari S, Lehmann P, Villette A, Czosnyka M, Meyer M-E, Deramond H, et al. A phase-contrast MRI study of physiologic cerebral venous flow. J Cereb Blood Flow Metab. 2009;29:1208–15.CrossRefPubMed
4.
Zurück zum Zitat Kim DJ, Kasprowicz M, Carrera E, Castellani G, Zweifel C, Lavinio A, et al. The monitoring of relative changes in compartmental compliances of brain. Physiol Meas. 2009;30:647–59.CrossRefPubMed Kim DJ, Kasprowicz M, Carrera E, Castellani G, Zweifel C, Lavinio A, et al. The monitoring of relative changes in compartmental compliances of brain. Physiol Meas. 2009;30:647–59.CrossRefPubMed
5.
Zurück zum Zitat Carrera E, Kim DJ, Castellani G, Zweifel C, Smielewski P, Pickard JD, et al. Effect of hyper- and hypocapnia on cerebral arterial compliance in normal subjects. J Neuroimaging. 2011;21:121–5.CrossRefPubMed Carrera E, Kim DJ, Castellani G, Zweifel C, Smielewski P, Pickard JD, et al. Effect of hyper- and hypocapnia on cerebral arterial compliance in normal subjects. J Neuroimaging. 2011;21:121–5.CrossRefPubMed
6.
Zurück zum Zitat Nasr N, Czosnyka M, Pavy-Le Traon A, Custaud M-A, Liu X, Varsos GV, et al. Baroreflex and cerebral autoregulation are inversely correlated. Circ J. 2014;78:2460–7.CrossRefPubMed Nasr N, Czosnyka M, Pavy-Le Traon A, Custaud M-A, Liu X, Varsos GV, et al. Baroreflex and cerebral autoregulation are inversely correlated. Circ J. 2014;78:2460–7.CrossRefPubMed
7.
Zurück zum Zitat Czosnyka M, Richards HK, Reinhard M, Steiner L, Budohoski K, Smielewski P, et al. Cerebrovascular time constant: dependence on cerebral perfusion pressure and end-tidal carbon dioxide concentration. Neurol Res. 2012;34:17–24.CrossRefPubMed Czosnyka M, Richards HK, Reinhard M, Steiner L, Budohoski K, Smielewski P, et al. Cerebrovascular time constant: dependence on cerebral perfusion pressure and end-tidal carbon dioxide concentration. Neurol Res. 2012;34:17–24.CrossRefPubMed
8.
Zurück zum Zitat Kasprowicz M, Diedler J, Reinhard M, Carrera E, Steiner LA, Smielewski P, et al. Time constant of the cerebral arterial bed in normal subjects. Ultrasound Med Biol. 2012;38:1129–37.CrossRefPubMed Kasprowicz M, Diedler J, Reinhard M, Carrera E, Steiner LA, Smielewski P, et al. Time constant of the cerebral arterial bed in normal subjects. Ultrasound Med Biol. 2012;38:1129–37.CrossRefPubMed
9.
Zurück zum Zitat Kasprowicz M, Diedler J, Reinhard M, Carrera E, Smielewski P, Budohoski KP, et al. Time constant of the cerebral arterial bed. Acta Neurochir Suppl. 2012;114:17–21.CrossRefPubMed Kasprowicz M, Diedler J, Reinhard M, Carrera E, Smielewski P, Budohoski KP, et al. Time constant of the cerebral arterial bed. Acta Neurochir Suppl. 2012;114:17–21.CrossRefPubMed
10.
Zurück zum Zitat Varsos GV, Richards H, Kasprowicz M, Budohoski KP, Brady KM, Reinhard M, et al. Critical closing pressure determined with a model of cerebrovascular impedance. J Cereb Blood Flow Metab. 2013;33:235–43.CrossRefPubMed Varsos GV, Richards H, Kasprowicz M, Budohoski KP, Brady KM, Reinhard M, et al. Critical closing pressure determined with a model of cerebrovascular impedance. J Cereb Blood Flow Metab. 2013;33:235–43.CrossRefPubMed
11.
Zurück zum Zitat Kasprowicz M, Czosnyka M, Soehle M, Smielewski P, Kirkpatrick PJ, Pickard JD, et al. Vasospasm shortens cerebral arterial time constant. Neurocrit Care. 2012;16:213–8.CrossRefPubMed Kasprowicz M, Czosnyka M, Soehle M, Smielewski P, Kirkpatrick PJ, Pickard JD, et al. Vasospasm shortens cerebral arterial time constant. Neurocrit Care. 2012;16:213–8.CrossRefPubMed
12.
Zurück zum Zitat Carrera E, Kim D-J, Castellani G, Zweifel C, Smielewski P, Pickard JD, et al. Cerebral arterial compliance in patients with internal carotid artery disease. Eur J Neurol. 2011;18:711–8.CrossRefPubMed Carrera E, Kim D-J, Castellani G, Zweifel C, Smielewski P, Pickard JD, et al. Cerebral arterial compliance in patients with internal carotid artery disease. Eur J Neurol. 2011;18:711–8.CrossRefPubMed
13.
Zurück zum Zitat Varsos GV, Budohoski KP, Czosnyka M, Kolias AG, Nasr N, Donnelly J, et al. Cerebral vasospasm affects arterial critical closing pressure. J Cereb Blood Flow Metab. 2015;35:285–91.CrossRefPubMed Varsos GV, Budohoski KP, Czosnyka M, Kolias AG, Nasr N, Donnelly J, et al. Cerebral vasospasm affects arterial critical closing pressure. J Cereb Blood Flow Metab. 2015;35:285–91.CrossRefPubMed
14.
Zurück zum Zitat Varsos GV, Kolias AG, Smielewski P, Brady KM, Varsos VG, Hutchinson PJ, et al. A noninvasive estimation of cerebral perfusion pressure using critical closing pressure. J Neurosurg. 2015;123:638–48.CrossRefPubMed Varsos GV, Kolias AG, Smielewski P, Brady KM, Varsos VG, Hutchinson PJ, et al. A noninvasive estimation of cerebral perfusion pressure using critical closing pressure. J Neurosurg. 2015;123:638–48.CrossRefPubMed
15.
Zurück zum Zitat Carrera E, Kim D-J, Castellani G, Zweifel C, Czosnyka Z, Kasprowicz M, et al. What shapes pulse amplitude of intracranial pressure? J Neurotrauma. 2010;27:317–24.CrossRefPubMed Carrera E, Kim D-J, Castellani G, Zweifel C, Czosnyka Z, Kasprowicz M, et al. What shapes pulse amplitude of intracranial pressure? J Neurotrauma. 2010;27:317–24.CrossRefPubMed
16.
Zurück zum Zitat Ambarki K, Baledent O, Kongolo G, Bouzerar R, Fall S, Meyer ME. A new lumped-parameter model of cerebrospinal hydrodynamics during the cardiac cycle in healthy volunteers. IEEE Trans Biomed Eng. 2007;54:483–91.CrossRefPubMed Ambarki K, Baledent O, Kongolo G, Bouzerar R, Fall S, Meyer ME. A new lumped-parameter model of cerebrospinal hydrodynamics during the cardiac cycle in healthy volunteers. IEEE Trans Biomed Eng. 2007;54:483–91.CrossRefPubMed
17.
Zurück zum Zitat Czosnyka M, Smielewski P, Kirkpatrick P, Piechnik S, Laing R, Pickard JD. Continuous monitoring of cerebrovascular pressure-reactivity in head injury. Acta Neurochir Suppl. 1998;71:74–7.PubMed Czosnyka M, Smielewski P, Kirkpatrick P, Piechnik S, Laing R, Pickard JD. Continuous monitoring of cerebrovascular pressure-reactivity in head injury. Acta Neurochir Suppl. 1998;71:74–7.PubMed
18.
Zurück zum Zitat Czosnyka M, Guazzo E, Whitehouse M, Smielewski P, Czosnyka Z, Kirkpatrick P, et al. Significance of intracranial pressure waveform analysis after head injury. Acta Neurochir. 1996;138:531–42.CrossRefPubMed Czosnyka M, Guazzo E, Whitehouse M, Smielewski P, Czosnyka Z, Kirkpatrick P, et al. Significance of intracranial pressure waveform analysis after head injury. Acta Neurochir. 1996;138:531–42.CrossRefPubMed
19.
Zurück zum Zitat Poulin MJ, Robbins PA. Indexes of flow and cross-sectional area of the middle cerebral artery using doppler ultrasound during hypoxia and hypercapnia in humans. Stroke. 1996;27:2244–50.CrossRefPubMed Poulin MJ, Robbins PA. Indexes of flow and cross-sectional area of the middle cerebral artery using doppler ultrasound during hypoxia and hypercapnia in humans. Stroke. 1996;27:2244–50.CrossRefPubMed
20.
Zurück zum Zitat Valdueza JM, Balzer JO, Villringer A, Vogl TJ, Kutter R, Einhäupl KM. Changes in blood flow velocity and diameter of the middle cerebral artery during hyperventilation: assessment with MR and transcranial Doppler sonography. Am J Neuroradiol. 1997;18:1929–34.PubMed Valdueza JM, Balzer JO, Villringer A, Vogl TJ, Kutter R, Einhäupl KM. Changes in blood flow velocity and diameter of the middle cerebral artery during hyperventilation: assessment with MR and transcranial Doppler sonography. Am J Neuroradiol. 1997;18:1929–34.PubMed
21.
Zurück zum Zitat Henriksen JH, Fuglsang S, Bendtsen F, Christensen E, Møller S. Arterial compliance in patients with cirrhosis: stroke volume-pulse pressure ratio as simplified index. Am J Physiol Gastrointest Liver Physiol. 2001;280:G584–94.CrossRefPubMed Henriksen JH, Fuglsang S, Bendtsen F, Christensen E, Møller S. Arterial compliance in patients with cirrhosis: stroke volume-pulse pressure ratio as simplified index. Am J Physiol Gastrointest Liver Physiol. 2001;280:G584–94.CrossRefPubMed
22.
Zurück zum Zitat Panerai RB, Salinet ASM, Brodie FG, Robinson TG. The influence of calculation method on estimates of cerebral critical closing pressure. Physiol Meas. 2011;32:467–82.CrossRefPubMed Panerai RB, Salinet ASM, Brodie FG, Robinson TG. The influence of calculation method on estimates of cerebral critical closing pressure. Physiol Meas. 2011;32:467–82.CrossRefPubMed
23.
Zurück zum Zitat Altman BjM. DG. Statistics notes: calculating correlation coefficients with repeated observations: part 1-correlation within subjects. BMJ. 1995;310:446.CrossRefPubMedPubMedCentral Altman BjM. DG. Statistics notes: calculating correlation coefficients with repeated observations: part 1-correlation within subjects. BMJ. 1995;310:446.CrossRefPubMedPubMedCentral
24.
25.
Zurück zum Zitat Varsos GV, Kasprowicz M, Smielewski P, Czosnyka M. Model-based indices describing cerebrovascular dynamics. Neurocrit Care. 2014;20:142–57.CrossRefPubMed Varsos GV, Kasprowicz M, Smielewski P, Czosnyka M. Model-based indices describing cerebrovascular dynamics. Neurocrit Care. 2014;20:142–57.CrossRefPubMed
26.
Zurück zum Zitat Brothers RM, Zhang R. CrossTalk opposing view: the middle cerebral artery diameter does not change during alterations in arterial blood gases and blood pressure. J Physiol. 2016;594:4077–9.CrossRefPubMedPubMedCentral Brothers RM, Zhang R. CrossTalk opposing view: the middle cerebral artery diameter does not change during alterations in arterial blood gases and blood pressure. J Physiol. 2016;594:4077–9.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Hoiland RL, Ainslie PN. CrossTalk proposal: The middle cerebral artery diameter does change during alterations in arterial blood gases and blood pressure. J Physiol. 2016;594:4073–5.CrossRefPubMedPubMedCentral Hoiland RL, Ainslie PN. CrossTalk proposal: The middle cerebral artery diameter does change during alterations in arterial blood gases and blood pressure. J Physiol. 2016;594:4073–5.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Djurberg HG, Seed RF, Price Evans DA, Brohi FA, Pyper DL, Tjan GT, et al. Lack of effect of CO2 on cerebral arterial diameter in man. J Clin Anesth. 1998;10:646–51.CrossRefPubMed Djurberg HG, Seed RF, Price Evans DA, Brohi FA, Pyper DL, Tjan GT, et al. Lack of effect of CO2 on cerebral arterial diameter in man. J Clin Anesth. 1998;10:646–51.CrossRefPubMed
29.
Zurück zum Zitat Serrador JM, Picot P, Rutt BK, Shoemaker JK, Bondar RL. MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke. 2000;31:1672–8.CrossRefPubMed Serrador JM, Picot P, Rutt BK, Shoemaker JK, Bondar RL. MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke. 2000;31:1672–8.CrossRefPubMed
30.
Zurück zum Zitat Schreiber SJ, Gottschalk S, Weih M, Villringer A, Valdueza JM. Assessment of blood flow velocity and diameter of the middle cerebral artery during the acetazolamide provocation test by use of transcranial Doppler sonography and MR imaging. AJNR Am J Neuroradiol. 2000;21:1207–11.PubMed Schreiber SJ, Gottschalk S, Weih M, Villringer A, Valdueza JM. Assessment of blood flow velocity and diameter of the middle cerebral artery during the acetazolamide provocation test by use of transcranial Doppler sonography and MR imaging. AJNR Am J Neuroradiol. 2000;21:1207–11.PubMed
31.
Zurück zum Zitat Verbree J, Bronzwaer A-SGT, Ghariq E, Versluis MJ, Daemen MJAP., van Buchem MA, et al. Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI. J Appl Physiol. 2014;117:1084–9.CrossRefPubMed Verbree J, Bronzwaer A-SGT, Ghariq E, Versluis MJ, Daemen MJAP., van Buchem MA, et al. Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI. J Appl Physiol. 2014;117:1084–9.CrossRefPubMed
32.
Zurück zum Zitat Coverdale NS, Lalande S, Perrotta A, Shoemaker JK. Heterogeneous patterns of vasoreactivity in the middle cerebral and internal carotid arteries. Am J Physiol- Hear Circ Physiol. 2015;308:H1030–8.CrossRef Coverdale NS, Lalande S, Perrotta A, Shoemaker JK. Heterogeneous patterns of vasoreactivity in the middle cerebral and internal carotid arteries. Am J Physiol- Hear Circ Physiol. 2015;308:H1030–8.CrossRef
33.
Zurück zum Zitat Kim S-G, Harel N, Jin T, Kim T, Lee P, Zhao F. Cerebral blood volume MRI with intravascular superparamagnetic iron oxide nanoparticles. NMR Biomed. 2013;26:949–62.CrossRefPubMed Kim S-G, Harel N, Jin T, Kim T, Lee P, Zhao F. Cerebral blood volume MRI with intravascular superparamagnetic iron oxide nanoparticles. NMR Biomed. 2013;26:949–62.CrossRefPubMed
Metadaten
Titel
Assessment of cerebral hemodynamic parameters using pulsatile versus non-pulsatile cerebral blood outflow models
verfasst von
Agnieszka Uryga
Magdalena Kasprowicz
Leanne Calviello
Rolf R. Diehl
Katarzyna Kaczmarska
Marek Czosnyka
Publikationsdatum
04.04.2018
Verlag
Springer Netherlands
Erschienen in
Journal of Clinical Monitoring and Computing / Ausgabe 1/2019
Print ISSN: 1387-1307
Elektronische ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-018-0136-1

Weitere Artikel der Ausgabe 1/2019

Journal of Clinical Monitoring and Computing 1/2019 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.