Skip to main content

01.12.2017 | Research article | Ausgabe 1/2017 Open Access

Breast Cancer Research 1/2017

Association between air pollution and mammographic breast density in the Breast Cancer Surveilance Consortium

Breast Cancer Research > Ausgabe 1/2017
Lusine Yaghjyan, Robert Arao, Cole Brokamp, Ellen S. O’Meara, Brian L. Sprague, Gabriela Ghita, Patrick Ryan



Mammographic breast density is a well-established strong risk factor for breast cancer. The environmental contributors to geographic variation in breast density in urban and rural areas are poorly understood. We examined the association between breast density and exposure to ambient air pollutants (particulate matter <2.5 μm in diameter (PM2.5) and ozone (O3)) in a large population-based screening registry.


Participants included women undergoing mammography screening at imaging facilities within the Breast Cancer Surveillance Consortium (2001–2009). We included women aged ≥40 years with known residential zip codes before the index mammogram (n = 279,967). Breast density was assessed using the American College of Radiology’s Breast Imaging-Reporting and Data System (BI-RADS) four-category breast density classification. PM2.5 and O3 estimates for grids across the USA (2001–2008) were obtained from the US Environmental Protection Agency Hierarchical Bayesian Model (HBM). For the majority of women (94%), these estimates were available for the year preceding the mammogram date. Association between exposure to air pollutants and density was estimated using polytomous logistic regression, adjusting for potential confounders.


Women with extremely dense breasts had higher mean PM2.5 and lower O3 exposures than women with fatty breasts (8.97 vs. 8.66 ug/m3 and 33.70 vs. 35.82 parts per billion (ppb), respectively). In regression analysis, women with heterogeneously dense vs. scattered fibroglandular breasts were more likely to have higher exposure to PM2.5 (fourth vs. first quartile odds ratio (OR) = 1.19, 95% confidence interval (CI) 1.16 − 1.23). Women with extremely dense vs. scattered fibroglandular breasts were less likely to have higher levels of ozone exposure (fourth vs. first quartile OR = 0.80, 95% CI 0.73–0.87).


Exposure to PM2.5 and O3 may in part explain geographical variation in mammographic density. Further studies are warranted to determine the causal nature of these associations.
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2017

Breast Cancer Research 1/2017 Zur Ausgabe

Neu im Fachgebiet Onkologie

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Onkologie und bleiben Sie gut informiert – ganz bequem per eMail.