Skip to main content
Erschienen in: Alzheimer's Research & Therapy 1/2017

Open Access 01.12.2017 | Research

Association between chronic periodontitis and the risk of Alzheimer’s disease: a retrospective, population-based, matched-cohort study

verfasst von: Chang-Kai Chen, Yung-Tsan Wu, Yu-Chao Chang

Erschienen in: Alzheimer's Research & Therapy | Ausgabe 1/2017

Abstract

Background

Although recent short-term cross-sectional studies have revealed that chronic periodontitis (CP) may be a risk factor for increased cognitive impairment in patients with Alzheimer’s disease (AD), systematic reviews and long-term longitudinal studies have provided less clear evidence regarding the relationship between CP and AD. Therefore, we conducted a retrospective cohort study using the National Health Insurance Research Database (NHIRD) of Taiwan to determine whether patients with CP are at increased risk of developing AD.

Methods

We conducted a retrospective matched-cohort study using the NHIRD of Taiwan. We identified 9291 patients newly diagnosed with CP between 1997 and 2004. A total of 18,672 patients without CP were matched to the patient cohort according to sex, age, index year, co-morbidity and urbanisation level. Cox proportional hazards regression analyses were performed to evaluate the subsequent risk of AD.

Results

Patients with CP had a higher prevalence of hyperlipidaemia, depression, traumatic brain injury and co-morbidities, as well as higher urbanisation levels, than those in the unexposed cohort (all p < 0.01). At the final follow-up, totals of 115 (1.24%) and 208 (1.11%) individuals in the CP exposed and unexposed groups, respectively, had developed AD. Patients with 10 years of CP exposure exhibited a higher risk of developing AD than unexposed groups (adjusted HR 1.707, 95% CI 1.152–2.528, p = 0.0077).

Conclusions

Our findings demonstrate that 10-year CP exposure was associated with a 1.707-fold increase in the risk of developing AD. These findings highlight the need to prevent progression of periodontal disease and promote healthcare service at the national level.
Abkürzungen
AD
Alzheimer’s disease
CCI
Charlson co-morbidity index
CP
Chronic periodontitis
CRP
C-reactive protein
ICD-9-CM
International Classification of Diseases, Ninth Revision, Clinical Modification
IRB
Institutional review board
NHIRD
National Health Insurance Research Database

Background

Alzheimer’s disease (AD) is a neurodegenerative disease characterised by progressive cognitive decline and memory loss, inevitably leading to complete loss of mental faculties and death [1]. AD is the most common cause of dementia in older adults [25]. Furthermore, due to increasing life expectancy and lifestyle changes, recent projections have indicated that 1 in 85 individuals will be diagnosed with AD by 2050 [6].
Recent evidence indicates that peripheral infections, blood vessel damage and oxidative stress may aggravate inflammation in the brain and play an important role in the pathogenesis of dementia and AD [7, 8]. Indeed, previous reports have revealed that diabetes mellitus [9], hypertension [10], hyperlipidaemia [11], chronic kidney disease [12], depression [13], stroke [14], traumatic brain injury [15] and periodontal problems [16, 17] are associated with cognitive impairment. Chronic periodontitis (CP) is a peripheral infectious/inflammatory condition that is among the leading risk factors for tooth loss [18]. CP has been associated with increases in serum levels of C-reactive protein (CRP) [19] and pro-inflammatory cytokines (e.g., tumour necrosis factor-α), as well as decreases in anti-inflammatory markers (e.g., interleukin-10) [20]. Studies have further revealed that CP is linked to numerous inflammatory diseases, including cardiovascular disease [21] and diabetes mellitus [22], as well as to other neurodegenerative disorders, such as Parkinson’s disease [23]. Researchers have speculated that this association is due to the increases in systemic inflammation that accompany the growth of periodontal pathogenic microorganisms. In other mechanism by which CP contributes to AD, systemic inflammation caused by periodontal pathogens may also play a role in vascular disease and endothelial dysfunction. With accumulating studies supporting vascular factors in the development of AD, vascular factors could be a mediator in the development of AD [2426].
Although recent short-term cross-sectional studies have revealed that CP may be a risk factor for increased cognitive impairment in patients with AD [5, 27], systematic reviews and long-term longitudinal studies have provided less clear evidence regarding the relationship between CP and AD [1, 26, 28]. Therefore, we conducted a retrospective cohort study using the National Health Insurance Research Database (NHIRD) of Taiwan to determine whether patients with CP are at increased risk of developing AD.

Methods

Data sources

Developed in 1995, the National Health Insurance Program provides universal and comprehensive healthcare for approximately 99% of residents in Taiwan [29]. In the present study, we used 1996–2013 data from the NHIRD in Taiwan. One million individuals included in the NHIRD were selected at random, representing about 4.5% of all enrolees [30]. There was no significant difference in age or sex between participants included in the study sample and all NHIRD enrolees. We extracted data regarding demographic characteristics, including encrypted identification numbers, sex, dates of birth and death, and diagnostic information. The diagnostic data included the dates of dental procedures, as well as International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM), diagnostic and procedure codes [31]. Approval for the present study was obtained from the institutional review board (IRB) of Chung Shan Medical University (CS2-15071). The requirement for informed consent was waived by the IRB because all NHIRD data had been de-identified.

Study design and sampled participants

The present retrospective, matched-cohort study included patients aged ≥50 years who had been newly diagnosed with CP (between 1 January 1997 and 31 December 2004) on the basis of ICD-9-CM diagnostic criteria: code 523.4 (CP) [32]. In addition, each enrolled patient had been diagnosed with CP following at least two outpatient clinic visits during the 1-year study period [33]. Exclusion criteria were as follows: (1) unknown age and/or sex, (2) diagnosis of CP prior to 1997 and (3) diagnosis of AD (ICD-9-CM code 331.0) prior to 1997 or prior to the first visit for CP [33]. To ensure the accuracy of our findings, we also excluded patients with unknown vital status and those who had not used health services in the past 12 months, because the NHIRD does not include death records. The sample included a total of 9291 patients with CP and 18,672 patients without CP matched according to sex, age and index years (1:2 ratio).
Both cohorts were followed from the index date until the diagnosis of AD, death or 31 December 2013 (Fig. 1). The covariates included sex and age group (50–59, 60–69 and ≥70 years). According to the definition of urbanisation issued by the National Institutes of Health in Taiwan, all 365 townships in Taiwan are divided into 7 clusters according to the following variables: population density (people per square kilometre), proportion of the population with a college-level education or higher, proportion of individuals over 65 years old, number of agricultural workers, and number of physicians per 100,000 people. In the present study, townships of one or two clusters, three or four clusters, and five to seven clusters were categorised as levels 1, 2 and 3, respectively [34].
We also analysed AD-related co-morbidities, including hypertension (ICD-9-CM codes 401.1, 401.9, 402.10, 402.90, 404.10, 404.90, 405.1 and 405.9) [10], hyperlipidaemia (ICD-9-CM codes 272.0–272.9) [11], chronic kidney disease (ICD-9-CM codes 580, 581–589, 753, 403, 404, 250.4, 274.1, 440.1, 442.1, 447.3, 572.4, 642.1 and 646.2) [12], depression (ICD-9-CM code 311) [13], stroke (ICD-9-CM codes 433, 434 and 436) [14], diabetes mellitus (ICD-9-CM codes 250–250.3, 250.7) [22] and traumatic brain injury (ICD-9-CM codes 800–804, 850–854, 905.0, 950.1, 950.3, 907.0, 959.01, 959.9, 310.2 and V15.52) [15]. The Charlson comorbidity index (CCI), which contains 17 weighted co-morbidities, was also calculated for each participant [35].

Statistical analysis

We used t tests and chi-square tests to compare the demographic and clinical characteristics of patients with CP with those of patients without CP. Univariate and multivariate stratified Cox regression models were then used to calculate HRs and 95% CIs. Multivariable models were adjusted for AD-related co-morbidities, CCI score, and urbanisation level. The Kaplan-Meier method was used to assess the AD survival probability between the exposed and unexposed cohorts. The log-rank test was used to compare differences between these two cohorts.
Sensitivity analysis was performed to identify patients diagnosed with CP ≥1 year following the diagnosis of AD, as well as the incidence of AD occurring ≥10 years following the diagnosis of CP [4]. To ensure the stability and accuracy of the statistical model, we excluded from the sensitivity analysis patients diagnosed with AD <1 and <10 years after the diagnosis of CP [36]. We used a mediation model to identify and explain the other pathways or processes underlying an observed relationship between CP (independent variable) and AD (dependent variable) via the hypothetical mediator of cerebrovascular disease (ICD-9 codes 430–438) [26]. All statistical analyses were performed using SAS version 9.3 (SAS Institute, Cary, NC, USA) and IBM SPSS Statistics version 22 (IBM, Armonk, NY, USA) software. The level of statistical significance was set at p < 0.05.

Results

The baseline characteristics of the study sample are presented in Table 1. Patients with CP had a higher prevalence of hyperlipidaemia, depression and traumatic brain injury, as well as a CCI score and urbanisation level, than the unexposed cohort (all p < 0.01). The mean ages and follow-up times for the exposed and unexposed cohorts were 54.1 ± 10.5 vs. 54.2 ± 10.5 years and 11.9 ± 2.6 vs.12.2 ± 2.6 years, respectively.
Table 1
Demographic characteristics of the study cohort at baseline
Variable
Total
Chronic periodontitis
p value
   
With
Without
 
 
n
%
n
%
n
%
 
Total
27,963
100
9291
100
18,672
100
 
Sex
 Female
13,119
46.92
4351
46.83
8768
46.96
0.8402
 Male
14,844
53.08
4940
53.17
9904
53.04
 
Age, years
 50–59
13,947
49.88
4638
49.92
9309
49.86
0.9705
 60–69
8853
31.66
2945
31.70
5908
31.64
 
 ≥70
5163
18.46
1708
18.38
3455
18.50
 
Hypertension
 No
6654
23.80
2251
24.23
4403
23.58
0.2314
 Yes
21,309
76.20
7040
75.77
14,269
76.42
 
Hyperlipidaemia
 No
21,651
77.43
6935
74.64
14,716
78.81
<0.0001
 Yes
6312
22.57
2356
25.36
3956
21.19
 
Chronic kidney disease
 No
17,243
61.66
5697
61.32
11,546
61.84
0.4009
 Yes
10,720
38.34
3594
38.68
7126
38.16
 
Depression
 No
23,283
83.26
7619
82.00
15,664
83.89
<0.0001
 Yes
4680
16.74
1672
18.00
3008
16.11
 
Stroke
 No
21,316
76.23
7081
76.21
14,235
76.24
0.9652
 Yes
6647
23.77
2210
23.79
4437
23.76
 
Diabetes mellitus
 No
14,545
52.02
4627
49.8
9918
53.12
<0.0001
 Yes
13,418
47.98
4664
50.2
8754
46.88
 
Traumatic brain injury
 No
22,517
80.52
7562
81.39
14,955
80.09
0.0099
 Yes
5446
19.48
1729
18.61
3717
19.91
 
CCI score
 0
17,032
60.91
6423
69.13
10,609
56.82
<0.0001
 1
7826
27.99
2206
23.74
5620
30.10
 
 2
3105
11.10
662
7.13
2443
13.08
 
 ≥3
1685
6.03
499
5.37
1186
6.35
 
Urbanisation level
 1
2896
10.36
890
9.58
2006
10.74
<0.0001
 2
3675
13.14
1219
13.12
2456
13.15
 
 3
19,707
70.48
6683
71.93
13,024
69.75
 
CCI Charlson comorbidity index
Totals of 115 (1.24%) and 208 (1.11%) patients were diagnosed with AD in the exposed and unexposed cohorts, respectively (Fig. 1). Table 2 shows the Cox regression analysis of risk factors associated with the development of AD. Although patients with CP exhibited higher crude HRs (1.301, 95% CI 1.012–1.673, p = 0.0404) for the development of AD than those without CP, the adjusted HR was 1.297, indicating a lack of statistical significance (95% CI 0.995–1.692, p = 0.0547) (Table 2). Patients with depression, stroke and traumatic brain injury tended to have a higher risk for the development of AD (all p < 0.05). Moreover, the risk of AD was lower in patients with urbanisation level 2 and level 3 (both p < 0.05). Figure 2 depicts the Kaplan-Meier curve for the cumulative risk of AD in the exposed and unexposed groups. A significant difference was observed between the two groups once 10 years of CP exposure had been reached (p = 0.0264 by log-rank test).
Table 2
Covariates associated with Alzheimer’s disease at end of follow-up with univariate, multivariable and sensitivity analysis of Cox regression analysis
Variable
Univariate analysis
Multivariable analysis
 
Crude HR
95% CI
p value
Adjusted HR
95% CI
p value
1-year exclusion in a diagnosis of AD
      
 Chronic periodontitis
      
  Without
Reference
  
Reference
  
  With
1.301
1.012–1.673
0.0404
1.297
0.995–1.692
0.0547
10-year exclusion in a diagnosis of AD
      
 Chronic periodontitis
      
  Without
Reference
  
Reference
  
  With
1.364
1.079–1.725
0.0095
1.707
1.152–2.528
0.0077
AD Alzheimer’s disease
The multivariable analyses were adjusted for hypertension, hyperlipidaemia, chronic kidney disease, depression, stroke, traumatic brain injury, diabetes mellitus, Charlson comorbidity index score, urbanisation level
The results of the sensitivity analysis are presented in Table 2. We performed sensitivity analysis after excluding patients diagnosed with AD <1 year and <10 years after the diagnosis of CP. The association between CP and AD was significant after 10 years of CP exposure (adjusted HR 1.707, p = 0.0077). In statistics, a mediation model explains and underlies an observed relationship between an independent variable (IV) and dependent variable (DV) via the inclusion of a mediator (M). They have significance of a mediation model (IV → M, p < 0.001, 95% CI 3.292–3.763; M → DV, p = 0.0118, 95% CI 1.121–2.506; and IV → D, p = 0.0077, 95% CI 1.152–2.528). This result shows that cerebrovascular disease is a partial mediator between CP and AD. CP can also cause AD directly.

Discussion

The present study is the first nationwide population-based matched-cohort study to demonstrate that patients with 10-year CP exposure exhibit an increased risk of developing AD (adjusted HR 1.707), regardless of co-morbidities, CCI score or urbanisation level. The prevalence of AD significantly increases with age, although AD in general is more common in women than in men [3]. AD is characterised by salient inflammatory features, microglial activation and increased levels of pro-inflammatory cytokines, which contribute to the inflammatory status of the central nervous system [37]. As a low-grade systemic disease, CP may involve the slow release of pro-inflammatory cytokines and CRP into the systemic circulation. This low-grade inflammation is thought to impact general systemic health and exacerbate other systemic disorders [38]. Therefore, CP may be a significant source of covert peripheral inflammation within the general population. Periodontitis has a tendency to infiltrate the systemic circulation with inflammatory mediators, thereby resulting in systemic disease. Researchers have proposed that periodontitis can lead to progression of AD by further increasing levels of pro-inflammatory cytokines and can lead to the invasion of micro-organisms from the dental plaque biofilm into the brain [28]. Moreover, these pro-inflammatory cytokines may penetrate the blood-brain barrier and induce neurodegenerative changes that ultimately influence the development of AD [26]. In the present study, we observed a significant correlation between CP and AD only after the 10-year follow-up for the initial diagnosis of CP. This finding supports the notion that pro-inflammatory factors due to CP may slowly and progressively induce neurodegenerative changes that lead to the development of AD. However, further study is required to verify this hypothesis.
In previous small and/or short-term cross-sectional studies, the authors examined only the associations between periodontal inflammation and AD [5, 27], without investigating the potential cause-and-effect relationship between the two. However, in a previous study, researchers reported that periodontitis is associated with an increased risk of developing dementia [33]. Moreover, a 10-year clinical observational study conducted by Tzeng et al. revealed that patients with at least 8 years of periodontal problems exhibited a significantly higher risk of developing dementia and neurodegenerative diseases than healthy unexposed groups [4]. Despite these crucial findings, neither of the aforementioned studies identified the role of periodontitis in AD development. The present population-based study is the first to demonstrate a significantly increased risk of AD after 10-year CP exposure. Our findings support the notion that infectious diseases associated with low-grade inflammation, such as CP, may play a substantial role in the pathogenesis of AD [39]. In mediation analysis, the role of cerebrovascular disease is as a partial mediator, and CP can also cause AD directly. Systemic inflammation caused by periodontal pathogens, such as Porphyromonas gingivalis and Streptococcus sanguinis, may be a factor in endothelial dysfunction and vascular disease [26]. The mediator model facilitates a better understanding of the relationship between CP and AD. However, it needs more relevant and further investigation to confirm and clarify the pathway.
Co-morbidities including depression, stroke and traumatic brain injury were directly associated with the risk of developing AD in the present study, in accordance with the findings of previous studies. Burke et al. reported that depression was associated with AD in a group of participants who were initially cognitively asymptomatic [13], whereas additional studies have revealed a significant association between stroke/brain damage and dementia [14, 15]. Our findings also indicate that urbanisation level 1 was a significant risk factor for AD. This finding may be explained by differences between urban and rural lifestyles, availability of medical resources and convenience of medical access [3, 40]. Patients with AD also exhibit impairments in chewing function due to progressive neurodegeneration, increasing the risk of periodontal problems [41, 42]. Hence, proper dental care and oral rehabilitation are necessary to improve masticatory function in this patient population.
The present study possesses several advantages over previous work. Firstly, we used a nationwide database, which allowed us to examine a large sample of patients over a 16-year follow-up period. Secondly, because the Taiwanese NHIRD provides continued coverage for the whole population of Taiwan and randomises recruits, in the present study, we were able to minimise the influence of bias associated with data collection, region and institution. Thirdly, the use of the NHIRD eliminated the need to minimise patients in the cohort who were lost to follow-up and enabled us to obtain large, geographically dispersed samples of patients with varying socio-demographic characteristics [34]. Lastly, we defined AD using strict criteria (ICD-9-CM code 331.0) to ensure the accuracy of our statistical analysis.
However, the present study also possesses some limitations of note. Firstly, we could not clarify the medical records of all missing recruited CP and AD subjects, because all the medical records from the NHIRD were de-identified due to ethical considerations. It is possible that the incidence of CP or AD was underestimated in our study because patients who had not received medical records during the study period were excluded. Although this would result in fewer patients with less severe forms of CP or AD in our sample, the exposed-unexposed matched design would also diminish this bias. Secondly, the nationwide database used in the present study did not allow us to obtain data regarding the severity of AD. Furthermore, AD and dementia may overlap in this study because we were not able to clarify the medical records of all defined AD, owing to all the medical records from the NHIRD being de-identified due to ethical considerations. Thirdly, the broad age categories are important variable indexes. However, because of this limitation, there may be residual confounding by age [4]. Finally, in detailed demography concerning smoking habits, the NHIRD did not provide personal information regarding certain and definite variables relevant to our research [43]. Moreover, although education is an important variable index of AD, the education level of individuals in the NHIRD is not available. Further research is needed to explain the complex relationship between urbanisation and education.

Conclusions

Our findings demonstrate that 10-year CP exposure was associated with a 1.707-fold increase in the risk of developing AD. These findings highlight the need to prevent progression of periodontal disease and promote healthcare services at the national level.

Acknowledgements

The authors thank Dr. Jing-Yang Huang, who participated in the design of the research and data interpretation, and they appreciate Yun-Ju Tsai, Li-Heng Chen and Li-Xin Chen for their help in paper collection.

Funding

Not applicable.

Availability of data and materials

Not applicable.
Approval for the present study was obtained from the institutional review board (IRB) of Chung Shan Medical University (CS2-15071). The requirement for informed consent was waived by the IRB because all NHIRD data had been de-identified.
All authors approved the manuscript for submission.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Gaur S, Agnihotri R. Alzheimer’s disease and chronic periodontitis: is there an association? Geriatr Gerontol Int. 2015;15:391–404.CrossRefPubMed Gaur S, Agnihotri R. Alzheimer’s disease and chronic periodontitis: is there an association? Geriatr Gerontol Int. 2015;15:391–404.CrossRefPubMed
2.
Zurück zum Zitat Lin RT, Lai CL, Tai CT, Liu CK, Yen YY, Howng SL. Prevalence and subtypes of dementia in southern Taiwan: impact of age, sex, education, and urbanization. J Neurol Sci. 1998;160:67–75.CrossRefPubMed Lin RT, Lai CL, Tai CT, Liu CK, Yen YY, Howng SL. Prevalence and subtypes of dementia in southern Taiwan: impact of age, sex, education, and urbanization. J Neurol Sci. 1998;160:67–75.CrossRefPubMed
3.
Zurück zum Zitat Peng D, Shi Z, Xu J, Shen L, Xiao S, Zhang N, et al. Demographic and clinical characteristics related to cognitive decline in Alzheimer disease in China: a multicenter survey from 2011 to 2014. Medicine (Baltimore). 2016;95:e3727. Peng D, Shi Z, Xu J, Shen L, Xiao S, Zhang N, et al. Demographic and clinical characteristics related to cognitive decline in Alzheimer disease in China: a multicenter survey from 2011 to 2014. Medicine (Baltimore). 2016;95:e3727.
4.
Zurück zum Zitat Tzeng NS, Chung CH, Yeh CB, Huang RY, Yuh DY, Huang SY, et al. Are chronic periodontitis and gingivitis associated with dementia? A nationwide, retrospective, matched-cohort study in Taiwan. Neuroepidemiology. 2016;47:82–93.CrossRefPubMed Tzeng NS, Chung CH, Yeh CB, Huang RY, Yuh DY, Huang SY, et al. Are chronic periodontitis and gingivitis associated with dementia? A nationwide, retrospective, matched-cohort study in Taiwan. Neuroepidemiology. 2016;47:82–93.CrossRefPubMed
5.
Zurück zum Zitat Martande SS, Pradeep AR, Singh SP, Kumari M, Suke DK, Raju AP, et al. Periodontal health condition in patients with Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2014;29:498–502.CrossRefPubMed Martande SS, Pradeep AR, Singh SP, Kumari M, Suke DK, Raju AP, et al. Periodontal health condition in patients with Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2014;29:498–502.CrossRefPubMed
6.
Zurück zum Zitat Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007;3:186–91.CrossRefPubMed Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007;3:186–91.CrossRefPubMed
7.
Zurück zum Zitat Marchesi VT. Alzheimer’s dementia begins as a disease of small blood vessels, damaged by oxidative-induced inflammation and dysregulated amyloid metabolism: implications for early detection and therapy. FASEB J. 2011;25:5–13.CrossRefPubMed Marchesi VT. Alzheimer’s dementia begins as a disease of small blood vessels, damaged by oxidative-induced inflammation and dysregulated amyloid metabolism: implications for early detection and therapy. FASEB J. 2011;25:5–13.CrossRefPubMed
8.
Zurück zum Zitat Tonsekar PP, Jiang SS, Yue G. Periodontal disease, tooth loss and dementia: is there a link? A systematic review. Gerodontology. 2017;34:151–63.CrossRefPubMed Tonsekar PP, Jiang SS, Yue G. Periodontal disease, tooth loss and dementia: is there a link? A systematic review. Gerodontology. 2017;34:151–63.CrossRefPubMed
9.
Zurück zum Zitat Huang CC, Chung CM, Leu HB, Lin LY, Chiu CC, Hsu CY, et al. Diabetes mellitus and the risk of Alzheimer’s disease: a nationwide population-based study. PLoS One. 2014;9, e87095.CrossRefPubMedPubMedCentral Huang CC, Chung CM, Leu HB, Lin LY, Chiu CC, Hsu CY, et al. Diabetes mellitus and the risk of Alzheimer’s disease: a nationwide population-based study. PLoS One. 2014;9, e87095.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Moreno Cervantes C, Mimenza Alvarado A, Aguilar Navarro S, Alvarado Ávila P, Gutiérrez Gutiérrez L, Juárez Arellano S, et al. Factors associated with mixed dementia vs Alzheimer disease in elderly Mexican adults. Neurologia. 2017;32:309–15.CrossRefPubMed Moreno Cervantes C, Mimenza Alvarado A, Aguilar Navarro S, Alvarado Ávila P, Gutiérrez Gutiérrez L, Juárez Arellano S, et al. Factors associated with mixed dementia vs Alzheimer disease in elderly Mexican adults. Neurologia. 2017;32:309–15.CrossRefPubMed
11.
Zurück zum Zitat Vanhanen M, Koivisto K, Moilanen L, Helkala EL, Hanninen T, Soininen H, et al. Association of metabolic syndrome with Alzheimer disease: a population-based study. Neurology. 2006;67:843–7.CrossRefPubMed Vanhanen M, Koivisto K, Moilanen L, Helkala EL, Hanninen T, Soininen H, et al. Association of metabolic syndrome with Alzheimer disease: a population-based study. Neurology. 2006;67:843–7.CrossRefPubMed
12.
Zurück zum Zitat Helmer C, Stengel B, Metzger M, Froissart M, Massy ZA, Tzourio C, et al. Chronic kidney disease, cognitive decline, and incident dementia: the 3C Study. Neurology. 2011;77:2043–51.CrossRefPubMed Helmer C, Stengel B, Metzger M, Froissart M, Massy ZA, Tzourio C, et al. Chronic kidney disease, cognitive decline, and incident dementia: the 3C Study. Neurology. 2011;77:2043–51.CrossRefPubMed
13.
Zurück zum Zitat Burke SL, Maramaldi P, Cadet T, Kukull W. Associations between depression, sleep disturbance, and apolipoprotein E in the development of Alzheimer’s disease: dementia. Int Psychogeriatr. 2016;28:1409–24.CrossRefPubMed Burke SL, Maramaldi P, Cadet T, Kukull W. Associations between depression, sleep disturbance, and apolipoprotein E in the development of Alzheimer’s disease: dementia. Int Psychogeriatr. 2016;28:1409–24.CrossRefPubMed
14.
Zurück zum Zitat Huang CY, Li YC, Wang HK, Sung PS, Wang LC, Sun YT, et al. Stroke suggests increased risk of dementia. Curr Alzheimer Res. 2015;12:287–95.CrossRefPubMed Huang CY, Li YC, Wang HK, Sung PS, Wang LC, Sun YT, et al. Stroke suggests increased risk of dementia. Curr Alzheimer Res. 2015;12:287–95.CrossRefPubMed
15.
Zurück zum Zitat Wang HK, Lin SH, Sung PS, Wu MH, Hung KW, Wang LC, et al. Population based study on patients with traumatic brain injury suggests increased risk of dementia. J Neurol Neurosurg Psychiatry. 2012;83:1080–5.CrossRefPubMed Wang HK, Lin SH, Sung PS, Wu MH, Hung KW, Wang LC, et al. Population based study on patients with traumatic brain injury suggests increased risk of dementia. J Neurol Neurosurg Psychiatry. 2012;83:1080–5.CrossRefPubMed
16.
Zurück zum Zitat Kamer AR, Craig RG, Dasanayake AP, Brys M, Glodzik-Sobanska L, de Leon MJ. Inflammation and Alzheimer’s disease: possible role of periodontal diseases. Alzheimers Dement. 2008;4:242–50.CrossRefPubMed Kamer AR, Craig RG, Dasanayake AP, Brys M, Glodzik-Sobanska L, de Leon MJ. Inflammation and Alzheimer’s disease: possible role of periodontal diseases. Alzheimers Dement. 2008;4:242–50.CrossRefPubMed
17.
Zurück zum Zitat Watts A, Crimmins EM, Gatz M. Inflammation as a potential mediator for the association between periodontal disease and Alzheimer’s disease. Neuropsychiatr Dis Treat. 2008;4:865–76.CrossRefPubMedPubMedCentral Watts A, Crimmins EM, Gatz M. Inflammation as a potential mediator for the association between periodontal disease and Alzheimer’s disease. Neuropsychiatr Dis Treat. 2008;4:865–76.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Al-Shammari KF, Al-Khabbaz AK, Al-Ansari JM, Neiva R, Wang HL. Risk indicators for tooth loss due to periodontal disease. J Periodontol. 2005;76:1910–8.CrossRefPubMed Al-Shammari KF, Al-Khabbaz AK, Al-Ansari JM, Neiva R, Wang HL. Risk indicators for tooth loss due to periodontal disease. J Periodontol. 2005;76:1910–8.CrossRefPubMed
19.
Zurück zum Zitat Paraskevas S, Huizinga JD, Loos BG. A systematic review and meta-analyses on C-reactive protein in relation to periodontitis. J Clin Periodontol. 2008;35:277–90.CrossRefPubMed Paraskevas S, Huizinga JD, Loos BG. A systematic review and meta-analyses on C-reactive protein in relation to periodontitis. J Clin Periodontol. 2008;35:277–90.CrossRefPubMed
20.
Zurück zum Zitat Passoja A, Puijola I, Knuuttila M, Niemelä O, Karttunen R, Raunio T, et al. Serum levels of interleukin-10 and tumour necrosis factor-α in chronic periodontitis. J Clin Periodontol. 2010;37:881–7.CrossRefPubMed Passoja A, Puijola I, Knuuttila M, Niemelä O, Karttunen R, Raunio T, et al. Serum levels of interleukin-10 and tumour necrosis factor-α in chronic periodontitis. J Clin Periodontol. 2010;37:881–7.CrossRefPubMed
21.
22.
Zurück zum Zitat Lakschevitz F, Aboodi G, Tenenbaum H, Glogauer M. Diabetes and periodontal diseases: interplay and links. Curr Diabetes Rev. 2011;7:433–9.CrossRefPubMed Lakschevitz F, Aboodi G, Tenenbaum H, Glogauer M. Diabetes and periodontal diseases: interplay and links. Curr Diabetes Rev. 2011;7:433–9.CrossRefPubMed
23.
Zurück zum Zitat Liu TC, Sheu JJ, Lin HC, Jensen DA. Increased risk of parkinsonism following chronic periodontitis: a retrospective cohort study. Mov Disord. 2013;28:1307–8.CrossRefPubMed Liu TC, Sheu JJ, Lin HC, Jensen DA. Increased risk of parkinsonism following chronic periodontitis: a retrospective cohort study. Mov Disord. 2013;28:1307–8.CrossRefPubMed
24.
Zurück zum Zitat Roher AE, Esh C, Kokjohn TA, Kalback W, Luehrs DC, Seward JD, et al. Circle of Willis atherosclerosis is a risk factor for sporadic Alzheimer’s disease. Arterioscler Thromb Vasc Biol. 2003;23:2055–62.CrossRefPubMed Roher AE, Esh C, Kokjohn TA, Kalback W, Luehrs DC, Seward JD, et al. Circle of Willis atherosclerosis is a risk factor for sporadic Alzheimer’s disease. Arterioscler Thromb Vasc Biol. 2003;23:2055–62.CrossRefPubMed
25.
Zurück zum Zitat Honig LS, Kukull W, Mayeux R. Atherosclerosis and AD: analysis of data from the US National Alzheimer’s Coordinating Center. Neurology. 2005;64:494–500.CrossRefPubMed Honig LS, Kukull W, Mayeux R. Atherosclerosis and AD: analysis of data from the US National Alzheimer’s Coordinating Center. Neurology. 2005;64:494–500.CrossRefPubMed
26.
Zurück zum Zitat Uppoor AS, Lohi HS, Nayak D. Periodontitis and Alzheimer’s disease: oral systemic link still on the rise? Gerodontology. 2013;30:239–42.CrossRefPubMed Uppoor AS, Lohi HS, Nayak D. Periodontitis and Alzheimer’s disease: oral systemic link still on the rise? Gerodontology. 2013;30:239–42.CrossRefPubMed
27.
Zurück zum Zitat Ide M, Harris M, Stevens A, Sussams R, Hopkins V, Culliford D, et al. Periodontitis and cognitive decline in Alzheimer’s disease. PLoS One. 2016;11, e0151081.CrossRefPubMedPubMedCentral Ide M, Harris M, Stevens A, Sussams R, Hopkins V, Culliford D, et al. Periodontitis and cognitive decline in Alzheimer’s disease. PLoS One. 2016;11, e0151081.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Abbayya K, Puthanakar NY, Naduwinmani S, Chidambar YS. Association between periodontitis and Alzheimer’s disease. N Am J Med Sci. 2015;7:241–6.CrossRefPubMedPubMedCentral Abbayya K, Puthanakar NY, Naduwinmani S, Chidambar YS. Association between periodontitis and Alzheimer’s disease. N Am J Med Sci. 2015;7:241–6.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Hsu CC, Wahlqvist ML, Lee MS, Tsai HN. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. J Alzheimers Dis. 2011;24:485–93.PubMed Hsu CC, Wahlqvist ML, Lee MS, Tsai HN. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. J Alzheimers Dis. 2011;24:485–93.PubMed
31.
Zurück zum Zitat Romano PS, Roos LL, Jollis JG. Adapting a clinical comorbidity index for use with ICD-9-CM administrative data: differing perspectives. J Clin Epidemiol. 1993;46:1075–9. discussion 1081–90.CrossRefPubMed Romano PS, Roos LL, Jollis JG. Adapting a clinical comorbidity index for use with ICD-9-CM administrative data: differing perspectives. J Clin Epidemiol. 1993;46:1075–9. discussion 1081–90.CrossRefPubMed
32.
Zurück zum Zitat Gil-Montoya JA, Sanchez-Lara I, Carnero-Pardo C, Fornieles F, Montes J, Vilchez R, et al. Is periodontitis a risk factor for cognitive impairment and dementia? A case-control study. J Periodontol. 2015;86:244–53.CrossRefPubMed Gil-Montoya JA, Sanchez-Lara I, Carnero-Pardo C, Fornieles F, Montes J, Vilchez R, et al. Is periodontitis a risk factor for cognitive impairment and dementia? A case-control study. J Periodontol. 2015;86:244–53.CrossRefPubMed
33.
Zurück zum Zitat Lee YT, Lee HC, Hu CJ, Huang LK, Chao SP, Lin CP, et al. Periodontitis as a modifiable risk factor for dementia: a nationwide population-based cohort study. J Am Geriatr Soc. 2017;65:301–5.CrossRefPubMed Lee YT, Lee HC, Hu CJ, Huang LK, Chao SP, Lin CP, et al. Periodontitis as a modifiable risk factor for dementia: a nationwide population-based cohort study. J Am Geriatr Soc. 2017;65:301–5.CrossRefPubMed
34.
Zurück zum Zitat Liu CY, Hung YT, Chuang YL, Chen YJ, Weng WS, Liu JS, et al. Incorporating development stratification of Taiwan townships into sampling design of large scale health interview survey. J Health Manag (China). 2006;4:1–22. Liu CY, Hung YT, Chuang YL, Chen YJ, Weng WS, Liu JS, et al. Incorporating development stratification of Taiwan townships into sampling design of large scale health interview survey. J Health Manag (China). 2006;4:1–22.
35.
Zurück zum Zitat Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40:373–83.CrossRefPubMed Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40:373–83.CrossRefPubMed
36.
Zurück zum Zitat Wong CS, Lin YC, Hong LY, Chen TT, Ma HP, Hsu YH, et al. Increased long-term risk of dementia in patients with carbon monoxide poisoning: a population-based study. Medicine (Baltimore). 2016;95:e2549. Wong CS, Lin YC, Hong LY, Chen TT, Ma HP, Hsu YH, et al. Increased long-term risk of dementia in patients with carbon monoxide poisoning: a population-based study. Medicine (Baltimore). 2016;95:e2549.
37.
Zurück zum Zitat McGeer PL, McGeer EG. Inflammation, autotoxicity and Alzheimer disease. Neurobiol Aging. 2001;22:799–809.CrossRefPubMed McGeer PL, McGeer EG. Inflammation, autotoxicity and Alzheimer disease. Neurobiol Aging. 2001;22:799–809.CrossRefPubMed
38.
Zurück zum Zitat D’Aiuto F, Graziani F, Tete S, Gabriele M, Tonetti MS. Periodontitis: from local infection to systemic diseases. Int J Immunopathol Pharmacol. 2005;18(3 Suppl):1–11.PubMed D’Aiuto F, Graziani F, Tete S, Gabriele M, Tonetti MS. Periodontitis: from local infection to systemic diseases. Int J Immunopathol Pharmacol. 2005;18(3 Suppl):1–11.PubMed
39.
Zurück zum Zitat Yan Q, Zhang J, Liu H, Babu-Khan S, Vassar R, Biere AL, et al. Anti-inflammatory drug therapy alters β-amyloid processing and deposition in an animal model of Alzheimer’s disease. J Neurosci. 2003;23:7504–9.PubMed Yan Q, Zhang J, Liu H, Babu-Khan S, Vassar R, Biere AL, et al. Anti-inflammatory drug therapy alters β-amyloid processing and deposition in an animal model of Alzheimer’s disease. J Neurosci. 2003;23:7504–9.PubMed
40.
Zurück zum Zitat Llibre Rodriguez JJ, Ferri CP, Acosta D, Guerra M, Huang Y, Jacob KS, et al. Prevalence of dementia in Latin America, India, and China: a population-based cross-sectional survey. Lancet. 2008;372:464–74.CrossRefPubMed Llibre Rodriguez JJ, Ferri CP, Acosta D, Guerra M, Huang Y, Jacob KS, et al. Prevalence of dementia in Latin America, India, and China: a population-based cross-sectional survey. Lancet. 2008;372:464–74.CrossRefPubMed
41.
Zurück zum Zitat Campos CH, Ribeiro GR, Costa JL, Rodrigues Garcia RC. Correlation of cognitive and masticatory function in Alzheimer’s disease. Clin Oral Investig. 2017;21:573–8.CrossRefPubMed Campos CH, Ribeiro GR, Costa JL, Rodrigues Garcia RC. Correlation of cognitive and masticatory function in Alzheimer’s disease. Clin Oral Investig. 2017;21:573–8.CrossRefPubMed
42.
Zurück zum Zitat Campos CH, Ribeiro GR, Stella F, Rodrigues Garcia RC. Mandibular movements and bite force in Alzheimer’s disease before and after new denture insertion. J Oral Rehabil. 2017;44:178–86.CrossRefPubMed Campos CH, Ribeiro GR, Stella F, Rodrigues Garcia RC. Mandibular movements and bite force in Alzheimer’s disease before and after new denture insertion. J Oral Rehabil. 2017;44:178–86.CrossRefPubMed
43.
Zurück zum Zitat Wen BW, Tsai CS, Lin CL, Chang YJ, Lee CF, Hsu CH, et al. Cancer risk among gingivitis and periodontitis patients: a nationwide cohort study. QJM. 2014;107:283–90.CrossRefPubMed Wen BW, Tsai CS, Lin CL, Chang YJ, Lee CF, Hsu CH, et al. Cancer risk among gingivitis and periodontitis patients: a nationwide cohort study. QJM. 2014;107:283–90.CrossRefPubMed
Metadaten
Titel
Association between chronic periodontitis and the risk of Alzheimer’s disease: a retrospective, population-based, matched-cohort study
verfasst von
Chang-Kai Chen
Yung-Tsan Wu
Yu-Chao Chang
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
Alzheimer's Research & Therapy / Ausgabe 1/2017
Elektronische ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-017-0282-6

Weitere Artikel der Ausgabe 1/2017

Alzheimer's Research & Therapy 1/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.