Skip to main content
Erschienen in: BMC Musculoskeletal Disorders 1/2017

Open Access 01.12.2017 | Research article

Association between Epicondylitis and Cardiovascular Risk Factors in Pooled Occupational Cohorts

verfasst von: Kurt T. Hegmann, Matthew S. Thiese, Jay Kapellusch, Andrew Merryweather, Stephen Bao, Barbara Silverstein, Eric M. Wood, Richard Kendall, James Foster, David L. Drury, Arun Garg

Erschienen in: BMC Musculoskeletal Disorders | Ausgabe 1/2017

Abstract

Background

The pathophysiology of lateral epicondylitis (LE) is unclear. Recent evidence suggests some common musculoskeletal disorders may have a basis in cardiovascular disease (CVD) risk factors. Thus, we examined CVD risks as potential LE risks.

Methods

Workers (n = 1824) were enrolled in two large prospective studies and underwent structured interviews and physical examinations at baseline. Analysis of pooled baseline data assessed the relationships separately between a modified Framingham Heart Study CVD risk score and three prevalence outcomes of: 1) lateral elbow pain, 2) positive resisted wrist or middle finger extension, and 3) a combination of both symptoms and at least one resisted maneuver. Quantified job exposures, personal and psychosocial confounders were statistically controlled. Odds ratios (ORs) and 95% Confidence Intervals (CIs) were calculated.

Results

There was a strong relationship between CVD risk score and lateral elbow symptoms, resisted wrist or middle finger extension and LE after adjustment for confounders. The adjusted ORs for symptoms were as high as 3.81 (95% CI 2.11, 6.85), for positive examination with adjusted odds ratios as high as 2.85 (95% CI 1.59, 5.12) and for combined symptoms and physical examination 6.20 (95% CI 2.04, 18.82). Relationships trended higher with higher CVD risk scores.

Conclusions

These data suggest a potentially modifiable disease mechanism for LE.
Abkürzungen
BMI
Body Mass Index
CI
Confidence Interval
CTS
Carpal Tunnel Syndrome
CVD
Cardiovascular Disease
LE
Lateral Epicondylitis
MSD
Musculoskeletal Disorder
NIOSH
National Institute for Occupational Safety and Health
OR
Odds Ratio
SI
Strain Index

Background

The prevalence, incidence, pathophysiology and risk factors of epicondylitis are inadequately defined. The reported prevalence rate of lateral epicondylitis (LE) ranges widely from 0.2% to 41.2% [118]. A few studies have estimated LE incidence rates based on either infrequent observations or clinic data with reported annual incidences ranging from 0.9–1.7%, but likely underestimating the true incidence rates primarily due to the infrequency of observations [3, 1921]. One study of workers from 10 employment settings, that include a minority of workers in this report, were followed monthly for up to 6 years reported a baseline point prevalence of 7.3%, lifetime prevalence rate of 17.2% and an incidence rate of 3.67 per 100 person-years [22]. An incidence rate as high as 11.3% has been reported [23]. These wide-ranging estimates may be partially explained by heterogeneity of study methods including differences in intensity of surveillance methods, populations studied, and case definitions.
The pathophysiology of LE is also unclear, with purportedly several competing explanatory pathophysiological findings. These include: hyperlaxity [24], posterolateral rotatory instability [25], myofascial pain [26], trigger points [26, 27] and extensor carpi radialis longus tears and granulation tissue [2833]. As the pathophysiology is unclear, it may be unsurprising that physical examination findings, treatment options and surgical techniques vary considerably and at times appear contradictory, e.g., beneficial effects of rest vs. exercise, botulinum injections vs. exercise, and ligament cutting vs. aponeurotic release [10, 27, 29, 3438].
Longitudinal studies suggest increasing age [12, 19, 3941], and obesity [19] may be LE risk factors. Longitudinal data also suggest low social support [19, 42] and depression [41] are risks, although one study found no increased risk attributable to low social support [4]. Genetic factors are also reportedly risks [43, 44].
There are longstanding reports that LE is associated with forceful athletic use [4551], although the study methods used have mostly been retrospective. Job physical factors have been largely evaluated by self-report and/or in retrospective studies [1, 2, 9, 12, 1618, 20, 39, 41, 5262]. Such methods are prone to produce associations based on “common beliefs” that are not likely to be dispositive regarding determinations of true risk factors. Thus, the mechanistic understanding of LE is fairly primitive.
A systematic review reported that shoulder pain is associated with CVD risk factors [63]. A recent publication also suggested CVD risks are carpal tunnel syndrome (CTS) risks with odds ratios over 5-fold for CTS and over 8-fold for abnormal median nerve conduction [30].
The purpose of this study is to evaluate the potential for association(s) between cardiovascular disease risk factors and LE separately in a large pooled study of three prospective cohort studies involving systematic data collected from over 1800 workers in 35 workplaces in 4 US states.

Methods

This report is of the baseline, cross sectional data for these prospective cohort studies. Institutional Review Boards approved the study at the University of Utah (11889), the University of Wisconsin-Milwaukee (#03.02.059) and the State of Washington (A-050900-L). Data were collected from 2002 to 2006 and data analysis was conducted in 2015 and 2016.
Worker recruitments were conducted at 35 facilities involving 25 diverse industries located in the states of Illinois, Utah, Washington and Wisconsin beginning in 2001 through 2007. Industries included were manufacturing, food processing, and office jobs. Workers were consented. Workers were recruited regardless of the presence or absence of symptoms until pre-determined enrollment targets based on sample size calculations were met. The only exclusions were marked hand deformities and severe inflammatory arthritides.
Health data were collected by the Health Outcomes Assessment Teams using computerized questionnaires and structured interviews. Standardized physical examinations were conducted. Questionnaire data included age, gender, hobbies, exercise habits, job satisfaction, depression symptoms, diabetes mellitus, and hypertension. Structured interviews utilized symptoms diagrams for anatomically localizing pain. The presence and distribution of pain was captured by location. Body mass indices (BMIs) were calculated from measured heights and weights. Blood pressure was measured using automatic cuffs after being seated for at least five minutes (Omron HEM-780).
Data collected for this study’s health outcomes on all subjects regardless of symptoms were: (i) lateral elbow pain, (ii) resisted wrist extension and/or resisted middle finger extension, and (iii) a case definition for LE that required both lateral elbow pain and at least one of the two positive resisted examination maneuvers.
Job Evaluation Teams measured and videotaped the worker’s job(s). Jobs were measured for six primary factors: force, repetition rate, duration of exertion, posture, speed of work, and task duration per day. Strain Index scores, a composite measure of physical job strain, were computed from those six factors [6466].
Framingham Heart Study’s heart disease risk model is a sex-specific model that incorporates multiple cardiovascular disease risk factors that have been validated as predictive of 10-year risk of coronary artery disease: age, sex, hypertension, systolic blood pressure, smoking, total cholesterol and HDL cholesterol [67]. For the Framingham model, point values, stratified by gender, were assigned for variables of age, treated and untreated measured or self-reported past diagnosis of hypertension, tobacco use and diabetes mellitus (Table 1). Modified values were used as blood pressure was measured for participants in Illinois, Utah and Wisconsin (Washington did not measure blood pressure, n = 749 missing measurements), and cholesterol was excluded from the scoring as it was not measured. Workers without a blood pressure measurement but with a history of hypertension were conservatively assigned a blood pressure value of 1 point. Each worker’s CVD risk score was calculated by summing the individual CVD variable point values. Individualized CVD risk scores range from 0 to 29. An a priori decision was made without knowledge of the relationships to LE to collapse scores ≥16 into one category, as scores above 16 were too infrequent to provide accurate statistical power. Additional analyses of the risk from the Framingham risk model on the Illinois, Utah and Wisconsin data were performed that included blood pressure measurements, hypertensive history and cholesterol history.
Table 1
Modified Framingham risk profiles by gender
Score
Age, y
High Cholesterol
Systolic BP + No High BP diagnosis
Systolic BP + Yes High BP diagnosis
Tobacco use
Diabetes
CVD Risk Scores for Women
 0
≤34.9
No
<130
<120
No
No
 1
  
130–139
   
 2
35–39.9
 
140–149
120–129
  
 3
 
Yes
 
130–139
Yes
 
 4
40–40.9
 
150–159
  
Yes
 5
45–49.9
 
≥160
140–149
  
 6
   
150–159
  
 7
50–54.9
  
≥160
  
 8
55–59.9
     
 9
60–64.9
     
 10
65–69.9
     
 11
70–74.9
     
 12
≥75
     
CVD Risk Scores for Men
 0
≤34.9
No
<130
<120
No
No
 1
  
130–139
   
 2
35–39.9
Yes
140–159
120–129
  
 3
  
≥160
130–139
 
Yes
 4
   
140–159
Yes
 
 5
40–40.9
  
≥160
  
 6
45–49.9
     
 7
      
 8
50–54.9
     
 9
      
 10
55–59.9
     
 11
60–64.9
     
 12
65–69.9
     
 13
      
 14
70–74.9
     
 15
≥75
     
CVD cardiovascular disease, BP blood pressure, mmHg Points allotted based on the Framingham Heart Study CVD risk tables

Statistical analyses

The risk between individualized CVD risk score was analyzed separately for the three health outcomes prevalences of (i) lateral elbow pain, (ii) at least one resisted examination maneuver and (iii) LE using logistic regression. These are hereafter referred to as pain, examination findings and LE, respectfully. Missing data were minimized by using computerized instruments. Univariate analyses were done with each variable individually to conclude separate associations with each of the three health outcomes and then combined in a multivariate logistic regression to assess the influence of confounders for each health outcome. Statistical significance is p < 0.05. Variables with meaningful evidence of associations with LE (p < 0.20) were considered for inclusion in multivariate models as potential confounders. These potential confounders included job physical exposures (Strain Index for the typical job task on the right hand), BMI, and job satisfaction. Assessments were made for collinearity between potential confounders. The final main effects model included all confounders that were statistically significant or had an epidemiological basis for a causal relationship and were trending toward statistical significance (p < 0.20).

Results

The population consisted of 1824 workers, of which 1088 (59.6%) were female (see Table 2). The mean age was 41.1 ± 11.4 years. Minorities of workers had diabetes mellitus (n = 86, 4.7%), hypertension (n = 288, 15.8%), and had ever smoked (729, 40.0%). The mean body mass index was 28.7 ± 6.5 kg/m2.
Table 2
Descriptive and demographic data of the pooled studies at baseline (n = 1824) N(%)
Variablea
Symptoms at time of examb
Positive exam findingsc
Lateral epicondylitis (symptoms and exam)d
No lateral epicondylitis
Total
(N=)
(n = 273, 15.0%)
(n = 264, 14.5%)
(n = 121, 6.6%)
n = 1703, 93.4%)
(n = 1824, 100%)
Age (years)
43.4 (9.6)
43.6 (9.8)
44.5 (8.6)
40.9 (11.5) p = 0.001
41.1 (11.4)
Gender
   
p = 0.008
 
 Female
199 (72.9%)
183 (69.3%)
86 (71.1%)
1002 (58.8%)
1088 (59.6%)
 Male
74 (27.1%)
81 (30.7%)
35 (28.9%)
701 (41.2%)
736 (40.4%)
Diabetes Mellitus
   
p = 0.144
 
 Yes
18 (6.6%)
15 (5.7%)
9 (7.4%)
77 (4.5%)
86 (4.7%)
 No
255 (93.4%)
249 (94.3%)
112 (92.6%)
1626 (95.5%)
1738 (95.3%)
Hypertension
   
p = 0.207
 
 Yes
43 (15.8%)
50 (18.9%)
24 (19.8%)
264 (15.5%)
288 (15.8%)
 No
230 (84.2%)
214 (81.1%)
97 (80.2%)
1439 (84.5%)
1536 (84.2%)
Average systolic Blood Pressure (mmHg)
128.9 (17.9)
128.2 (17.8)
130.0 (18.7)
12.5 (17.1) p = 0.518
127.7 (17.2)
Tobacco Use
   
p = 0.097
 
 Never
152 (55.7%)
155 (58.7%)
64 (52.9%)
1031 (60.5%)
1095 (60.0%)
 Ever
121 (44.3%)
109 (41.3%)
57 (47.1%)
672 (39.5%)
729 (40.0%)
Body Mass Index (kg/m2)
29.8 (6.7)
28.5 (6.7)
29.4 (6.7)
28.6 (6.5) p = 0.157
28.7 (6.5)
CVD Risk Score
6.8 (3.9)
6.6 (3.9)
7.3 (4.0)
5.8 (4.2) p = 0.0003
5.9 (4.2)
aN(%) for categorical variables. Mean (Standard Deviation) for continuous variables
bLateral elbow pain
cEither lateral elbow pain with resisted wrist extension or middle finger extension
dCase definition of lateral epicondylitis with both Lateral elbow pain and at least one resisted wrist physical examination maneuver
A total of 273 (15.0%) had lateral elbow symptoms at baseline. A positive examination finding of either resisted wrist extension or resisted middle finger extension was present in 264 (14.5%). Lateral epicondylitis, defined by both lateral elbow symptoms and a resisted examination maneuver, was present in 121 (6.6%), which is this population’s point prevalence rate.
The mean age was greater among those with symptoms, examination findings or having LE (OR per year = 1.02, p < 0.0004, 1.02 p < 0.0001, and 1.03, p < 0.001 respectively). The population had more females than males (n = 1088, 59.6%), and modestly higher risk of LE with female sex OR = 1.72, 95% CI 1.15, 2.58 (p = 0.008). Diabetes mellitus was present in 86 (4.7%), but was present in 7.4% in those with LE (OR = 1.70, 95% CI 0.83, 3.47, p = 0.148). Hypertension was present in 288 (15.8%) and modestly more common among those with LE (OR = 1.35, 95% CI 0.85, 2.15). Among the 1075 participants who had measured blood pressure, the systolic blood pressure was somewhat higher in the LE case group 130.0 ± 18.7 mmHg compared with the non-LE case group at 127.5 ± 17.1 mmHg. The Body Mass Index (BMI) was higher in the LE group 29.4 ± 6.7 compared with the non-LE case group’s BMI of 28.6 ± 6.5 kg/m2. The overall mean individualized CVD risk score was higher in the LE case group 7.3 ± 4.0 compared with the non-LE case group 5.8 ± 4.2 (p = 0.0003).
Data were analyzed to assess associations between the person’s CVD risk factor score and risk of lateral elbow pain, examination findings and LE (see Table 3). Separate analyses assessed relationships between CVD risk factor scores and 1) lateral elbow pain regardless of test findings, 2) at least one positive physical examination test result (either resisted middle finger or wrist extension) and 3) LE as defined by both symptoms and at least one positive physical examination test result. For unadjusted associations, there was a trend of increasing risk for both LE symptoms and positive test result with CVD risk factor scores peaking at odds ratios of 3.61 (95% CI 2.02, 6.47) and 2.81 (95% CI 1.57, 5.01), respectively. For analyses of risk for LE, the results showed mostly stronger associations than for symptoms or examination test alone and peaked at an odds ratio of 6.62 (95% CI 2.21, 19.80). Body mass indices were significantly related to LE symptoms. The Strain Index scores that assessed job physical demands were significantly related to positive physical examination test results in the univariate analyses. Job dissatisfaction had significant univariate association with both LE symptoms and LE, but not with positive physical examination test results.
Table 3
Crude OR (95% CI) for right lateral elbow symptoms, right lateral elbow physical examination maneuvers and right lateral epicondylitis*
Crude Analyses
Lateral Elbow Symptoms
Positive Resisted Elbow or Middle Finger Extension
Lateral Epicondylitis (Symptoms plus at least one Exam Maneuver)
Framingham score
OR (95% CI)
OR (95% CI)
OR (95% CI)
 0
1.00 (Reference)
 
1.00 (Reference)
 1
0.77 (0.17, 3.43)
0.34 (0.04, 2.58)
N/A
 2
2.13 (1.09, 4.15)
1.80 (0.93, 3.51)
3.62 (1.26, 10.4)
 3
2.05 (0.98, 4.28)
1.22 (0.54, 2.75)
2.65 (0.79, 8.88)
 4
1.58 (0.85, 2.92)
2.21 (1.26, 3.88)
2.03 (0.71, 5.79)
 5
2.47 (1.37, 4.46)
2.33 (1.31, 4.13)
4.60 (1.78, 11.9)
 6
2.68 (1.35, 5.33)
1.77 (0.86, 3.64)
4.18 (1.41, 12.4)
 7
3.43 (1.89, 6.23)
2.04 (1.09, 3.81)
3.45 (1.23, 9.69)
 8
3.61 (2.02, 6.47)
2.81 (1.57, 5.01)
4.91 (1.86, 12.9)
 9
2.46 (1.22, 4.93)
2.23 (1.12, 4.42)
4.14 (1.40, 12.2)
 10–12
1.99 (1.12, 3.53)
1.99 (1.15, 3.45)
3.19 (1.23, 8.29)
 13–15
2.62 (1.35, 5.10)
2.08 (1.06, 4.07)
4.64 (1.64, 13.1)
 16+
2.89 (1.34, 6.24)
2.36 (1.08, 5.13)
6.62 (2.21, 19.8)
Per Unit for Framingham
1.05 (1.02, 1.08)
1.05 (1.02, 1.08)
1.08 (1.03, 1.12)
Body Mass Index
1.03 (1.01, 1.05)
0.99 (0.97, 1.02)
1.02 (0.99, 1.05)
Strain Index
1.00 (0.99, 1.01)
0.98 (0.96, 0.99)
0.98 (0.95, 1.00)
Job satisfaction
 Satisfied
1.00 (Reference)
1.00 (Reference)
1.00 (Reference)
 Neither satisfied or Dissatisfied
1.62 (1.16, 2.25)
1.22 (0.89, 1.67)
1.80 (1.10, 2.94)
 Dissatisfied
2.06 (1.40, 3.02)
1.26 (0.86, 1.84)
2.01 (1.14, 3.54)
OR Odds ratios, C Confidence interval, RLES right lateral elbow symptoms, RLE Right lateral epicondylitis
*The physical exam consisted of either a resisted wrist or middle finger extension. RLE was based on combined symptoms and at least one resisted maneuver
Adjusted analyses were performed that included BMIs, Strain Index scores and job satisfaction (see Table 4). These results were largely comparable to the unadjusted rates. Risk of LE rose across the cardiovascular disease risk scores in a highly significant trend (p = 0.0005) (see Fig. 1). The peak risk of LE was an OR of 6.20 (95% CI 2.04, 18.8). The point estimates were lower for either symptoms alone or physical examination findings alone. BMIs were not significantly associated with LE. Strain Index was borderline associated. Job satisfaction remained significant with those dissatisfied having 2.34-fold risk of having LE (95% CI 1.31, 4.17).
Table 4
Adjusted* OR (95% CI) for right lateral elbow symptoms, right lateral elbow physical examination maneuvers and right lateral epicondylitis**
Adjusted analyses
Lateral Elbow Symptoms
Positive Resisted Elbow or Middle Finger Extension
Lateral Epicondylitis (Symptoms plus at least one Exam Maneuver)
Framingham score
OR (95% CI)
OR (95% CI)
OR (95% CI)
 0
1.00 (Reference)
1.00 (Reference)
1.00 (Reference)
 1
0.69 (0.15, 3.12)
0.35 (0.05, 2.66)
N/A
 2
2.18 (1.11, 4.28)
1.86 (0.95, 3.63)
3.76 (1.30, 10.9)
 3
1.87 (0.89, 3.92)
1.26 (0.56, 2.84)
2.59 (0.77, 8.73)
 4
1.57 (0.85, 2.92)
2.27 (1.29, 3.98)
2.06 (0.72, 5.91)
 5
2.54 (1.40, 4.61)
2.36 (1.33, 4.20)
4.69 (1.80, 12.2)
 6
2.58 (1.29, 5.16)
1.78 (0.86, 3.69)
4.10 (1.38, 12.2)
 7
3.45 (1.89, 6.29)
2.10 (1.12, 3.92)
3.51 (1.24, 9.89)
 8
3.81 (2.11, 6.85)
2.85 (1.59, 5.12)
5.08 (1.92, 13.4)
 9
2.53 (1.25, 5.11)
2.32 (1.16, 4.64)
4.34 (1.45, 12.9)
 10–12
1.95 (1.10, 3.49)
2.05 (1.18, 3.57)
3.22 (1.24, 8.41)
 13–15
2.33 (1.18, 4.58)
2.13 (1.08, 4.21)
4.35 (1.52, 12.4)
 16+
2.57 (1.18, 5.61)
2.42 (1.10, 5.31)
6.20 (2.04, 18.8)
 
1.05 (1.02, 1.09)
1.05 (1.02, 1.08)
1.08 (1.03, 1.13)
Body Mass Index
1.03 (1.01, 1.05)
0.99 (0.97, 1.01)
1.01 (0.98, 1.04)
Strain Index
1.00 (0.99, 1.01)
0.98 (0.96, 0.99)
0.97 (0.95, 1.00)
Job satisfaction
   
 Satisfied
1.00 (Reference)
1.00 (Reference)
1.00 (Reference)
 Neither satisfied or Dissatisfied
1.64 (1.17, 2.29)
1.26 (0.92, 1.74)
1.86 (1.13, 3.06)
 Dissatisfied
2.23 (1.51, 3.30)
1.42 (0.96, 2.10)
2.34 (1.31, 4.17)
OR Odds ratios, C Confidence interval, RLES right lateral elbow symptoms, RLE Right lateral epicondylitiss
*Adjusted for variables in the table, i.e., Framingham score, body mass index, Strain Index (measure of job physical demand). **The physical exam consisted of either a resisted wrist or middle finger extension. RLE was based on combined symptoms and at least one resisted maneuver
Adjusted analyses were also performed on the subset of Illinois, Utah and Wisconsin data that included blood pressure measurements, hypertensive histories and cholesterol histories. (See Table 5.) Those analyses revealed elevated risks for lateral elbow symptoms with a peak OR of 5.71 (95% CI 2.32, 14.07) and a peak OR for a positive physical examination maneuver of 4.09 (95% CI 1.31, 12.79). The peak risk for lateral epicondylitis was an OR of 8.60 (95% CI 2.17, 34.02).
Table 5
Risk of lateral elbow symptoms and lateral epicondylitis associated with Framingham risk scores
Framingham score
OR (95% CI) for current symptoms
OR (95% CI) for physical exam maneuver
OR (95% CI) for case definition of lateral epicondylitis
0
1.00 (Reference
1.00 (Reference
 
1
1.54 (0.30, 8.03)
<0.001 (<0.001, >999.999)
 
2
3.05 (1.03, 9.01)
1.88 (0.48, 7.39)
1.00* (Reference*)
3
3.09 (1.13, 8.47)
1.78 (0.49, 6.40)
2.89 (0.57, 14.72)
4
2.31 (0.88, 6.06)
2.87 (0.97, 8.50)
3.13 (0.73, 13.40)
5
2.95 (1.16, 7.50)
3.53 (1.24, 10.07)
5.36 (1.41, 20.38)
6
2.03 (0.60, 6.86)
1.67 (0.38, 7.37)
1.40 (0.14, 13.88)
7
3.63 (1.42, 9.24)
1.97 (0.62, 6.27)
2.75 (0.60, 12.60)
8
5.71 (2.32, 14.07)
3.37 (1.15, 9.87)
5.85 (1.51, 22.71)
9
3.67 (1.30, 10.36)
2.14 (0.59, 7.79)
4.91 (1.06, 22.80)
10
3.00 (1.25, 7.18)
2.94 (1.07, 8.07)
3.95 (1.08, 14.48)
13
3.18 (1.22, 8.31)
2.95 (0.97, 9.00)
4.17 (1.01, 17.30)
16
3.83 (1.40, 10.47)
4.09 (1.31, 12.79)
8.60 (2.17, 34.02)
*There were no cases of LE in Framingham Scores of 0 and 1, so we collapsed 0,1,2 into one reference category in order to generate stable estimates

Discussion

This large, multi-plant, multi-state study found significantly elevated risks of lateral epicondylitis (LE) associated with cardiovascular disease risk factors after adjusting for job physical factors, BMI, and job satisfaction. The magnitude of the association is as high as 6-fold with a strong trend across the CVD risk scores (p = 0.0005). This evidence adds to a growing body of evidence that common, soft-tissue musculoskeletal disorders, including shoulder disorders, Achilles tendinopathy, and carpal tunnel syndrome [30, 63, 68, 69], may have pathophysiological bases in CVD risks. A discrete mechanism of action of CVD risk is clearer in the shoulder and Achilles where tenuous blood supply to the tendons is well defined [7074]. For CTS and lateral epicondylitis, it may be that the CVD risk is similarly associated with reduced blood supply, which increases susceptibility to biomechanical and other factors.
This study found that the individual risk factors that compose the Framingham model (e.g., tobacco, diabetes mellitus, and hypertension) were mostly trending towards significance. That the overall CVD risk factor modeling results that included those same Framingham individual risk factors are so strong suggests the CVD risk factors interact, as is well reported in cardiovascular disease, and thus do meaningfully influence the development of LE [75, 76].
Additionally, that the weaker associations with CVD risks for the lateral elbow symptoms and physical examination findings compared to LE are expected and consistent. A principle of epidemiological research is that the more precise a diagnosis, the stronger is the ability to find effects [77, 78]. The findings for the two other health outcomes (lateral elbow symptoms and physical examination findings) thus support the overall impact of the results for LE.
Individual cardiovascular disease risk factors have been previously reported as risks for LE. A prior case-control study found peripheral vascular disease and diabetes mellitus were both associated with LE [68]. Diabetes mellitus has been reported to be a LE risk [12], as well as chronic hyperglycemia [79]. Three studies have suggested prior smoking was a risk for LE [12, 80, 81]. Two studies reported a trend of increasing LE risk with obesity [12, 19], although another found it to not be a risk [80]. Our study failed to find BMI as a risk factor. That difference may possibly be due to the greater ability to control for more factors in this study. It is noteworthy that the Framingham CVD risk factor model does not include obesity.
This study systematically evaluated the prevalence of lateral elbow symptoms, examination findings and LE. The point prevalence estimate for each of these was 15.0%, 14.5% and 6.6%, respectively. These prevalence estimates are higher than most other reviewed studies and unsurprising considering the carefully structured, individualized interviews and physical examinations. Additionally, a significant proportion of worker’s jobs was physically demanding and may have produced some increases in the prevalence rates.
This line of research may have implications for both clinical care and population management. Should CVD risks be confirmed as significant risks for common musculoskeletal disorders (MSDs), patients presenting with one disorder would likely be candidates for more intensive CVD risk management, potentially to prevent both MSDs and CVD. Additionally, effective health promotion disease prevention programs could have greater efficacy beyond traditional cardiovascular diseases to include MSDs. Still, there is considerable research required before interventional programs could be enacted for purposes of addressing MSD risks as CVD risks.

Strengths of this study

Strengths of this study include the large sample size, multi-state population, systematic measurement of lateral elbow pain and physical examination findings, measured BMI, and measured blood pressure. The systematic measurement of all these factors in a large population-based study is a unique strength. The systematic approach to use a modified Framingham CVD risk score to quantify cardiovascular risks is another strength. The adjustment for laboriously quantified job physical risk factors is an extraordinarily rare strength and helps to remove that potential confounder.

Limitations of this study

Weaknesses include the cross sectional design, although the extreme costs to measure, videotape and quantify job physical factors makes a prospective cohort study to duplicate these results with sufficient powering difficult. A cross sectional design largely precludes causal inference. The large proportion of workers from the manufacturing sector is a potential limitation, although this study included workers from the services and healthcare sectors, and it seems unlikely that the source of patients should materially influence the CVD scores or alter their relationships. The primary exposure in this study is a modified Framingham CVD risk score. To address that weakness, we performed the analyses on the subset of data with complete blood pressure measurements, hypertensive histories and cholesterol histories; those analyses also showed strong, meaningful associations between CVD risk and lateral epicondylitis.
Prospective cohort analyses are needed to confirm these results in incidence data and duplicated elsewhere. Studies reporting changes in LE prevalence and/or incidence rates based on CVD risk factor modification are also needed.

Conclusions

This study suggests there is a strong association between CVD risk score and LE that demonstrates strength of association, consistency with other studies evaluating individual CVD factors, a biological gradient response, and biological plausibility. This association remains after adjustment for known and suspected confounders, including meticulous quantification of job physical factors. These results suggest a strong, potentially modifiable disease mechanism. However, whether CVD risk factor modification reduces risk of LE requires further investigation.

Acknowledgements

The authors acknowledge the over 1,800 workers who volunteered to participate in these studies. The authors also wish to acknowledge the many years of work by the research teams, including the dozens of technicians, assistants, and other research personnel from the study groups that made the collection of the data for this manuscript possible.

Funding

This work was supported, in part, by grants from the National Institute for Occupational Safety and Health (NIOSH/CDC) grant number 1R01OH010474–01 and NIOSH Education and Research Center training grant number T42/CCT810426–10.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request. Data will be shared to the extent that they do not identify workers and were paid by grants.

Authors’ contributions

All authors contributed equally to the writing of this work. All authors have read and approved the final manuscript. Below is a detail of each author’s specific research contributions: KTH, MD, MPH, PI in Utah. Designed field measures in UT and WI. MST, PhD, MSPH, Coordination of teams, computerization of instruments, analyses of data. JK, PhD. Ergonomic lead for job measurements in WI. AM, PhD Ergonomic lead for job measurements in UT. SB, PhD, Ergonomic lead for job measurements in WA. BS, PhD, PI in WA. Designed health outcomes. EMW, MD, MPH, Field measurements of workers in UT, oversight of other team members in UT. RK, DO Field measurements of workers in UT, oversight of other team members in UT. JF, MD, Field measurements of workers in WI, oversight of other team members in WI. DLD, MD MPH, Field measurements of workers in WI, oversight of other team members in WI. AG, PhD, PI. Overall coordination of job measures across all studies.

Competing interests

The authors declare that they have no competing interests.
Not applicable.
The Institutional Review Boards of the University of Utah, University of Wisconsin-Milwaukee, and the State of Washington approved this study. Informed consent was obtained from all participants.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Pullopdissakul S, Ekpanyaskul C, Taptagaporn S, Bundhukul A, Thepchatri A. Upper extremities musculoskeletal disorders: prevalence and associated ergonomic factors in an electronic assembly factory. Int J Occ Med Environ Health. 2013;26(5):751. Pullopdissakul S, Ekpanyaskul C, Taptagaporn S, Bundhukul A, Thepchatri A. Upper extremities musculoskeletal disorders: prevalence and associated ergonomic factors in an electronic assembly factory. Int J Occ Med Environ Health. 2013;26(5):751.
2.
Zurück zum Zitat Tajika T, Kobayashi T, Yamamoto A, Kaneko T, Takagishi K. Prevalence and risk factors of lateral epicondylitis in a mountain village in Japan. J Orthop Surg (Hong Kong). 2014;22(2):240.CrossRef Tajika T, Kobayashi T, Yamamoto A, Kaneko T, Takagishi K. Prevalence and risk factors of lateral epicondylitis in a mountain village in Japan. J Orthop Surg (Hong Kong). 2014;22(2):240.CrossRef
3.
Zurück zum Zitat Herquelot E, Bodin J, Roquelaure Y, Ha C, Leclerc A, Goldberg M, et al. Work-related risk factors for lateral epicondylitis and other cause of elbow pain in the working population. Amer J Indust Med. 2013;56(4):400.CrossRef Herquelot E, Bodin J, Roquelaure Y, Ha C, Leclerc A, Goldberg M, et al. Work-related risk factors for lateral epicondylitis and other cause of elbow pain in the working population. Amer J Indust Med. 2013;56(4):400.CrossRef
4.
Zurück zum Zitat Bugajska J, Zolnierczyk-Zreda D, Jedryka-Goral A, Gasik R, Hildt-Ciupinska K, Malinska M, et al. Psychological factors at work and musculoskeletal disorders: a one year prospective study. Rheum Int. 2013;33(12):2975.CrossRef Bugajska J, Zolnierczyk-Zreda D, Jedryka-Goral A, Gasik R, Hildt-Ciupinska K, Malinska M, et al. Psychological factors at work and musculoskeletal disorders: a one year prospective study. Rheum Int. 2013;33(12):2975.CrossRef
5.
Zurück zum Zitat Ozdolap S, Emre U, Karamercan A, Sarikaya S, Kokturk F. Upper limb tendinitis and entrapment neuropathy in coal miners. Ame J Indust Med. 2013;56(5):569.CrossRef Ozdolap S, Emre U, Karamercan A, Sarikaya S, Kokturk F. Upper limb tendinitis and entrapment neuropathy in coal miners. Ame J Indust Med. 2013;56(5):569.CrossRef
6.
Zurück zum Zitat Battevi N, Menoni O, Vimercati C. The occurrence of musculoskeletal alterations in worker populations not exposed to repetitive tasks of the upper limbs. Ergo. 1998;41(9):1340.CrossRef Battevi N, Menoni O, Vimercati C. The occurrence of musculoskeletal alterations in worker populations not exposed to repetitive tasks of the upper limbs. Ergo. 1998;41(9):1340.CrossRef
7.
Zurück zum Zitat Rosenbaum DA, Grzywacz JG, Chen H, Arcury TA, Schulz MR, Blocker JN, et al. Prevalence of epicondylitis, rotator cuff syndrome, and low back pain in Latino poultry workers and manual laborers. Amer J Indust Med. 2013;56(2):226.CrossRef Rosenbaum DA, Grzywacz JG, Chen H, Arcury TA, Schulz MR, Blocker JN, et al. Prevalence of epicondylitis, rotator cuff syndrome, and low back pain in Latino poultry workers and manual laborers. Amer J Indust Med. 2013;56(2):226.CrossRef
8.
Zurück zum Zitat Kuklo TR, Bridwell KH, Lewis SJ, Baldus C, Blanke K, Iffrig TM, et al. Minimum 2-year analysis of sacropelvic fixation and L5–S1 fusion using S1 and iliac screws. Spine. 2001;26(18):1976.CrossRefPubMed Kuklo TR, Bridwell KH, Lewis SJ, Baldus C, Blanke K, Iffrig TM, et al. Minimum 2-year analysis of sacropelvic fixation and L5–S1 fusion using S1 and iliac screws. Spine. 2001;26(18):1976.CrossRefPubMed
9.
Zurück zum Zitat Fan ZJ, Silverstein BA, Bao S, Bonauto DK, Howard NL, Spielholz PO, et al. Quantitative exposure-response relations between physical workload and prevalence of lateral epicondylitis in a working population. Amer J Indust Med. 2009;52(6):479. Fan ZJ, Silverstein BA, Bao S, Bonauto DK, Howard NL, Spielholz PO, et al. Quantitative exposure-response relations between physical workload and prevalence of lateral epicondylitis in a working population. Amer J Indust Med. 2009;52(6):479.
10.
Zurück zum Zitat Kryger AI, Lassen CF, Andersen JH. The role of physical examinations in studies of musculoskeletal disorders of the elbow. Occ Environ Med. 2007;64(11):776.CrossRef Kryger AI, Lassen CF, Andersen JH. The role of physical examinations in studies of musculoskeletal disorders of the elbow. Occ Environ Med. 2007;64(11):776.CrossRef
11.
Zurück zum Zitat Roquelaure Y, Ha C, Leclerc A, Touranchet A, Sauteron M, Melchior M, et al. Epidemiologic surveillance of upper-extremity musculoskeletal disorders in the working population. Arth Rheum. 2006;55(5):765.CrossRef Roquelaure Y, Ha C, Leclerc A, Touranchet A, Sauteron M, Melchior M, et al. Epidemiologic surveillance of upper-extremity musculoskeletal disorders in the working population. Arth Rheum. 2006;55(5):765.CrossRef
12.
Zurück zum Zitat Shiri R, Viikari-Juntura E, Varonen H, Heliovaara M. Prevalence and determinants of lateral and medial epicondylitis: a population study. Ameri J Epi. 2006;164(11):1065.CrossRef Shiri R, Viikari-Juntura E, Varonen H, Heliovaara M. Prevalence and determinants of lateral and medial epicondylitis: a population study. Ameri J Epi. 2006;164(11):1065.CrossRef
13.
Zurück zum Zitat Salaffi F, De Angelis R, Grassi W. Prevalence of musculoskeletal conditions in an Italian population sample: results of a regional community-based study. I. The MAPPING study. Clin Exp Rheum. 2005;23(6):819. Salaffi F, De Angelis R, Grassi W. Prevalence of musculoskeletal conditions in an Italian population sample: results of a regional community-based study. I. The MAPPING study. Clin Exp Rheum. 2005;23(6):819.
14.
Zurück zum Zitat Werner RA, Franzblau A, Gell N, Hartigan A, Ebersole M, Armstrong TJ. Predictors of persistent elbow tendonitis among auto assembly workers. J Occ Rehab. 2005;15(3):393.CrossRef Werner RA, Franzblau A, Gell N, Hartigan A, Ebersole M, Armstrong TJ. Predictors of persistent elbow tendonitis among auto assembly workers. J Occ Rehab. 2005;15(3):393.CrossRef
15.
Zurück zum Zitat Walker-Bone K, Palmer KT, Reading I, Coggon D, Cooper C. Prevalence and impact of musculoskeletal disorders of the upper limb in the general population. Arth Rheum. 2004;51(4):642.CrossRef Walker-Bone K, Palmer KT, Reading I, Coggon D, Cooper C. Prevalence and impact of musculoskeletal disorders of the upper limb in the general population. Arth Rheum. 2004;51(4):642.CrossRef
16.
Zurück zum Zitat Ono Y, Nakamura R, Shimaoka M, Hiruta S, Hattori Y, Ichihara G, et al. Epicondylitis among cooks in nursery schools. Occ Environ Med. 1998;55(3):172.CrossRef Ono Y, Nakamura R, Shimaoka M, Hiruta S, Hattori Y, Ichihara G, et al. Epicondylitis among cooks in nursery schools. Occ Environ Med. 1998;55(3):172.CrossRef
17.
Zurück zum Zitat Chiang HC, Ko YC, Chen SS, Yu HS, Wu TN, Chang PY. Prevalence of shoulder and upper-limb disorders among workers in the fish-processing industry. Scan J Work Environ Health. 1993;19(2):126.CrossRef Chiang HC, Ko YC, Chen SS, Yu HS, Wu TN, Chang PY. Prevalence of shoulder and upper-limb disorders among workers in the fish-processing industry. Scan J Work Environ Health. 1993;19(2):126.CrossRef
18.
Zurück zum Zitat Roto P, Kivi P. Prevalence of epicondylitis and tenosynovitis among meatcutters. Scan J Work Environ Health. 1984;10(3):203.CrossRef Roto P, Kivi P. Prevalence of epicondylitis and tenosynovitis among meatcutters. Scan J Work Environ Health. 1984;10(3):203.CrossRef
19.
Zurück zum Zitat Descatha A, Dale AM, Jaegers L, Herquelot E, Evanoff B. Self-reported physical exposure association with medial and lateral epicondylitis incidence in a large longitudinal study. Occ Environ Med. 2013;70(9):670.CrossRef Descatha A, Dale AM, Jaegers L, Herquelot E, Evanoff B. Self-reported physical exposure association with medial and lateral epicondylitis incidence in a large longitudinal study. Occ Environ Med. 2013;70(9):670.CrossRef
20.
Zurück zum Zitat Descatha A, Leclerc A, Chastang JF, Roquelaure Y. Medial epicondylitis in occupational settings: prevalence, incidence and associated risk factors. J Occup Environ Med. 2003;45(9):993.CrossRefPubMedPubMedCentral Descatha A, Leclerc A, Chastang JF, Roquelaure Y. Medial epicondylitis in occupational settings: prevalence, incidence and associated risk factors. J Occup Environ Med. 2003;45(9):993.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Sanders TL Jr, Maradit Kremers H, Bryan AJ, Ransom JE, Smith J, Morrey BF. The epidemiology and health care burden of tennis elbow: a population-based study. Amer J Sports Med. 2015;43(5):1066.CrossRef Sanders TL Jr, Maradit Kremers H, Bryan AJ, Ransom JE, Smith J, Morrey BF. The epidemiology and health care burden of tennis elbow: a population-based study. Amer J Sports Med. 2015;43(5):1066.CrossRef
22.
Zurück zum Zitat Garg A, Kapellusch JM, Hegmann KT, Thiese MS, Merryweather AS, Wang YC, et al. The strain index and TLV for HAL: risk of lateral epicondylitis in a prospective cohort. Amer J Indust Med. 2014;57(3):286.CrossRef Garg A, Kapellusch JM, Hegmann KT, Thiese MS, Merryweather AS, Wang YC, et al. The strain index and TLV for HAL: risk of lateral epicondylitis in a prospective cohort. Amer J Indust Med. 2014;57(3):286.CrossRef
23.
Zurück zum Zitat Kurppa K, Viikari-Juntura E, Kuosma E, Huuskonen M, Kivi P. Incidence of tenosynovitis or peritendinitis and epicondylitis in a meat-processing factory. Scan J Work Environ Health. 1991;17(1):32.CrossRef Kurppa K, Viikari-Juntura E, Kuosma E, Huuskonen M, Kivi P. Incidence of tenosynovitis or peritendinitis and epicondylitis in a meat-processing factory. Scan J Work Environ Health. 1991;17(1):32.CrossRef
24.
Zurück zum Zitat Pascarelli EF, Hsu YP. Understanding work-related upper extremity disorders: clinical findings in 485 computer users, musicians, and others. J Occ Rehab. 2001;11(1):1.CrossRef Pascarelli EF, Hsu YP. Understanding work-related upper extremity disorders: clinical findings in 485 computer users, musicians, and others. J Occ Rehab. 2001;11(1):1.CrossRef
25.
Zurück zum Zitat Ries C, Franke S, Dietrich F, Jakubowitz E, Dehlinger F, Hollinger B. Transosseous refixation of the common extensor muscle tendons in chronic lateral epicondylitis with and without additional reconstruction of the LUCL--a retrospective evaluation of 101 patients. Zeitschrift fur Orthopadie und Unfallchirurgie. 2013;151(3):296.CrossRefPubMed Ries C, Franke S, Dietrich F, Jakubowitz E, Dehlinger F, Hollinger B. Transosseous refixation of the common extensor muscle tendons in chronic lateral epicondylitis with and without additional reconstruction of the LUCL--a retrospective evaluation of 101 patients. Zeitschrift fur Orthopadie und Unfallchirurgie. 2013;151(3):296.CrossRefPubMed
26.
Zurück zum Zitat Schmushkevich KL. Myofascial pain in lateral epicondylagia: a review. J Bodyw Mov Ther. 2013;17(4):434.CrossRef Schmushkevich KL. Myofascial pain in lateral epicondylagia: a review. J Bodyw Mov Ther. 2013;17(4):434.CrossRef
27.
Zurück zum Zitat Fernandez-Carnero J, Fernandez-de-Las-Penas C, de la Llave-Rincon AI, Ge HY, Arendt-Nielsen L. Prevalence of and referred pain from myofascial trigger points in the forearm muscles in patients with lateral epicondylalgia. Clin J Pain. 2007;23(4):353.CrossRefPubMed Fernandez-Carnero J, Fernandez-de-Las-Penas C, de la Llave-Rincon AI, Ge HY, Arendt-Nielsen L. Prevalence of and referred pain from myofascial trigger points in the forearm muscles in patients with lateral epicondylalgia. Clin J Pain. 2007;23(4):353.CrossRefPubMed
28.
Zurück zum Zitat Goldie I. Epicondylitis lateralis humeri (epicondylalgia or tennis elbow). A pathogenetical study. Acta chirurgica Scandinavica Supplementum. 1964;57(SUPPL 339):1+. Goldie I. Epicondylitis lateralis humeri (epicondylalgia or tennis elbow). A pathogenetical study. Acta chirurgica Scandinavica Supplementum. 1964;57(SUPPL 339):1+.
29.
Zurück zum Zitat Nirschl RP, Pettrone FA. Tennis elbow. The surgical treatment of lateral epicondylitis. J Bone Joint Surg. 1979;61(6A):832.CrossRefPubMed Nirschl RP, Pettrone FA. Tennis elbow. The surgical treatment of lateral epicondylitis. J Bone Joint Surg. 1979;61(6A):832.CrossRefPubMed
30.
Zurück zum Zitat Hegmann KT, Thiese MS, Kapellusch J, Merryweather AS, Bao S, Silverstein B, et al. Association between cardiovascular risk factors and carpal tunnel syndrome in pooled occupational cohorts. J Occup Environ Med. 2016;58(1):87. Hegmann KT, Thiese MS, Kapellusch J, Merryweather AS, Bao S, Silverstein B, et al. Association between cardiovascular risk factors and carpal tunnel syndrome in pooled occupational cohorts. J Occup Environ Med. 2016;58(1):87.
31.
Zurück zum Zitat Doran A, Gresham GA, Rushton N, Watson C. Tennis elbow. A clinicopathologic study of 22 cases followed for 2 years. Acta Orthop Scand. 1990;61(6):535.CrossRefPubMed Doran A, Gresham GA, Rushton N, Watson C. Tennis elbow. A clinicopathologic study of 22 cases followed for 2 years. Acta Orthop Scand. 1990;61(6):535.CrossRefPubMed
32.
Zurück zum Zitat Goldberg EJ, Abraham E, Siegel I. The surgical treatment of chronic lateral humeral epicondylitis by common extensor release. Clin Ortho Related Res. 1988;233:208. Goldberg EJ, Abraham E, Siegel I. The surgical treatment of chronic lateral humeral epicondylitis by common extensor release. Clin Ortho Related Res. 1988;233:208.
33.
Zurück zum Zitat Regan W, Wold LE, Coonrad R, Morrey BF. Microscopic histopathology of chronic refractory lateral epicondylitis. Amer J Sports Med. 1992;20(6):746.CrossRef Regan W, Wold LE, Coonrad R, Morrey BF. Microscopic histopathology of chronic refractory lateral epicondylitis. Amer J Sports Med. 1992;20(6):746.CrossRef
34.
Zurück zum Zitat Peterson M, Butler S, Eriksson M, Svardsudd K. A randomized controlled trial of exercise versus wait-list in chronic tennis elbow (lateral epicondylosis). Upsala J Med Sci. 2011;116(4):269.CrossRefPubMedPubMedCentral Peterson M, Butler S, Eriksson M, Svardsudd K. A randomized controlled trial of exercise versus wait-list in chronic tennis elbow (lateral epicondylosis). Upsala J Med Sci. 2011;116(4):269.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Kim JW, Chun CH, Shim DM, Kim TK, Kweon SH, Kang HJ, et al. Arthroscopic treatment of lateral epicondylitis: comparison of the outcome of ECRB release with and without decortication. Knee Surg Sports Trauma Arthro. 2011;19(7):1178. Kim JW, Chun CH, Shim DM, Kim TK, Kweon SH, Kang HJ, et al. Arthroscopic treatment of lateral epicondylitis: comparison of the outcome of ECRB release with and without decortication. Knee Surg Sports Trauma Arthro. 2011;19(7):1178.
36.
Zurück zum Zitat Buchbinder R, Johnston RV, Barnsley L, Assendelft WJ, Bell SN, Smidt N. Surgery for lateral elbow pain. Cochrane Data Sys Rev. 2011;3:CD003525. Buchbinder R, Johnston RV, Barnsley L, Assendelft WJ, Bell SN, Smidt N. Surgery for lateral elbow pain. Cochrane Data Sys Rev. 2011;3:CD003525.
37.
Zurück zum Zitat Hegmann KT, Hoffman HE, Belcourt RM, Byrne K, Glass L, Melhorn JM, et al. ACOEM practice guidelines: elbow disorders. J Occup Environ Med. 2013;55(11):1365. Hegmann KT, Hoffman HE, Belcourt RM, Byrne K, Glass L, Melhorn JM, et al. ACOEM practice guidelines: elbow disorders. J Occup Environ Med. 2013;55(11):1365.
39.
Zurück zum Zitat Herquelot E, Gueguen A, Roquelaure Y, Bodin J, Serazin C, Ha C, et al. Work-related risk factors for incidence of lateral epicondylitis in a large working population. Scan J Work Environ Health. 2013;39(6):578.CrossRef Herquelot E, Gueguen A, Roquelaure Y, Bodin J, Serazin C, Ha C, et al. Work-related risk factors for incidence of lateral epicondylitis in a large working population. Scan J Work Environ Health. 2013;39(6):578.CrossRef
40.
Zurück zum Zitat Wolf JM, Mountcastle S, Burks R, Sturdivant RX, Owens BD. Epidemiology of lateral and medial epicondylitis in a military population. Mil Med. 2010;175(5):336.CrossRefPubMed Wolf JM, Mountcastle S, Burks R, Sturdivant RX, Owens BD. Epidemiology of lateral and medial epicondylitis in a military population. Mil Med. 2010;175(5):336.CrossRefPubMed
41.
Zurück zum Zitat Leclerc A, Landre MF, Chastang JF, Niedhammer I, Roquelaure Y. Upper-limb disorders in repetitive work. Scan J Work Environ Health. 2001;27(4):268.CrossRef Leclerc A, Landre MF, Chastang JF, Niedhammer I, Roquelaure Y. Upper-limb disorders in repetitive work. Scan J Work Environ Health. 2001;27(4):268.CrossRef
42.
Zurück zum Zitat Haahr JP, Andersen JH. Prognostic factors in lateral epicondylitis: a randomized trial with one-year follow-up in 266 new cases treated with minimal occupational intervention or the usual approach in general practice. Rheum (Oxford). 2003;42(10):1216.CrossRef Haahr JP, Andersen JH. Prognostic factors in lateral epicondylitis: a randomized trial with one-year follow-up in 266 new cases treated with minimal occupational intervention or the usual approach in general practice. Rheum (Oxford). 2003;42(10):1216.CrossRef
43.
Zurück zum Zitat Hakim AJ, Cherkas LF, Spector TD, MacGregor AJ. Genetic associations between frozen shoulder and tennis elbow: a female twin study. Rheum (Oxford). 2003;42(6):739. Hakim AJ, Cherkas LF, Spector TD, MacGregor AJ. Genetic associations between frozen shoulder and tennis elbow: a female twin study. Rheum (Oxford). 2003;42(6):739.
44.
Zurück zum Zitat Altinisik J, Meric G, Erduran M, Ates O, Ulusal AE, Akseki D. The BstUI and DpnII variants of the COL5A1 gene are associated with tennis elbow. Amer J Sports Med. 2015;43(7):1784.CrossRef Altinisik J, Meric G, Erduran M, Ates O, Ulusal AE, Akseki D. The BstUI and DpnII variants of the COL5A1 gene are associated with tennis elbow. Amer J Sports Med. 2015;43(7):1784.CrossRef
45.
Zurück zum Zitat Dines JS, Bedi A, Williams PN, Dodson CC, Ellenbecker TS, Altchek DW, et al. Tennis injuries: epidemiology, pathophysiology, and treatment. J Amer Acad Ortho Surg. 2015;23(3):181. Dines JS, Bedi A, Williams PN, Dodson CC, Ellenbecker TS, Altchek DW, et al. Tennis injuries: epidemiology, pathophysiology, and treatment. J Amer Acad Ortho Surg. 2015;23(3):181.
46.
Zurück zum Zitat Pieber K, Angelmaier L, Csapo R, Herceg M. Acute injuries and overuse syndromes in sport climbing and bouldering in Austria: a descriptive epidemiological study. Wien Klin Wochenschr. 2012;124(11–12):357.CrossRefPubMed Pieber K, Angelmaier L, Csapo R, Herceg M. Acute injuries and overuse syndromes in sport climbing and bouldering in Austria: a descriptive epidemiological study. Wien Klin Wochenschr. 2012;124(11–12):357.CrossRefPubMed
47.
Zurück zum Zitat Bayes MC, Wadsworth LT. Upper extremity injuries in golf. Phys Sports Med. 2009;37(1):92.CrossRef Bayes MC, Wadsworth LT. Upper extremity injuries in golf. Phys Sports Med. 2009;37(1):92.CrossRef
48.
Zurück zum Zitat Kitai E, Itay S, Ruder A, Engel J, Modan M. An epidemiological study of lateral epicondylitis (tennis elbow) in amateur male players. Ann Chir Main. 1986;5(2):113.CrossRefPubMed Kitai E, Itay S, Ruder A, Engel J, Modan M. An epidemiological study of lateral epicondylitis (tennis elbow) in amateur male players. Ann Chir Main. 1986;5(2):113.CrossRefPubMed
50.
Zurück zum Zitat Bollen SR. Upper limb injuries in elite rock climbers. J Royal Coll Surg Edinburgh. 1990;35(6 Suppl):S18. Bollen SR. Upper limb injuries in elite rock climbers. J Royal Coll Surg Edinburgh. 1990;35(6 Suppl):S18.
51.
Zurück zum Zitat Hamilton PG. The prevalence of humeral epicondylitis: a survey in general practice. J Royal Coll Gen Prac. 1986;36(291):464. Hamilton PG. The prevalence of humeral epicondylitis: a survey in general practice. J Royal Coll Gen Prac. 1986;36(291):464.
52.
Zurück zum Zitat Arcury TA, Cartwright MS, Chen H, Rosenbaum DA, Walker FO, Mora DC, et al. Musculoskeletal and neurological injuries associated with work organization among immigrant Latino women manual workers in North Carolina. AmeJ Indust Med. 2014;57(4):468.CrossRef Arcury TA, Cartwright MS, Chen H, Rosenbaum DA, Walker FO, Mora DC, et al. Musculoskeletal and neurological injuries associated with work organization among immigrant Latino women manual workers in North Carolina. AmeJ Indust Med. 2014;57(4):468.CrossRef
53.
Zurück zum Zitat van Rijn RM, Huisstede BM, Koes BW, Burdorf A. Associations between work-related factors and specific disorders at the elbow: a systematic literature review. Rheum (Oxford). 2009;48(5):528.CrossRef van Rijn RM, Huisstede BM, Koes BW, Burdorf A. Associations between work-related factors and specific disorders at the elbow: a systematic literature review. Rheum (Oxford). 2009;48(5):528.CrossRef
54.
Zurück zum Zitat Haahr JP, Andersen JH. Physical and psychosocial risk factors for lateral epicondylitis: a population based case-referent study. Occ Environ Med. 2003;60(5):322.CrossRef Haahr JP, Andersen JH. Physical and psychosocial risk factors for lateral epicondylitis: a population based case-referent study. Occ Environ Med. 2003;60(5):322.CrossRef
55.
Zurück zum Zitat Ritz BR. Humeral epicondylitis among gas- and waterworks employees. Scan J Work Environ Health. 1995;21(6):478.CrossRef Ritz BR. Humeral epicondylitis among gas- and waterworks employees. Scan J Work Environ Health. 1995;21(6):478.CrossRef
56.
Zurück zum Zitat Luopajarvi T, Kuorinka I, Virolainen M, Holmberg M. Prevalence of tenosynovitis and other injuries of the upper extremities in repetitive work. Scan J Work Environ Health. 1979;5(suppl 3):48.CrossRef Luopajarvi T, Kuorinka I, Virolainen M, Holmberg M. Prevalence of tenosynovitis and other injuries of the upper extremities in repetitive work. Scan J Work Environ Health. 1979;5(suppl 3):48.CrossRef
57.
Zurück zum Zitat Dimberg L. The prevalence and causation of tennis elbow (lateral humeral epicondylitis) in a population of workers in an engineering industry. Ergo. 1987;30(3):573.CrossRef Dimberg L. The prevalence and causation of tennis elbow (lateral humeral epicondylitis) in a population of workers in an engineering industry. Ergo. 1987;30(3):573.CrossRef
58.
Zurück zum Zitat Kurppa K, Waris P, Rokkanen P. Tennis elbow. Lateral elbow pain syndrome. Scan J Work Environ Health. 1979;5(suppl 3):15.CrossRef Kurppa K, Waris P, Rokkanen P. Tennis elbow. Lateral elbow pain syndrome. Scan J Work Environ Health. 1979;5(suppl 3):15.CrossRef
59.
Zurück zum Zitat Viikari-Juntura E, Kurppa K, Kuosma E, Huuskonen M, Kuorinka I, Ketola R, et al. Prevalence of epicondylitis and elbow pain in the meat-processing industry. Scan J Work Environ Health. 1991;17(1):38.CrossRef Viikari-Juntura E, Kurppa K, Kuosma E, Huuskonen M, Kuorinka I, Ketola R, et al. Prevalence of epicondylitis and elbow pain in the meat-processing industry. Scan J Work Environ Health. 1991;17(1):38.CrossRef
60.
Zurück zum Zitat Dryson EW, Walls CB. The distribution of occupations in two populations with upper limb pain. IntJ Occ Environ Health. 2001;7(3):201.CrossRef Dryson EW, Walls CB. The distribution of occupations in two populations with upper limb pain. IntJ Occ Environ Health. 2001;7(3):201.CrossRef
61.
Zurück zum Zitat Grzywacz JG, Arcury TA, Mora D, Anderson AM, Chen H, Rosenbaum DA, et al. Work organization and musculoskeletal health: clinical findings from immigrant Latino poultry processing and other manual workers. J Occup Environ Med. 2012;54(8):995.CrossRefPubMed Grzywacz JG, Arcury TA, Mora D, Anderson AM, Chen H, Rosenbaum DA, et al. Work organization and musculoskeletal health: clinical findings from immigrant Latino poultry processing and other manual workers. J Occup Environ Med. 2012;54(8):995.CrossRefPubMed
62.
Zurück zum Zitat Descatha A, Roquelaure Y, Chastang JF, Evanoff B, Cyr D, Leclerc A. Description of outcomes of upper-extremity musculoskeletal disorders in workers highly exposed to repetitive work. J Hand Surg. 2009;34(5):890.CrossRef Descatha A, Roquelaure Y, Chastang JF, Evanoff B, Cyr D, Leclerc A. Description of outcomes of upper-extremity musculoskeletal disorders in workers highly exposed to repetitive work. J Hand Surg. 2009;34(5):890.CrossRef
63.
Zurück zum Zitat Viikari-Juntura E, Shiri R, Solovieva S, Karppinen J, Leino-Arjas P, Varonen H, et al. Risk factors of atherosclerosis and shoulder pain--is there an association? A systematic review. Eur J Pain. 2008;12(4):412.CrossRefPubMed Viikari-Juntura E, Shiri R, Solovieva S, Karppinen J, Leino-Arjas P, Varonen H, et al. Risk factors of atherosclerosis and shoulder pain--is there an association? A systematic review. Eur J Pain. 2008;12(4):412.CrossRefPubMed
64.
Zurück zum Zitat Moore JS, Garg A. The strain index: a proposed method to analyze jobs for risk of distal upper extremity disorders. Amer Indust Hyg Assoc J. 1995;56(5):443.CrossRef Moore JS, Garg A. The strain index: a proposed method to analyze jobs for risk of distal upper extremity disorders. Amer Indust Hyg Assoc J. 1995;56(5):443.CrossRef
65.
Zurück zum Zitat Garg A, Hegmann KT, Wertsch JJ, Kapellusch J, Thiese MS, Bloswick D, et al. The WISTAH hand study: a prospective cohort study of distal upper extremity musculoskeletal disorders. BMC Musc Dis. 2012;13:90.CrossRef Garg A, Hegmann KT, Wertsch JJ, Kapellusch J, Thiese MS, Bloswick D, et al. The WISTAH hand study: a prospective cohort study of distal upper extremity musculoskeletal disorders. BMC Musc Dis. 2012;13:90.CrossRef
66.
Zurück zum Zitat Garg A, Kapellusch J, Hegmann K, Wertsch J, Merryweather A, Deckow-Schaefer G, et al., Team tWHSR. The strain index (SI) and threshold limit value (TLV) for hand activity level (HAL): risk of carpal tunnel syndrome (CTS) in a prospective cohort. Ergo. 2012;55(4):396. Garg A, Kapellusch J, Hegmann K, Wertsch J, Merryweather A, Deckow-Schaefer G, et al., Team tWHSR. The strain index (SI) and threshold limit value (TLV) for hand activity level (HAL): risk of carpal tunnel syndrome (CTS) in a prospective cohort. Ergo. 2012;55(4):396.
67.
Zurück zum Zitat D’Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General cardiovascular risk profile for use in primary care the Framingham Heart Study. Circ. 2008;117(6):743. D’Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General cardiovascular risk profile for use in primary care the Framingham Heart Study. Circ. 2008;117(6):743.
68.
Zurück zum Zitat Font YM, Castro-Santana LE, Nieves-Plaza M, Maldonado M, Mayor AM, Vila LM. Factors associated with regional rheumatic pain disorders in a population of Puerto Ricans with diabetes mellitus. Clin Rheum. 2014;33(7):995.CrossRef Font YM, Castro-Santana LE, Nieves-Plaza M, Maldonado M, Mayor AM, Vila LM. Factors associated with regional rheumatic pain disorders in a population of Puerto Ricans with diabetes mellitus. Clin Rheum. 2014;33(7):995.CrossRef
69.
Zurück zum Zitat Gaida JE, Alfredson L, Kiss ZS, Wilson AM, Alfredson H, Cook JL. Dyslipidemia in Achilles tendinopathy is characteristic of insulin resistance. Med Sci Sports and Ex. 2009;41(6):1194. Gaida JE, Alfredson L, Kiss ZS, Wilson AM, Alfredson H, Cook JL. Dyslipidemia in Achilles tendinopathy is characteristic of insulin resistance. Med Sci Sports and Ex. 2009;41(6):1194.
70.
Zurück zum Zitat Heckman D, Gluck G, Parekh S. Tendon disorders of the foot and ankle, Part 2: Achilles tendon disorders. Amer J Sports Med. 2009;37(6):1223.CrossRef Heckman D, Gluck G, Parekh S. Tendon disorders of the foot and ankle, Part 2: Achilles tendon disorders. Amer J Sports Med. 2009;37(6):1223.CrossRef
71.
Zurück zum Zitat Reddy S, Pedowitz D, Parekh S, Omar I, Wapner K. Surgical treatment for chronic disease and disorders of the Achilles tendon. J Amer Acad Ortho Surg. 2009;17(1):3.CrossRef Reddy S, Pedowitz D, Parekh S, Omar I, Wapner K. Surgical treatment for chronic disease and disorders of the Achilles tendon. J Amer Acad Ortho Surg. 2009;17(1):3.CrossRef
72.
Zurück zum Zitat Applegate K, Thiese M, Merryweather A, Kapellusch J, Drury D, Wood E, et al. Association between cardiovascular disease risk factos and rotator cuff tendinopathy. J Occ Environ Med. 2017;59(2):154. Applegate K, Thiese M, Merryweather A, Kapellusch J, Drury D, Wood E, et al. Association between cardiovascular disease risk factos and rotator cuff tendinopathy. J Occ Environ Med. 2017;59(2):154.
73.
Zurück zum Zitat Hegmann K. Common neuromusculoskeletal disorders. New York: Plenum Press; 1998.CrossRef Hegmann K. Common neuromusculoskeletal disorders. New York: Plenum Press; 1998.CrossRef
74.
Zurück zum Zitat Viikari-Juntura E, Shiri R, Solovieva S, Karppinen J, Leino-Arjas P, varonen H, et al. Risk factors of atherosclerosis and shoulder pain-- Is there an assocation? A systematic review. Eur J Pain. 2008;12(4):412. Viikari-Juntura E, Shiri R, Solovieva S, Karppinen J, Leino-Arjas P, varonen H, et al. Risk factors of atherosclerosis and shoulder pain-- Is there an assocation? A systematic review. Eur J Pain. 2008;12(4):412.
75.
Zurück zum Zitat Leander K, Hallqvist J, Reuterwall C, Ahlbom A, de Faire U. Family history of coronary heart disease, a strong risk factor for myocardial infarction interacting with other cardiovascular risk factors: results from the Stockholm Heart Epidemiology Program (SHEEP). Epi. 2001;12(2):215. Leander K, Hallqvist J, Reuterwall C, Ahlbom A, de Faire U. Family history of coronary heart disease, a strong risk factor for myocardial infarction interacting with other cardiovascular risk factors: results from the Stockholm Heart Epidemiology Program (SHEEP). Epi. 2001;12(2):215.
76.
Zurück zum Zitat Wolf PA, D’Agostino RB, Belanger AJ, Kannel WB. Probability of stroke: a risk profile from the Framingham Study. Stroke. 1991;22(3):312.CrossRefPubMed Wolf PA, D’Agostino RB, Belanger AJ, Kannel WB. Probability of stroke: a risk profile from the Framingham Study. Stroke. 1991;22(3):312.CrossRefPubMed
77.
Zurück zum Zitat Celis-Morales CA, Perez-Bravo F, Ibanez L, Salas C, Bailey ME, Gill JM. Objective vs. self-reported physical activity and sedentary time: effects of measurement method on relationships with risk biomarkers. PLoS One. 2012;7(5):e36345.CrossRefPubMedPubMedCentral Celis-Morales CA, Perez-Bravo F, Ibanez L, Salas C, Bailey ME, Gill JM. Objective vs. self-reported physical activity and sedentary time: effects of measurement method on relationships with risk biomarkers. PLoS One. 2012;7(5):e36345.CrossRefPubMedPubMedCentral
78.
Zurück zum Zitat Brenner H, Savitz DA. The effects of sensitivity and specificity of case selection on validity, sample size, precision, and power in hospital-based case-control studies. Amer J Epi. 1990;132(1):181.CrossRef Brenner H, Savitz DA. The effects of sensitivity and specificity of case selection on validity, sample size, precision, and power in hospital-based case-control studies. Amer J Epi. 1990;132(1):181.CrossRef
79.
Zurück zum Zitat Otoshi K, Takegami M, Sekiguchi M, Onishi Y, Yamazaki S, Otani K, et al. Chronic hyperglycemia increases the risk of lateral epicondylitis: the Locomotive Syndrome and Health Outcome in Aizu Cohort Study (LOHAS). Springer Plus. 2015;4:407. Otoshi K, Takegami M, Sekiguchi M, Onishi Y, Yamazaki S, Otani K, et al. Chronic hyperglycemia increases the risk of lateral epicondylitis: the Locomotive Syndrome and Health Outcome in Aizu Cohort Study (LOHAS). Springer Plus. 2015;4:407.
80.
Zurück zum Zitat Titchener AG, Fakis A, Tambe AA, Smith C, Hubbard RB, Clark DI. Risk factors in lateral epicondylitis (tennis elbow): a case-control study. J Hand Surg. 2013;38(2):159.CrossRef Titchener AG, Fakis A, Tambe AA, Smith C, Hubbard RB, Clark DI. Risk factors in lateral epicondylitis (tennis elbow): a case-control study. J Hand Surg. 2013;38(2):159.CrossRef
81.
Zurück zum Zitat Michienzi AE, Anderson CP, Vang S, Ward CM. Lateral epicondylitis and tobacco use: a case-control study. Iowa Ortho J. 2015;35:114. Michienzi AE, Anderson CP, Vang S, Ward CM. Lateral epicondylitis and tobacco use: a case-control study. Iowa Ortho J. 2015;35:114.
Metadaten
Titel
Association between Epicondylitis and Cardiovascular Risk Factors in Pooled Occupational Cohorts
verfasst von
Kurt T. Hegmann
Matthew S. Thiese
Jay Kapellusch
Andrew Merryweather
Stephen Bao
Barbara Silverstein
Eric M. Wood
Richard Kendall
James Foster
David L. Drury
Arun Garg
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
BMC Musculoskeletal Disorders / Ausgabe 1/2017
Elektronische ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-017-1593-2

Weitere Artikel der Ausgabe 1/2017

BMC Musculoskeletal Disorders 1/2017 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.