Skip to main content
Erschienen in: Clinical and Experimental Nephrology 5/2018

10.03.2018 | Original article

Association between exercise intensity and renal blood flow evaluated using ultrasound echo

verfasst von: Shotaro Kawakami, Tetsuhiko Yasuno, Takuro Matsuda, Kanta Fujimi, Ai Ito, Saki Yoshimura, Yoshinari Uehara, Hiroaki Tanaka, Takao Saito, Yasuki Higaki

Erschienen in: Clinical and Experimental Nephrology | Ausgabe 5/2018

Einloggen, um Zugang zu erhalten

Abstract

Background

High-intensity exercise reduces renal blood flow (RBF) and may transiently exacerbate renal dysfunction. RBF has previously been measured invasively by administration of an indicator material; however, non-invasive measurement is now possible with technological innovations. This study examined variations in RBF at different exercise intensities using ultrasound echo.

Methods

Eight healthy men with normal renal function (eGFRcys 114 ± 19 mL/min/1.73 m2) participated in this study. Using a bicycle ergometer, participants underwent an incremental exercise test using a ramp protocol (20 W/min) until exhaustion in Study 1 and the lactate acid breaking point (LaBP) was calculated. Participants underwent a multi-stage test at exercise intensities of 60, 80, 100, 120, and 140% LaBP in Study 2. RBF was measured by ultrasound echo at rest and 5 min after exercise in Study 1 and at rest and immediately after each exercise in Study 2. To determine the mechanisms behind RBF decline, a catheter was placed into the antecubital vein to study vasoconstriction dynamics.

Results

RBF after maximum exercise decreased by 51% in Study 1. In Study 2, RBF showed no significant decrease until 80% LaBP, and showed a significant decrease (31%) at 100% LaBP compared with at rest (p < 0.01). The sympathetic nervous system may be involved in this reduction in RBF.

Conclusions

RBF showed no significant decrease until 80% LaBP, and decreased with an increase in blood lactate. Reduction in RBF with exercise above the intensity at LaBP was due to decreased cross-sectional area rather than time-averaged flow velocity.
Literatur
1.
Zurück zum Zitat Grimby G. Renal clearances during prolonged supine exercise at different loads. J Appl Physiol. 1965;20:1294–8.CrossRef Grimby G. Renal clearances during prolonged supine exercise at different loads. J Appl Physiol. 1965;20:1294–8.CrossRef
2.
Zurück zum Zitat Suzuki H, Takahashi K, Yoshida S, et al. Effects of exercise intensity on renal clearance parameters. Jpn J Phys Fit Sport Med. 1992;41:147–55 (Japanese with English abstract).CrossRef Suzuki H, Takahashi K, Yoshida S, et al. Effects of exercise intensity on renal clearance parameters. Jpn J Phys Fit Sport Med. 1992;41:147–55 (Japanese with English abstract).CrossRef
3.
Zurück zum Zitat Kenney WL, Ho C. Age alters regional distribution of blood flow during moderate intensity exercise. J Appl Physiol. 1995;79:1112–9.CrossRefPubMed Kenney WL, Ho C. Age alters regional distribution of blood flow during moderate intensity exercise. J Appl Physiol. 1995;79:1112–9.CrossRefPubMed
4.
Zurück zum Zitat Clorius JH, Mcmdelbaunz A, Hupp T, et al. Exercise activates renal dysfunction in hypertension. Am J Hypertens. 1996;9:653–61.CrossRefPubMed Clorius JH, Mcmdelbaunz A, Hupp T, et al. Exercise activates renal dysfunction in hypertension. Am J Hypertens. 1996;9:653–61.CrossRefPubMed
5.
Zurück zum Zitat Poortmans JR, Mathieu N, De Plaen P. Influence of running different distances on renal glomerular and tubular impairment in humans. Eur J Appl Physiol Occup Physiol. 1996;72:522–7.CrossRefPubMed Poortmans JR, Mathieu N, De Plaen P. Influence of running different distances on renal glomerular and tubular impairment in humans. Eur J Appl Physiol Occup Physiol. 1996;72:522–7.CrossRefPubMed
6.
7.
Zurück zum Zitat Bucht H, Ek J, Eliasch H, et al. The effect of exercise in the recumbent position on the renal circulation and sodium excretion in normal individuals. Acta Physiol Scand. 1953;28:95–100.CrossRefPubMed Bucht H, Ek J, Eliasch H, et al. The effect of exercise in the recumbent position on the renal circulation and sodium excretion in normal individuals. Acta Physiol Scand. 1953;28:95–100.CrossRefPubMed
8.
Zurück zum Zitat Benetos A, Laurent S, Hoeks AP, et al. Arterial alterations with aging and high blood pressure. A noninvasive study of carotid and femoral arteries. Arterioscler Thromb Vasc Biol. 1993;13:90–7.CrossRef Benetos A, Laurent S, Hoeks AP, et al. Arterial alterations with aging and high blood pressure. A noninvasive study of carotid and femoral arteries. Arterioscler Thromb Vasc Biol. 1993;13:90–7.CrossRef
9.
Zurück zum Zitat Miyachi M, Iemitsu M, Okutsu M, Onodera S. Effects of endurance training on the size and blood flow of the arterial conductance vessels in humans. Acta Physiol Scand. 1998;163:13–6.CrossRefPubMed Miyachi M, Iemitsu M, Okutsu M, Onodera S. Effects of endurance training on the size and blood flow of the arterial conductance vessels in humans. Acta Physiol Scand. 1998;163:13–6.CrossRefPubMed
10.
Zurück zum Zitat Dinenno FA, Tanaka H, Monahan KD, et al. Regular endurance exercise induces expansive arterial remodelling in the trained limbs of healthy men. J Physiol. 2001;534:287–95.CrossRefPubMedPubMedCentral Dinenno FA, Tanaka H, Monahan KD, et al. Regular endurance exercise induces expansive arterial remodelling in the trained limbs of healthy men. J Physiol. 2001;534:287–95.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Tidgren B, Hjemdahl P. Reflex activation of renal nerves in humans: differential effects on noradrenaline, dopamine and renin overflow to renal venous plasma. Acta Physiol Scand. 1988;134:23–34.CrossRefPubMed Tidgren B, Hjemdahl P. Reflex activation of renal nerves in humans: differential effects on noradrenaline, dopamine and renin overflow to renal venous plasma. Acta Physiol Scand. 1988;134:23–34.CrossRefPubMed
13.
Zurück zum Zitat Tidgren B, Hjemdahl P, Theodorsson E, Nussberger J. Renal neurohormonal and vascular responses to dynamic exercise in humans. J Appl Physiol. 1991;70:2279–86.CrossRefPubMed Tidgren B, Hjemdahl P, Theodorsson E, Nussberger J. Renal neurohormonal and vascular responses to dynamic exercise in humans. J Appl Physiol. 1991;70:2279–86.CrossRefPubMed
14.
Zurück zum Zitat Tanaka H, Matsuda T, Tobina T, et al. Product of heart rate and first heart sound amplitude as an index of myocardial metabolic stress during graded exercise. Circ J. 2013;77:2736–41.CrossRefPubMed Tanaka H, Matsuda T, Tobina T, et al. Product of heart rate and first heart sound amplitude as an index of myocardial metabolic stress during graded exercise. Circ J. 2013;77:2736–41.CrossRefPubMed
15.
Zurück zum Zitat Schneider DA, McLellan TM, Gass GC. Plasma catecholamine and blood lactate responses to incremental arm and leg exercise. Med Sci Sports Exerc. 2000;32:608–13.CrossRefPubMed Schneider DA, McLellan TM, Gass GC. Plasma catecholamine and blood lactate responses to incremental arm and leg exercise. Med Sci Sports Exerc. 2000;32:608–13.CrossRefPubMed
16.
Zurück zum Zitat Mazzeo RS, Bender PR, Brooks G, et al. Arterial catecholamine responses during exercise with acute and chronic high-altitude exposure. Am J Physiol. 1991;261:E419–24.PubMed Mazzeo RS, Bender PR, Brooks G, et al. Arterial catecholamine responses during exercise with acute and chronic high-altitude exposure. Am J Physiol. 1991;261:E419–24.PubMed
17.
Zurück zum Zitat Pescatello LS, Arena R, Riebe D, Thompson PD. ACSM’s guideline for exercise testing and prescription. 9th ed. Philadelphia: Lippincott Williams & Wilkins; 2013. Pescatello LS, Arena R, Riebe D, Thompson PD. ACSM’s guideline for exercise testing and prescription. 9th ed. Philadelphia: Lippincott Williams & Wilkins; 2013.
18.
Zurück zum Zitat Shimamoto Y, Kubo T, Tanabe K, et al. Effects of intravenous bolus injection of nicorandil on renal artery flow velocity assessed by color Doppler ultrasound. J Cardiol. 2017;69:364–8.CrossRefPubMed Shimamoto Y, Kubo T, Tanabe K, et al. Effects of intravenous bolus injection of nicorandil on renal artery flow velocity assessed by color Doppler ultrasound. J Cardiol. 2017;69:364–8.CrossRefPubMed
19.
Zurück zum Zitat Krejza J, Ustymowicz A, Szylak A, et al. Assessment of variability of renal blood flow doppler parameters during the menstrual cycle in women. Ultrasound Obstet Gynecol. 2005;25:60–9.CrossRefPubMed Krejza J, Ustymowicz A, Szylak A, et al. Assessment of variability of renal blood flow doppler parameters during the menstrual cycle in women. Ultrasound Obstet Gynecol. 2005;25:60–9.CrossRefPubMed
20.
Zurück zum Zitat Kohzuki M. Renal rehabilitation. Tokyo: Ishiyaku Publ. Inc; 2012. Kohzuki M. Renal rehabilitation. Tokyo: Ishiyaku Publ. Inc; 2012.
21.
Zurück zum Zitat Karlsson J. Metabolic adaptations to exercise: a review of potential beta-adrenoceptor antagonist effects. Am J Cardiol. 1985;55:D48–58.CrossRef Karlsson J. Metabolic adaptations to exercise: a review of potential beta-adrenoceptor antagonist effects. Am J Cardiol. 1985;55:D48–58.CrossRef
22.
Zurück zum Zitat Middlekauff HR, Nitzsche EU, Hoh CK, et al. Exaggerated muscle mechanoreflex control of reflex renal vasoconstriction in heart failure. J Appl Physiol. 2001;90:1714–9.CrossRefPubMed Middlekauff HR, Nitzsche EU, Hoh CK, et al. Exaggerated muscle mechanoreflex control of reflex renal vasoconstriction in heart failure. J Appl Physiol. 2001;90:1714–9.CrossRefPubMed
23.
Zurück zum Zitat Momen A, Leuenberger UA, Ray CA, et al. Renal vascular responses to static handgrip: role of muscle mechanoreflex. Am J Physiol Heart Circ Physiol. 2003;285:H1247-H1253.CrossRef Momen A, Leuenberger UA, Ray CA, et al. Renal vascular responses to static handgrip: role of muscle mechanoreflex. Am J Physiol Heart Circ Physiol. 2003;285:H1247-H1253.CrossRef
24.
Zurück zum Zitat Drew RC, Blaha CA, Herr MD, et al. Muscle mechanoreflex activation via passive calf stretch causes renal vasoconstriction in healthy humans. Am J Physiol Regul Integr Comp Physiol. 2017;312:R956–64.CrossRef Drew RC, Blaha CA, Herr MD, et al. Muscle mechanoreflex activation via passive calf stretch causes renal vasoconstriction in healthy humans. Am J Physiol Regul Integr Comp Physiol. 2017;312:R956–64.CrossRef
25.
Zurück zum Zitat Momen A, Cui J, McQuillan P, et al. Local prostaglandin blockade attenuates muscle mechanoreflex-mediated renal vasoconstriction during muscle stretch in humans. Am J Physiol Heart Circ Physiol. 2008;294:H2184–190.CrossRef Momen A, Cui J, McQuillan P, et al. Local prostaglandin blockade attenuates muscle mechanoreflex-mediated renal vasoconstriction during muscle stretch in humans. Am J Physiol Heart Circ Physiol. 2008;294:H2184–190.CrossRef
26.
Zurück zum Zitat Tanaka H, Kiyonaga A, Terao Y, et al. Double product response is accelerated above the blood lactate threshold. Med Sci Sports Exerc. 1997;29(4):503–8.CrossRefPubMed Tanaka H, Kiyonaga A, Terao Y, et al. Double product response is accelerated above the blood lactate threshold. Med Sci Sports Exerc. 1997;29(4):503–8.CrossRefPubMed
27.
Zurück zum Zitat Svarstad E, Myking O, Ofstad J, et al. Effect of light exercise on renal hemodynamics in patients with hypertension and chronic renal disease. Scand J Urol Nephrol. 2002;36:464–72.CrossRefPubMed Svarstad E, Myking O, Ofstad J, et al. Effect of light exercise on renal hemodynamics in patients with hypertension and chronic renal disease. Scand J Urol Nephrol. 2002;36:464–72.CrossRefPubMed
28.
Zurück zum Zitat Suzuki H. Exercise intensity and renal hemodynamics. Jpn J Nephrol. 1995;37:534–42 (Japanese with English abstract). Suzuki H. Exercise intensity and renal hemodynamics. Jpn J Nephrol. 1995;37:534–42 (Japanese with English abstract).
29.
Zurück zum Zitat Bauer JH. Role of angiotensin converting enzyme inhibitors in essential and renal hypertension. Effects of captopril and enalapril on renin-angiotensin-aldosterone, renal function and hemodynamics, salt and water excretion, and body fluid composition. Am J Med. 1984;77:43–51.CrossRefPubMed Bauer JH. Role of angiotensin converting enzyme inhibitors in essential and renal hypertension. Effects of captopril and enalapril on renin-angiotensin-aldosterone, renal function and hemodynamics, salt and water excretion, and body fluid composition. Am J Med. 1984;77:43–51.CrossRefPubMed
30.
Zurück zum Zitat Headley S, Germain M, Wood R, Joubert J, Milch C, Evans E, Poindexter A, Cornelius A, Brewer B, Pescatello LS, Parker B. Short-term aerobic exercise and vascular function in CKD stage 3: a randomized controlled trial. Am J Kidney Dis. 2014;64:222–9.CrossRefPubMedPubMedCentral Headley S, Germain M, Wood R, Joubert J, Milch C, Evans E, Poindexter A, Cornelius A, Brewer B, Pescatello LS, Parker B. Short-term aerobic exercise and vascular function in CKD stage 3: a randomized controlled trial. Am J Kidney Dis. 2014;64:222–9.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Leehey DJ, Moinuddin I, Bast JP, Qureshi S, Jelinek CS, Cooper C, Edwards LC, Smith BM, Collins EG. Aerobic exercise in obese diabetic patients with chronic kidney disease: a randomized and controlled pilot study. Cardiovasc Diabetol. 2009;8:62.CrossRefPubMedPubMedCentral Leehey DJ, Moinuddin I, Bast JP, Qureshi S, Jelinek CS, Cooper C, Edwards LC, Smith BM, Collins EG. Aerobic exercise in obese diabetic patients with chronic kidney disease: a randomized and controlled pilot study. Cardiovasc Diabetol. 2009;8:62.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Pechter U, Ots M, Mesikepp S, Zilmer K, Kullissaar T, Vihalemm T, Zilmer M, Maaroos J. Beneficial effects of water-based exercise in patients with chronic kidney disease. Int J Rehabil Res. 2003;26:153–6.CrossRefPubMed Pechter U, Ots M, Mesikepp S, Zilmer K, Kullissaar T, Vihalemm T, Zilmer M, Maaroos J. Beneficial effects of water-based exercise in patients with chronic kidney disease. Int J Rehabil Res. 2003;26:153–6.CrossRefPubMed
33.
Zurück zum Zitat Johansen KL. Exercise and chronic kidney disease: current recommendations. Sport Med. 2005;35:485–99.CrossRef Johansen KL. Exercise and chronic kidney disease: current recommendations. Sport Med. 2005;35:485–99.CrossRef
Metadaten
Titel
Association between exercise intensity and renal blood flow evaluated using ultrasound echo
verfasst von
Shotaro Kawakami
Tetsuhiko Yasuno
Takuro Matsuda
Kanta Fujimi
Ai Ito
Saki Yoshimura
Yoshinari Uehara
Hiroaki Tanaka
Takao Saito
Yasuki Higaki
Publikationsdatum
10.03.2018
Verlag
Springer Singapore
Erschienen in
Clinical and Experimental Nephrology / Ausgabe 5/2018
Print ISSN: 1342-1751
Elektronische ISSN: 1437-7799
DOI
https://doi.org/10.1007/s10157-018-1559-1

Weitere Artikel der Ausgabe 5/2018

Clinical and Experimental Nephrology 5/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.