Skip to main content
Erschienen in: Diabetology & Metabolic Syndrome 1/2018

Open Access 01.12.2018 | Review

Association between homocysteine level and the risk of diabetic retinopathy: a systematic review and meta-analysis

verfasst von: Xunwen Lei, Guifeng Zeng, Yuemei Zhang, Qiang Li, Jinzhi Zhang, Zhenggang Bai, Kehu Yang

Erschienen in: Diabetology & Metabolic Syndrome | Ausgabe 1/2018

Abstract

Background

Previous studies have demonstrated that elevated homocysteine (Hcy) level represents an independent risk factor for macrovascular disease. However, the relationship between hyperhomocysteinemia and the progression of diabetic retinopathy in patients remains controversial. Hence, the purpose of this systematic review and meta-analysis was to explore any potential association between Hcy and the risk of diabetic retinopathy.

Methods

PubMed, Embase, and the Cochrane Library databases were searched to screen studies that fulfilled the inclusion criteria from date of database inception to November 2017. The summary odds ratio (OR) with 95% confidence intervals (CIs) was used to calculate the pooled effect estimate for the relationship between Hcy and diabetic retinopathy risk. Sensitivity, subgroup analyses, and publication bias were also assessed.

Results

Eleven studies involving a total of 2184 diabetic patients were included in the meta-analysis. The summary OR suggested that increased Hcy level in diabetic patients was associated with an increased risk of diabetic retinopathy (OR 1.62; 95% CI 1.29–2.03; p < 0.001). Although significant heterogeneity was detected among the included studies, the findings of sensitivity analysis remained statistically significant. Subgroup analyses found a significant association between Hcy and diabetic retinopathy in most subsets, but no significant association was found if the sample size was < 100, participants had type 1 diabetes mellitus, and the study quality was low.

Conclusions

The findings of this study suggested that elevated Hcy level was associated with an increased risk of diabetic retinopathy, especially in type 2 diabetic patients. This finding may help diabetic patients to achieve effective management strategy to prevent the progression of diabetic retinopathy.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s13098-018-0362-1) contains supplementary material, which is available to authorized users.
Xunwen Lei and Guifeng Zeng contributed equally to this work
Abkürzungen
BMI
body mass index
CIs
confidence intervals
DM
diabetes mellitus
Hcy
homocysteine
NOS
Newcastle–Ottawa Quality Assessment Scale
OR
odds ratio

Background

Diabetic retinopathy is a major vascular complication of diabetes mellitus (DM), often leading to low vision and blindness [1, 2]. It can become a major threat to public health in the future due to the increasing global prevalence of DM, which is projected to affect 438 million people by 2030 [3]. Diabetic retinopathy occurs in 70% of patients with diabetes for more than 15 years. A recent study indicated that the estimated prevalence of diabetic retinopathy was 28.5% among US adults [4]. The pathogenesis and etiology of diabetic retinopathy include poor glycemic control, vascular endothelial cell injury, hypercoagulability, ischemia and anoxia of retina, and genetic factors [5].
Homocysteine (Hcy) is a sulfur-containing amino acid formed by the demethylation of methionine. Plasma Hcy level is elevated in patients with diabetes, particularly those with type 2 diabetes as well as in pre-diabetic individuals with insulin resistance [6]. It is an emerging risk factor for diabetic retinopathy and cardiovascular disease that has become a research hotspot [7]. B vitamin is an essential vitamin for humans and an important cofactor of Hcy metabolism, which is commonly related to high circulating levels of Hcy. The effect of B vitamin supplementation on the progression of diabetic retinopathy in diabetic patients remains unknown, and requires a systematic review and meta-analysis.
A few studies have suggested that the level of plasma and vitreous Hcy is a risk factor for diabetic retinopathy [810], while others have refuted this link [11, 12]. Therefore, the present meta-analysis was performed to summarize currently available data to provide more robust evidence on the potential relationship between Hcy level and the risk of diabetic retinopathy.

Methods

Data sources, search strategy, and selection criteria

This meta-analysis was conducted according to the preferred reporting items for systematic reviews and meta-analysis guidelines [13]. All studies written in English that investigated the relationship between plasma Hcy level and diabetic retinopathy in diabetic patients were considered for this meta-analysis, regardless of the publication status (published, in press, or in progress). The PubMed, Embase, and Cochrane Library databases were independently searched by two authors to retrieve related original studies published before November 2017. The search terms used were as follows: “diabetic retinopathy,” “diabetic retinopathies,” “homocysteine,” and “Hcy”. Furthermore, the reference lists of all eligible studies were manually searched to identify any additional relevant studies.
The study selection was independently performed by two authors with a standardized approach, and any inconsistencies were resolved by group discussion and consensus. Studies that met the following inclusion criteria were included in this meta-analysis: (1) the study had an observational design; (2) the study reported the association of Hcy level with the risk of diabetic retinopathy; and (3) the study reported the sample size, diabetic retinopathy incidence or effect estimate. Studies that met any one of the following conditions were excluded: (1) article type: editorials, meta-analysis, and review articles; (2) did not report diabetic retinopathy (including proliferative and nonproliferative); and (3) duplication of published articles.

Data collection and quality assessment

Data were independently extracted from each included study by two authors, and all disagreements were discussed and resolved with the help of the third author. The following information was recorded: first author’s name, publication year, country, sample size, mean age, percentage male, body mass index (BMI), diabetes mellitus types, cutoff value of Hcy, adjusted factors, and reported outcomes. The quality of selected studies was evaluated using the Newcastle–Ottawa Quality Assessment Scale (NOS) [14]. The maximal NOS score was 9 points, and studies ≥ 7 points were considered to be of relatively higher quality. The quality assessment was independently conducted by two authors, and information was examined and adjudicated by an additional author after referring to the original studies.

Statistical analysis

Odds ratios and 95% confidence intervals (CIs) was used to assess the relationship between Hcy level and the risk of diabetic retinopathy in diabetic patients. The random-effects model was used to calculate summary ORs and 95% CIs for the high versus low Hcy levels [15, 16]. Heterogeneity among the included studies was quantified using the I-square (I2) value. I2> 50% was considered to represent significant heterogeneity [17]. We also performed a sensitivity analysis by removing each individual study from the meta-analysis [18]. Univariate meta-regression analysis based on sample size, mean age, percentage male, and BMI was used to explore the source of heterogeneity in estimates of the risk on diabetic retinopathy [19]. Subgroup analysis was conducted for diabetic retinopathy according to publication year, country, sample size, mean age, percentage male, BMI, diabetes mellitus types, and NOS score. Furthermore, ratio between subgroups was calculated to compare the differences between estimates of the two subsets, which were based on Student t distribution rather than normal distribution because of the small number of included studies [20]. Funnel plot, Egger and Begg tests were performed to evaluate the potential publication bias [21, 22]. All reported p values are two-sided, and p < 0.05 was regarded as statistically significant. All analyses were performed using STATA software package (version 10.0; Stata Corp, TX, USA).

Results

Initially 249 studies were extracted from PubMed, Embase, and the Cochrane Library databases, of which 211 studies were excluded after reviewing the titles and abstracts because they were unrelated to the topic or duplicates. By examining the full texts of the remaining 38 articles, 27 were excluded for including the same group of patients, reporting other outcomes, or without available data. A manual search of the reference lists of these studies did not yield any new eligible studies. The results of the study-selection process are shown in Fig. 1. Finally, 11 studies involving 2184 diabetic patients were included in this meta-analysis [3, 2332].
The characteristics of the 11 included studies are shown in Table 1. The included studies were published between 1997 and 2014, and 25–625 diabetic patients were included in each study. Four of the included studies were conducted in Eastern countries [23, 28, 30, 31], and the remaining seven studies were conducted in Western countries [3, 2327, 29, 32]. Furthermore, four studies included patients with type 1 diabetes mellitus [23, 24, 26, 32], five studies included patients with type 2 diabetes mellitus [3, 25, 2931], and the remaining two studies included both type 1 and 2 diabetes mellitus [27, 28]. The mean age of patients in individual studies ranged from 43.8 to 69.4 years, the percentage male ranged from 41.9 to 78.6%, and mean BMI ranged from 24.2 to 29.6 kg/m2. NOS was used to evaluate the quality of each study, whereby two of the included studies had a score of 8 [24, 30], five studies had a score of 7 [3, 25, 26, 28, 32], and the remaining four studies had a score of 6 [23, 27, 29, 31].
Table 1
Baseline characteristics of studies included in the systematic review and meta-analysis
Study
Publication year
Country
Sample size
Mean age (years)
Percentage male (%)
BMI (kg/m2)
DM types
Cutoff of Hcy (μmol/L)
Adjusted factor
NOS score
Vaccaro [23]
1997
Japan
25
44.9
72.0
NA
1
10.0
Age, gender, blood pressure, creatinine, plasma cholesterol, smoking status
6
Hofmann [24]
1998
France
75
51.0
46.7
24.2
1
15.8
Age, gender, diabetes duration, diabetes control, blood pressure, BMI, plasma cholesterol
8
Hoogeveen [25]
2000
Netherlands
625
64.3
48.2
27.2
2
16.0
Age, gender, BMI, creatinine, plasma cholesterol
7
Buysschaert [26]
2000
Belgium
122
62.6
67.2
29.6
1
15.0
Age, gender, diabetes duration, hypoglycemia medication, blood pressure, triglyceride, LDL, HDL
7
Agullo-Ortuno [27]
2002
Spain
89
43.8
51.7
NA
Both
15.6 (men) and 13.9 (women)
Plasma cholesterol, triglyceride, LDL, HDL
6
Goldstein [28]
2004
Israel
335
69.4
51.3
NA
Both
15.0
Age, blood pressure, other complications
7
de Luis [29]
2005
Spain
155
64.6
41.9
29.6
2
15.0
Age, blood pressure, BMI, creatinine, plasma cholesterol
6
Golbahar [30]
2008
Bahrain
254
56.1
54.3
25.5
2
12.0 (men) and 15.0 (women)
Age, gender, diabetes duration, diabetes control, BMI, HDL, smoking status
8
Satyanarayana [3]
2011
US
300
55.1
56.1
24.4
2
12.0
Age, hypoglycemia medication, plasma cholesterol, low density lipoprotein
7
Sato [31]
2013
Japan
84
62.0
78.6
25.3
2
10.0
Metformin, eGFR, and B12
6
Bulum [32]
2014
Croatia
100
47.0
54.0
25.0
1
15.0
Age, eGFR, blood pressure, triglyceride
7
LDL low-density lipoprotein, HDL high-density lipoprotein, BMI body mass index
All included studies reported an association between Hcy and diabetic retinopathy. Pooled analysis results indicated that elevated Hcy level was associated with an increased risk of diabetic retinopathy (OR 1.62; 95% CI 1.29–2.03; p < 0.001; Fig. 2). Although substantial heterogeneity was observed in the magnitude of the effect across the studies (I2 = 58.1%; p = 0.008), the conclusion was not affected after sequential exclusion of any specific study from the pooled analyses (Table 2).
Table 2
Sensitivity analysis for diabetic retinopathy risk
Excluding study
OR and 95% CI
p value
Heterogeneity (%)
p value for heterogeneity
Vaccaro
1.57 (1.26–1.96)
< 0.001
56.7
0.014
Hofmann
1.64 (1.29–2.09)
< 0.001
62.3
0.005
Hoogeveen
1.64 (1.28–2.11)
< 0.001
62.3
0.005
Buysschaert
1.66 (1.31–2.12)
< 0.001
61.9
0.005
Agullo-Ortuno
1.58 (1.26–1.99)
< 0.001
59.6
0.008
Goldstein
1.50 (1.21–1.85)
< 0.001
47.2
0.048
de Luis
1.66 (1.31–2.11)
< 0.001
61.6
0.005
Golbahar
1.49 (1.21–1.84)
< 0.001
46.9
0.049
Satyanarayana
1.58 (1.24–2.02)
< 0.001
58.4
0.010
Sato
1.74 (1.30–2.34)
< 0.001
60.0
0.007
Bulum
1.75 (1.32–2.32)
< 0.001
54.5
0.019
OR odds ratio, CI confidence interval
Heterogeneity testing showed a value of p < 0.10 for diabetic retinopathy. Therefore, a meta-regression analysis was conducted based on sample size, mean age, percentage male, and BMI. Overall, sample size (p = 0.412), mean age (p = 0.892), percentage male (p = 0.659), and BMI (p = 0.452) did not significantly affect the relationship between Hcy and diabetic retinopathy (Additional file 1). The results of subgroup analysis indicated that this relationship in most subsets was consistent with the overall analysis (Table 3). However, elevated Hcy level was not associated with the risk of diabetic retinopathy if the sample size was < 100, the study included patients with type 1 diabetes mellitus, and the study was low quality.
Table 3
Subgroup analysis for diabetic retinopathy risk
Group
OR and 95% CI
p value
Heterogeneity (%)
p value for heterogeneity
Ratio between subgroups
Publication year
 Before 2005
1.89 (1.26–2.81)
0.002
31.0
0.203
1.29 (0.80–2.07)/0.300
 2005 or after
1.47 (1.14–1.90)
0.003
66.2
0.019
Country
 Eastern
2.26 (1.24–4.13)
0.008
81.4
0.001
1.73 (0.93–3.21)/0.085
 Western
1.31 (1.12–1.52)
0.001
1.3
0.415
Sample size
 ≥ 100
1.66 (1.21–2.29)
0.002
66.9
0.006
0.99 (0.52–1.88)/0.971
 < 100
1.68 (0.96–2.92)
0.067
42.9
0.154
Mean age (years)
 ≥ 60.0
1.47 (1.05–2.05)
0.025
50.6
0.088
0.77 (0.45–1.32)/0.350
 < 60.0
1.90 (1.25–2.90)
0.003
68.2
0.008
Percentage male (%)
 ≥ 55.0
1.51 (1.04–2.21)
0.032
52.3
0.099
0.87 (0.52–1.48)/0.612
 < 55.0
1.73 (1.20–2.50)
0.003
65.7
0.008
BMI (kg/m2)
 ≥ 25.0
1.35 (1.10–1.67)
0.004
45.1
0.105
0.75 (0.48–1.17)/0.211
 < 25.0
1.79 (1.21–2.64)
0.004
0.0
0.488
DM types
 1
1.27 (0.93–1.75)
0.134
17.3
0.305
0.79 (0.50–1.24)/0.306a
 2
1.61 (1.16–2.23)
0.005
59.7
0.042
 Both
2.71 (1.70–4.30)
< 0.001
0.0
0.917
Study quality
 High
1.70 (1.24–2.33)
0.001
66.0
0.007
1.06 (0.56–2.03)/0.854
 Low
1.60 (0.91–2.82)
0.106
45.9
0.136
OR odds ratio, CI confidence interval, BMI body mass index, DM diabetes mellitus
aCompared between type 1 and 2 DM
The funnel plots did not rule out publication bias for diabetic retinopathy (Fig. 3). Although the Begg test showed no evidence of publication bias for diabetic retinopathy (p = 0.350), the Egger test showed potential evidence of publication bias for diabetic retinopathy (p = 0.051). The conclusions were not changed after adjustment for publication bias using the trim and fill method (OR 1.55; 95% CI 1.24–1.94; p < 0.001) [33].

Discussion

Although many studies have indicated an association between Hcy and diabetic retinopathy, the results are conflicting [34, 35]. Among the many determinants of Hcy, the B-vitamin status was shown to be a major regulating factor; however, its relationship with diabetic retinopathy remains unclear [3]. This meta-analysis summarized 11 studies involving a total of 2184 diabetic patients from nine countries and regions in three continents. Elevated Hcy level was associated with an increased risk of diabetic retinopathy in diabetic patients. We are confident in this result, which was persistent after excluding any specific study. However, subgroup analysis indicated no significant difference between Hcy and diabetic retinopathy in studies with sample size < 100, participants with type 1 diabetes mellitus, and low quality.
Diabetic retinopathy is one of the most severe microvascular complications, which occurs due to metabolic disorders and endocrine system damage in diabetic patients [36]. The complex pathogenesis includes nonproliferative retinopathy (capillary swelling and deformation, blood-retinal barrier damage and retinal leakage, macular edema, and vision damage), followed by proliferative retinopathy (neovascularization, vitreous hemorrhage, retinal detachment, and eventually blindness) [37, 38]. Recently, the effects of oxidative stress and inflammation on the role of diabetic retinopathy have been extensively studied. Hcy is involved in oxidation–reduction reaction and induces oxidative stress. Plasma Hcy level is regulated by various factors, including genetic factors, nutrition, hormone levels, blood pressure, impaired renal function, and duration of diabetes [39, 40]. Hcy is implicated in vascular diseases via endotoxic and pro-proliferative effects, which could interfere with glutathione synthesis and methylation reactions [41]. Hcy promotes the occurrence and development of vascular diseases. Retinopathy was found to be prevalent in type 2 diabetes mellitus patients with higher Hcy concentrations. It may be a predictor of retinopathy in type 2 diabetes mellitus. However, whether plasma Hcy is involved in diabetic microvascular complications is not established [27]. The association between Hcy and type 1 diabetes mellitus has gained increasing attention. In the early stages of type 1 diabetes mellitus, patients with proper renal function and hyperfiltration may have lower plasma Hcy levels. The present study showed that elevated Hcy level significantly increased the progression of diabetic retinopathy, especially in type 2 diabetes mellitus. However, this relationship was not statistically significant in type 1 diabetes mellitus.
Elevated Hcy level and low folic acid level was observed in diabetic patients, which was associated with high risk of proliferative retinopathy [42]. The severity of diabetic retinopathy was found to be associated with lower folic acid and red blood cell folate levels [43]. Long-term use of metformin increased the risk of vitamin B12 and folate deficiency, and thus influenced Hcy metabolism and contributed to the progression of diabetic retinopathy [44]. A previous meta-analysis demonstrated hyperhomocysteinemia as a risk factor for the progression of diabetic retinopathy, especially for proliferative diabetic retinopathy. However, the results were based on continuous data, and a direct relationship was not confirmed [8]. Further, factor-difference for the relationship between Hcy level and diabetic retinopathy was not calculated. Therefore, the current updated meta-analysis was conducted to explore the association between Hcy and the risk of diabetic retinopathy.
The present study had several limitations. First, this analysis did not include studies in languages other than English or when the corresponding author could not be contacted. Second, the summary risk for diabetic retinopathy was highly heterogeneous, and the source of heterogeneity could not be detected by a subgroup analysis. The heterogeneity may be due to the differences in geographical regions (nine countries and regions in 11 studies), study designs and methods, and methodological qualities. Third, the adjusted models were different across the included studies, and these factors might play an important role in the development of diabetic retinopathy. Finally, subgroup analysis based on patients with no proliferative or proliferative diabetic retinopathy was not conducted due to these data were available in few studies.

Conclusions

The present study demonstrated a strong positive correlation between plasma Hcy level and the progression of diabetic retinopathy. These data may help diabetic patients to achieve effective management in order to prevent the development and progression of diabetic retinopathy. Given the limitations of this study, further studies should be performed to confirm the findings and verify the effect of folic acid supplementation on the progression of diabetic retinopathy in diabetic patients.

Authors’ contributions

XWL, GFZ, KHY conceived and coordinated the study, designed, performed and analyzed the experiments, wrote the paper. YMZ, QL, JZZ and ZGB carried out the data collection, data analysis, and revised the paper. All authors reviewed the results of the manuscript. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

All data generated or analyzed during this study are included in this article.
Not applicable.
All analyses were based on previous published studies, thus no ethical approval and patient consent are required.

Funding

Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Anhänge
Literatur
1.
Zurück zum Zitat Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, et al. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004;82:844–51.PubMedPubMedCentral Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, et al. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004;82:844–51.PubMedPubMedCentral
2.
Zurück zum Zitat Kempen JH, O’Colmain BJ, Leske MC, Haffner SM, Klein R, Moss SE, et al. The prevalence of diabetic retinopathy among adults in the United States. Arch Ophthalmol. 2004;122:552–63.CrossRefPubMed Kempen JH, O’Colmain BJ, Leske MC, Haffner SM, Klein R, Moss SE, et al. The prevalence of diabetic retinopathy among adults in the United States. Arch Ophthalmol. 2004;122:552–63.CrossRefPubMed
3.
Zurück zum Zitat Satyanarayana A, Balakrishna N, Pitla S, Reddy PY, Mudili S, Lopamudra P, et al. Status of B-vitamins and homocysteine in diabetic retinopathy: association with vitamin-B12 deficiency and hyperhomocysteinemia. PLoS ONE. 2011;6:e26747.CrossRefPubMedPubMedCentral Satyanarayana A, Balakrishna N, Pitla S, Reddy PY, Mudili S, Lopamudra P, et al. Status of B-vitamins and homocysteine in diabetic retinopathy: association with vitamin-B12 deficiency and hyperhomocysteinemia. PLoS ONE. 2011;6:e26747.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Zhang X, Saaddine JB, Chou CF, Cotch MF, Cheng YJ, Geiss LS, et al. Prevalence of diabetic retinopathy in the United States, 2005–2008. JAMA. 2010;304:649–56.CrossRefPubMedPubMedCentral Zhang X, Saaddine JB, Chou CF, Cotch MF, Cheng YJ, Geiss LS, et al. Prevalence of diabetic retinopathy in the United States, 2005–2008. JAMA. 2010;304:649–56.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Aydin E, Demir HD, Ozyurt H, Etikan I. Association of plasma homocysteine and macular edema in type 2 diabetes mellitus. Eur J Ophthalmol. 2008;18:226–32.CrossRefPubMed Aydin E, Demir HD, Ozyurt H, Etikan I. Association of plasma homocysteine and macular edema in type 2 diabetes mellitus. Eur J Ophthalmol. 2008;18:226–32.CrossRefPubMed
6.
Zurück zum Zitat Elias AN, Eng S. Homocysteine concentrations in patients with diabetes mellitus-relationship to microvascular and macrovascular disease. Diab Obes Metab. 2005;7:117–21.CrossRef Elias AN, Eng S. Homocysteine concentrations in patients with diabetes mellitus-relationship to microvascular and macrovascular disease. Diab Obes Metab. 2005;7:117–21.CrossRef
7.
Zurück zum Zitat Chico A, Perez A, Cordoba A, Arcelus R, Carreras G, de Leiva A, et al. Plasma homocysteine is related to albumin excretion rate in patients with diabetes mellitus: a new link between diabetic nephropathy and cardiovascular disease? Diabetologia. 1998;41:684–93.CrossRefPubMed Chico A, Perez A, Cordoba A, Arcelus R, Carreras G, de Leiva A, et al. Plasma homocysteine is related to albumin excretion rate in patients with diabetes mellitus: a new link between diabetic nephropathy and cardiovascular disease? Diabetologia. 1998;41:684–93.CrossRefPubMed
8.
Zurück zum Zitat Xu C, Wu Y, Liu G, Liu X, Wang F, Yu J. Relationship between homocysteine level and diabetic retinopathy: a systematic review and meta-analysis. Diagn Pathol. 2014;9:167.CrossRefPubMedPubMedCentral Xu C, Wu Y, Liu G, Liu X, Wang F, Yu J. Relationship between homocysteine level and diabetic retinopathy: a systematic review and meta-analysis. Diagn Pathol. 2014;9:167.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Coral K, Angayarkanni N, Gomathy N, Bharathselvi M, Pukhraj R, Rupak R. Homocysteine levels in the vitreous of proliferative diabetic retinopathy and rhegmatogenous retinal detachment: its modulating role on lysyl oxidase. Invest Ophthalmol Vis Sci. 2009;50:3607–12.CrossRefPubMed Coral K, Angayarkanni N, Gomathy N, Bharathselvi M, Pukhraj R, Rupak R. Homocysteine levels in the vitreous of proliferative diabetic retinopathy and rhegmatogenous retinal detachment: its modulating role on lysyl oxidase. Invest Ophthalmol Vis Sci. 2009;50:3607–12.CrossRefPubMed
10.
Zurück zum Zitat Sun J, Xu Y, Zhu Y, Lu H, Deng H, Fan Y, et al. The relationship of methylenetetrahydrofolate reductase gene polymorphism and plasma homocysteine levels in type 2 diabetes mellitus patients with diabetic retinopathy. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2003;20:131–4.PubMed Sun J, Xu Y, Zhu Y, Lu H, Deng H, Fan Y, et al. The relationship of methylenetetrahydrofolate reductase gene polymorphism and plasma homocysteine levels in type 2 diabetes mellitus patients with diabetic retinopathy. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2003;20:131–4.PubMed
11.
Zurück zum Zitat Agardh E, Hultberg B, Agardh CD. Severe retinopathy in type 1 diabetic patients is not related to the level of plasma homocysteine. Scand J Clin Lab Invest. 2000;60:169–74.CrossRefPubMed Agardh E, Hultberg B, Agardh CD. Severe retinopathy in type 1 diabetic patients is not related to the level of plasma homocysteine. Scand J Clin Lab Invest. 2000;60:169–74.CrossRefPubMed
12.
Zurück zum Zitat Hultberg B, Agardh E, Andersson A, Brattstrom L, Isaksson A, Israelsson B, et al. Increased levels of plasma homocysteine are associated with nephropathy, but not severe retinopathy in type 1 diabetes mellitus. Scand J Clin Lab Invest. 1991;51:277–82.CrossRefPubMed Hultberg B, Agardh E, Andersson A, Brattstrom L, Isaksson A, Israelsson B, et al. Increased levels of plasma homocysteine are associated with nephropathy, but not severe retinopathy in type 1 diabetes mellitus. Scand J Clin Lab Invest. 1991;51:277–82.CrossRefPubMed
13.
Zurück zum Zitat Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.CrossRefPubMedPubMedCentral Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Stang A. Critical evaluation of the Newcastle–Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.CrossRefPubMed Stang A. Critical evaluation of the Newcastle–Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.CrossRefPubMed
15.
Zurück zum Zitat DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.CrossRefPubMed DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.CrossRefPubMed
16.
Zurück zum Zitat Ades AE, Lu G, Higgins JP. The interpretation of random-effects meta-analysis in decision models. Med Decis Making. 2005;25:646–54.CrossRefPubMed Ades AE, Lu G, Higgins JP. The interpretation of random-effects meta-analysis in decision models. Med Decis Making. 2005;25:646–54.CrossRefPubMed
17.
Zurück zum Zitat Deeks JJ, Higgins J, Altman DG. Analysing data and undertaking meta-analyses. Cochrane handbook for systematic reviews of interventions: Cochrane book series. London: Wiley; 2008. p. 243–96.CrossRef Deeks JJ, Higgins J, Altman DG. Analysing data and undertaking meta-analyses. Cochrane handbook for systematic reviews of interventions: Cochrane book series. London: Wiley; 2008. p. 243–96.CrossRef
18.
Zurück zum Zitat Tobias A. Assessing the influence of a single study in meta-analysis. Stata Tech Bull. 1999;47:15–7. Tobias A. Assessing the influence of a single study in meta-analysis. Stata Tech Bull. 1999;47:15–7.
19.
Zurück zum Zitat Thompson SG, Higgins JP. How should meta-regression analyses be undertaken and interpreted? Stat Med. 2002;21:1559–73.CrossRefPubMed Thompson SG, Higgins JP. How should meta-regression analyses be undertaken and interpreted? Stat Med. 2002;21:1559–73.CrossRefPubMed
22.
Zurück zum Zitat Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.CrossRefPubMed Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.CrossRefPubMed
23.
Zurück zum Zitat Vaccaro O, Ingrosso D, Rivellese A, Greco G, Riccardi G. Moderate hyperhomocysteinaemia and retinopathy in insulin-dependent diabetes. Lancet. 1997;349:1102–3.CrossRefPubMed Vaccaro O, Ingrosso D, Rivellese A, Greco G, Riccardi G. Moderate hyperhomocysteinaemia and retinopathy in insulin-dependent diabetes. Lancet. 1997;349:1102–3.CrossRefPubMed
24.
Zurück zum Zitat Hofmann MA, Kohl B, Zumbach MS, Borcea V, Bierhaus A, Henkels M, et al. Hyperhomocyst(e)inemia and endothelial dysfunction in IDDM. Diab Care. 1998;21:841–8.CrossRef Hofmann MA, Kohl B, Zumbach MS, Borcea V, Bierhaus A, Henkels M, et al. Hyperhomocyst(e)inemia and endothelial dysfunction in IDDM. Diab Care. 1998;21:841–8.CrossRef
25.
Zurück zum Zitat Hoogeveen EK, Kostense PJ, Eysink PE, Polak BC, Beks PJ, Jakobs C, et al. Hyperhomocysteinemia is associated with the presence of retinopathy in type 2 diabetes mellitus: the Hoorn study. Arch Intern Med. 2000;160:2984–90.CrossRefPubMed Hoogeveen EK, Kostense PJ, Eysink PE, Polak BC, Beks PJ, Jakobs C, et al. Hyperhomocysteinemia is associated with the presence of retinopathy in type 2 diabetes mellitus: the Hoorn study. Arch Intern Med. 2000;160:2984–90.CrossRefPubMed
26.
Zurück zum Zitat Buysschaert M, Dramais AS, Wallemacq PE, Hermans MP. Hyperhomocysteinemia in type 2 diabetes: relationship to macroangiopathy, nephropathy, and insulin resistance. Diab Care. 2000;23:1816–22.CrossRef Buysschaert M, Dramais AS, Wallemacq PE, Hermans MP. Hyperhomocysteinemia in type 2 diabetes: relationship to macroangiopathy, nephropathy, and insulin resistance. Diab Care. 2000;23:1816–22.CrossRef
27.
Zurück zum Zitat Agullo-Ortuno MT, Albaladejo MD, Parra S, Rodriguez-Manotas M, Fenollar M, Ruiz-Espejo F, et al. Plasmatic homocysteine concentration and its relationship with complications associated to diabetes mellitus. Clin Chim Acta. 2002;326:105–12.CrossRefPubMed Agullo-Ortuno MT, Albaladejo MD, Parra S, Rodriguez-Manotas M, Fenollar M, Ruiz-Espejo F, et al. Plasmatic homocysteine concentration and its relationship with complications associated to diabetes mellitus. Clin Chim Acta. 2002;326:105–12.CrossRefPubMed
28.
Zurück zum Zitat Goldstein M, Leibovitch I, Yeffimov I, Gavendo S, Sela BA, Loewenstein A. Hyperhomocysteinemia in patients with diabetes mellitus with and without diabetic retinopathy. Eye (Lond). 2004;18:460–5.CrossRefPubMed Goldstein M, Leibovitch I, Yeffimov I, Gavendo S, Sela BA, Loewenstein A. Hyperhomocysteinemia in patients with diabetes mellitus with and without diabetic retinopathy. Eye (Lond). 2004;18:460–5.CrossRefPubMed
29.
Zurück zum Zitat de Luis DA, Fernandez N, Arranz ML, Aller R, Izaola O, Romero E. Total homocysteine levels relation with chronic complications of diabetes, body composition, and other cardiovascular risk factors in a population of patients with diabetes mellitus type 2. J Diab Complications. 2005;19:42–6.CrossRef de Luis DA, Fernandez N, Arranz ML, Aller R, Izaola O, Romero E. Total homocysteine levels relation with chronic complications of diabetes, body composition, and other cardiovascular risk factors in a population of patients with diabetes mellitus type 2. J Diab Complications. 2005;19:42–6.CrossRef
30.
Zurück zum Zitat Golbahar J, Rahimi M, Tabei MB, Aminzadeh MA. Clinical risk factors and association of hyperhomocysteinemia with diabetic retinopathy in Iranian type 2 diabetes patients: a cross-sectional study from Shiraz, Southern Iran. Diab Metab Syndr. 2008;2:192–201.CrossRef Golbahar J, Rahimi M, Tabei MB, Aminzadeh MA. Clinical risk factors and association of hyperhomocysteinemia with diabetic retinopathy in Iranian type 2 diabetes patients: a cross-sectional study from Shiraz, Southern Iran. Diab Metab Syndr. 2008;2:192–201.CrossRef
31.
Zurück zum Zitat Sato Y, Ouchi K, Funase Y, Yamauchi K, Aizawa T. Relationship between metformin use, vitamin B12 deficiency, hyperhomocysteinemia and vascular complications in patients with type 2 diabetes. Endocr J. 2013;60:1275–80.CrossRefPubMed Sato Y, Ouchi K, Funase Y, Yamauchi K, Aizawa T. Relationship between metformin use, vitamin B12 deficiency, hyperhomocysteinemia and vascular complications in patients with type 2 diabetes. Endocr J. 2013;60:1275–80.CrossRefPubMed
32.
Zurück zum Zitat Bulum T, Blaslov K, Duvnjak L. Plasma homocysteine is associated with retinopathy in type 1 diabetic patients in the absence of nephropathy. Semin Ophthalmol. 2016;31:198–202.PubMed Bulum T, Blaslov K, Duvnjak L. Plasma homocysteine is associated with retinopathy in type 1 diabetic patients in the absence of nephropathy. Semin Ophthalmol. 2016;31:198–202.PubMed
33.
Zurück zum Zitat Duval S, Tweedie R. A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. J Am Stat Assoc. 2000;95:89–98. Duval S, Tweedie R. A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. J Am Stat Assoc. 2000;95:89–98.
34.
Zurück zum Zitat Abdella NA, Mojiminiyi OA, Akanji AO, Moussa MA. Associations of plasma homocysteine concentration in subjects with type 2 diabetes mellitus. Acta Diabetol. 2002;39:183–90.CrossRefPubMed Abdella NA, Mojiminiyi OA, Akanji AO, Moussa MA. Associations of plasma homocysteine concentration in subjects with type 2 diabetes mellitus. Acta Diabetol. 2002;39:183–90.CrossRefPubMed
35.
Zurück zum Zitat Agardh CD, Agardh E, Andersson A, Hultberg B. Lack of association between plasma homocysteine levels and microangiopathy in type 1 diabetes mellitus. Scand J Clin Lab Invest. 1994;54:637–41.CrossRefPubMed Agardh CD, Agardh E, Andersson A, Hultberg B. Lack of association between plasma homocysteine levels and microangiopathy in type 1 diabetes mellitus. Scand J Clin Lab Invest. 1994;54:637–41.CrossRefPubMed
37.
Zurück zum Zitat Pan HZ, Zhang H, Chang D, Li H, Sui H. The change of oxidative stress products in diabetes mellitus and diabetic retinopathy. Br J Ophthalmol. 2008;92:548–51.CrossRefPubMed Pan HZ, Zhang H, Chang D, Li H, Sui H. The change of oxidative stress products in diabetes mellitus and diabetic retinopathy. Br J Ophthalmol. 2008;92:548–51.CrossRefPubMed
38.
Zurück zum Zitat Trunov A, Chernykh D, Chernykh V. Intraocular cytokines and growth factors imbalance in pathogenesis of proliferative diabetic retinopathy. Ophthalmologica Journal international d’ophtalmologie Int J Ophthalmol Zeitschrift fur Augenheilkunde. 2014;232:14. Trunov A, Chernykh D, Chernykh V. Intraocular cytokines and growth factors imbalance in pathogenesis of proliferative diabetic retinopathy. Ophthalmologica Journal international d’ophtalmologie Int J Ophthalmol Zeitschrift fur Augenheilkunde. 2014;232:14.
39.
Zurück zum Zitat Saeed BO, Nixon SJ, White AJ, Summerfield GP, Skillen AW, Weaver JU. Fasting homocysteine levels in adults with type 1 diabetes and retinopathy. Clin Chim Acta. 2004;341:27–32.CrossRefPubMed Saeed BO, Nixon SJ, White AJ, Summerfield GP, Skillen AW, Weaver JU. Fasting homocysteine levels in adults with type 1 diabetes and retinopathy. Clin Chim Acta. 2004;341:27–32.CrossRefPubMed
40.
Zurück zum Zitat Lim CP, Loo AV, Khaw KW, Sthaneshwar P, Khang TF, Hassan M, et al. Plasma, aqueous and vitreous homocysteine levels in proliferative diabetic retinopathy. Br J Ophthalmol. 2012;96:704–7.CrossRefPubMed Lim CP, Loo AV, Khaw KW, Sthaneshwar P, Khang TF, Hassan M, et al. Plasma, aqueous and vitreous homocysteine levels in proliferative diabetic retinopathy. Br J Ophthalmol. 2012;96:704–7.CrossRefPubMed
41.
Zurück zum Zitat Chen C, Conklin BS, Ren Z, Zhong DS. Homocysteine decreases endothelium-dependent vasorelaxation in porcine arteries. J Surg Res. 2002;102:22–30.CrossRefPubMed Chen C, Conklin BS, Ren Z, Zhong DS. Homocysteine decreases endothelium-dependent vasorelaxation in porcine arteries. J Surg Res. 2002;102:22–30.CrossRefPubMed
42.
Zurück zum Zitat Ayata A, Yildirim Y, Ozcan O. Comment on: ‘Plasma, aqueous and vitreous homocysteine levels in proliferative diabetic retinopathy’. Br J Ophthalmol. 2012;96:1155.CrossRefPubMed Ayata A, Yildirim Y, Ozcan O. Comment on: ‘Plasma, aqueous and vitreous homocysteine levels in proliferative diabetic retinopathy’. Br J Ophthalmol. 2012;96:1155.CrossRefPubMed
43.
Zurück zum Zitat Malaguarnera G, Gagliano C, Salomone S, Giordano M, Bucolo C, Pappalardo A, et al. Folate status in type 2 diabetic patients with and without retinopathy. Clin Ophthalmol. 2015;9:1437–42.CrossRefPubMedPubMedCentral Malaguarnera G, Gagliano C, Salomone S, Giordano M, Bucolo C, Pappalardo A, et al. Folate status in type 2 diabetic patients with and without retinopathy. Clin Ophthalmol. 2015;9:1437–42.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Nurpeisov V. A58: long term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency. J Am Geriatr Soc. 2012;60:S36. Nurpeisov V. A58: long term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency. J Am Geriatr Soc. 2012;60:S36.
Metadaten
Titel
Association between homocysteine level and the risk of diabetic retinopathy: a systematic review and meta-analysis
verfasst von
Xunwen Lei
Guifeng Zeng
Yuemei Zhang
Qiang Li
Jinzhi Zhang
Zhenggang Bai
Kehu Yang
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Diabetology & Metabolic Syndrome / Ausgabe 1/2018
Elektronische ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-018-0362-1

Weitere Artikel der Ausgabe 1/2018

Diabetology & Metabolic Syndrome 1/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.