Skip to main content
Erschienen in: Journal of Assisted Reproduction and Genetics 11/2019

11.10.2019 | Genetics

Association between miR-146a C > G, miR-149 T > C, miR-196a2 T > C, and miR-499 A > G polymorphisms and susceptibility to idiopathic recurrent pregnancy loss

verfasst von: Meysam Alipour, Maryam Abtin, Asghar Hosseinzadeh, Masoud Maleki

Erschienen in: Journal of Assisted Reproduction and Genetics | Ausgabe 11/2019

Einloggen, um Zugang zu erhalten

Abstract

Background

A growing body of evidence suggests that microRNAs play fundamental regulatory roles in embryo implantation and maintenance of pregnancy. The aim of this study was to investigate the possible association between miR-146a C > G, miR-149 T > C, miR-196a2 T > C, and miR-499 A > G polymorphisms and genetic susceptibility to recurrent pregnancy loss (RPL).

Material and methods

One hundred and twenty women with a history of two or more unexplained consecutive miscarriages and 90 ethnically matched healthy women with a history of at least two successful pregnancy outcomes and without a history of miscarriage were enrolled in a case-control study. Genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method.

Results

Our findings showed that the prevalence of miR-149 T > C polymorphism in RPL patients was significantly higher than those in healthy controls (p < 0.05). We also found that the presence of miR-149 C and miR-499 G alleles was significantly associated with susceptibility to RPL (p < 0.05). The miR-146a CC/miR-499 GG, miR-149 TC/miR-499 AG, and miR-196a2 TT/miR-499 GG combined genotypes were associated with the high risk of RPL (p < 0.05).

Conclusion

This study suggests that miR-149 T > C polymorphism and the presence of miR-149 C, and miR-499 G alleles are a genetic determinant for the risk of idiopathic RPL.
Literatur
1.
Zurück zum Zitat Zegers-Hochschild F, Adamson GD, Dyer S, Racowsky C, de Mouzon J, Sokol R, et al. The International Glossary on Infertility and Fertility Care, 2017. Fertil Steril. 2017;108:393–406.PubMedCrossRef Zegers-Hochschild F, Adamson GD, Dyer S, Racowsky C, de Mouzon J, Sokol R, et al. The International Glossary on Infertility and Fertility Care, 2017. Fertil Steril. 2017;108:393–406.PubMedCrossRef
2.
Zurück zum Zitat Bender Atik R, Bjarne Christiansen O, Elson J, Marie Kolte A, Lewis S, Middeldorp S, et al. ESHRE guideline: recurrent pregnancy loss, 2018. Human Reprod Open. 2018;2:1–12. Bender Atik R, Bjarne Christiansen O, Elson J, Marie Kolte A, Lewis S, Middeldorp S, et al. ESHRE guideline: recurrent pregnancy loss, 2018. Human Reprod Open. 2018;2:1–12.
3.
Zurück zum Zitat Popescu F, Jaslow CR, Kutteh WH. Recurrent pregnancy loss evaluation combined with 24-chromosome microarray of miscarriagetissue provides a probable or definite cause of pregnancy loss in over 90% of patients. Hum Reprod. 2018;33:579–87.PubMedCrossRef Popescu F, Jaslow CR, Kutteh WH. Recurrent pregnancy loss evaluation combined with 24-chromosome microarray of miscarriagetissue provides a probable or definite cause of pregnancy loss in over 90% of patients. Hum Reprod. 2018;33:579–87.PubMedCrossRef
4.
Zurück zum Zitat El Hachem H, Crepaux V, May-Panloup P, Descamps P, Legendre G, Bouet PE. Recurrent pregnancy loss: current perspectives. Int J Women's Health. 2017;9:331–45.CrossRef El Hachem H, Crepaux V, May-Panloup P, Descamps P, Legendre G, Bouet PE. Recurrent pregnancy loss: current perspectives. Int J Women's Health. 2017;9:331–45.CrossRef
5.
Zurück zum Zitat Sugiura-Ogasawara M, Ozaki Y, Suzumori N. Management of recurrent miscarriage. J Obstet Gynaecol Res. 2014;40:1174–9.PubMedCrossRef Sugiura-Ogasawara M, Ozaki Y, Suzumori N. Management of recurrent miscarriage. J Obstet Gynaecol Res. 2014;40:1174–9.PubMedCrossRef
6.
Zurück zum Zitat Baek KH, Lee EJ, Kim YS. Recurrent pregnancy loss: the key potential mechanisms. Trends Mol Med. 2007;13:310–7.PubMedCrossRef Baek KH, Lee EJ, Kim YS. Recurrent pregnancy loss: the key potential mechanisms. Trends Mol Med. 2007;13:310–7.PubMedCrossRef
7.
Zurück zum Zitat Page JM, Silver RM. Genetic causes of recurrent pregnancy loss. Clin Obstet Gynecol. 2016;59:498–508.PubMedCrossRef Page JM, Silver RM. Genetic causes of recurrent pregnancy loss. Clin Obstet Gynecol. 2016;59:498–508.PubMedCrossRef
8.
Zurück zum Zitat Goodman CS, Coulam CB, Jeyendran RS, Acosta VA, Roussev R. Which thrombophilic gene mutations are risk factors for recurrent pregnancy loss? Am J Reprod Immunol. 2006;56:230–6.PubMedCrossRef Goodman CS, Coulam CB, Jeyendran RS, Acosta VA, Roussev R. Which thrombophilic gene mutations are risk factors for recurrent pregnancy loss? Am J Reprod Immunol. 2006;56:230–6.PubMedCrossRef
9.
Zurück zum Zitat Daher S, Shulzhenko N, Morgun A, Mattar R, Rampim GF, Camano L, et al. Associations between cytokine gene polymorphisms and recurrent pregnancy loss. J Reprod Immunol. 2003;58:69–77.PubMedCrossRef Daher S, Shulzhenko N, Morgun A, Mattar R, Rampim GF, Camano L, et al. Associations between cytokine gene polymorphisms and recurrent pregnancy loss. J Reprod Immunol. 2003;58:69–77.PubMedCrossRef
10.
Zurück zum Zitat Eisenberg I, Kotaja N, Goldman-Wohl D, Imbar T. microRNA in human reproduction. Adv Exp Med Biol. 2015;888:353–87.PubMedCrossRef Eisenberg I, Kotaja N, Goldman-Wohl D, Imbar T. microRNA in human reproduction. Adv Exp Med Biol. 2015;888:353–87.PubMedCrossRef
11.
Zurück zum Zitat Santamaria X, Taylor H. MicroRNA and gynecological reproductive diseases. Fertil Steril. 2014;101:1545–51.PubMedCrossRef Santamaria X, Taylor H. MicroRNA and gynecological reproductive diseases. Fertil Steril. 2014;101:1545–51.PubMedCrossRef
12.
Zurück zum Zitat Gilabert-Estelles J, Braza-Boils A, Ramon LA, Zorio E, Medina P, Espana F, et al. Role of microRNAs in gynecological pathology. Curr Med Chem. 2012;19:2406–13.PubMedCrossRef Gilabert-Estelles J, Braza-Boils A, Ramon LA, Zorio E, Medina P, Espana F, et al. Role of microRNAs in gynecological pathology. Curr Med Chem. 2012;19:2406–13.PubMedCrossRef
13.
Zurück zum Zitat Imbar T, Galliano D, Pellicer A, Laufer N. Introduction: MicroRNAs in human reproduction: small molecules with crucial regulatory roles. Fertil Steril. 2014;101:1514–5.PubMedCrossRef Imbar T, Galliano D, Pellicer A, Laufer N. Introduction: MicroRNAs in human reproduction: small molecules with crucial regulatory roles. Fertil Steril. 2014;101:1514–5.PubMedCrossRef
15.
Zurück zum Zitat Iwakawa HO, Tomari Y. The functions of MicroRNAs: mRNA decay and translational repression. Trends Cell Biol. 2015;25:651–65.PubMedCrossRef Iwakawa HO, Tomari Y. The functions of MicroRNAs: mRNA decay and translational repression. Trends Cell Biol. 2015;25:651–65.PubMedCrossRef
16.
Zurück zum Zitat Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 2015;16:421–33.PubMedCrossRef Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 2015;16:421–33.PubMedCrossRef
17.
Zurück zum Zitat Wilczynska A, Bushell M. The complexity of miRNA-mediated repression. Cell Death Differ. 2015;22:22–33.PubMedCrossRef Wilczynska A, Bushell M. The complexity of miRNA-mediated repression. Cell Death Differ. 2015;22:22–33.PubMedCrossRef
19.
Zurück zum Zitat Tüfekci KU, Meuwissen RL, Genç S. The role of microRNAs in biological processes. Methods Mol Biol. 2014;1107:15–31.PubMedCrossRef Tüfekci KU, Meuwissen RL, Genç S. The role of microRNAs in biological processes. Methods Mol Biol. 2014;1107:15–31.PubMedCrossRef
20.
Zurück zum Zitat Tesfaye D, Salilew-Wondim D, Gebremedhn S, Sohel MM, Pandey HO, Hoelker M, et al. Potential role of microRNAs in mammalian female fertility. Reprod Fertil Dev. 2016;29:8–23.PubMedCrossRef Tesfaye D, Salilew-Wondim D, Gebremedhn S, Sohel MM, Pandey HO, Hoelker M, et al. Potential role of microRNAs in mammalian female fertility. Reprod Fertil Dev. 2016;29:8–23.PubMedCrossRef
21.
Zurück zum Zitat Liu W, Niu Z, Li Q, Pang RT, Chiu PC, Yeung WS. MicroRNA and embryo implantation. Am J Reprod Immunol. 2016;75:263–2671.PubMedCrossRef Liu W, Niu Z, Li Q, Pang RT, Chiu PC, Yeung WS. MicroRNA and embryo implantation. Am J Reprod Immunol. 2016;75:263–2671.PubMedCrossRef
23.
Zurück zum Zitat Adams BD, Kasinski AL, Slack FJ. Aberrant regulation and function of microRNAs in cancer. Curr Biol. 2014;24:762–76.CrossRef Adams BD, Kasinski AL, Slack FJ. Aberrant regulation and function of microRNAs in cancer. Curr Biol. 2014;24:762–76.CrossRef
24.
Zurück zum Zitat Sethupathy P, Collins FS. MicroRNA target site polymorphisms and human disease. Trends Genet. 2008;24:489–97.PubMedCrossRef Sethupathy P, Collins FS. MicroRNA target site polymorphisms and human disease. Trends Genet. 2008;24:489–97.PubMedCrossRef
25.
Zurück zum Zitat Moszyńska A, Gebert M, Collawn JF, Bartoszewski R. SNPs in microRNA target sites and their potential role in human disease. Open Biol. 2017;7:170019.PubMedPubMedCentralCrossRef Moszyńska A, Gebert M, Collawn JF, Bartoszewski R. SNPs in microRNA target sites and their potential role in human disease. Open Biol. 2017;7:170019.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Liu X, Han Z, Yang C. Associations of microRNA single nucleotide polymorphisms and disease risk and pathophysiology. Clin Genet. 2017;92:235–42.PubMedCrossRef Liu X, Han Z, Yang C. Associations of microRNA single nucleotide polymorphisms and disease risk and pathophysiology. Clin Genet. 2017;92:235–42.PubMedCrossRef
27.
Zurück zum Zitat Króliczewski J, Sobolewska A, Lejnowski D, Collawn JF, Bartoszewski R. MicroRNA single polynucleotide polymorphism influences on microRNA biogenesis and mRNA target specificity. Gene. 2018;640:66–72.PubMedCrossRef Króliczewski J, Sobolewska A, Lejnowski D, Collawn JF, Bartoszewski R. MicroRNA single polynucleotide polymorphism influences on microRNA biogenesis and mRNA target specificity. Gene. 2018;640:66–72.PubMedCrossRef
28.
29.
Zurück zum Zitat Jeon YJ, Choi YS, Rah H, Kim SY, Choi DH, Cha SH, et al. Association study of microRNA polymorphisms with risk of idiopathic recurrent spontaneous abortion in Korean women. Gene. 2012;494:168–73.PubMedCrossRef Jeon YJ, Choi YS, Rah H, Kim SY, Choi DH, Cha SH, et al. Association study of microRNA polymorphisms with risk of idiopathic recurrent spontaneous abortion in Korean women. Gene. 2012;494:168–73.PubMedCrossRef
30.
Zurück zum Zitat Parveen F, Agrawal S. Recurrent miscarriage and micro-RNA among north Indian women. Reprod Sci. 2015;22:410–5.PubMedCrossRef Parveen F, Agrawal S. Recurrent miscarriage and micro-RNA among north Indian women. Reprod Sci. 2015;22:410–5.PubMedCrossRef
31.
Zurück zum Zitat Fazli M, Ghorbian S. Association study of non-coding RNA miR-499 and miR196a2 gene polymorphisms with the risk of idiopathic recurrent pregnancy loss. Gene Cell Tissue. 2018;5:e67253. Fazli M, Ghorbian S. Association study of non-coding RNA miR-499 and miR196a2 gene polymorphisms with the risk of idiopathic recurrent pregnancy loss. Gene Cell Tissue. 2018;5:e67253.
32.
Zurück zum Zitat Rah H, Chung KW, Ko KH, Kim ES, Kim JO, Sakong JH, et al. miR-27a and miR-449b polymorphisms associated with a risk of idiopathic recurrent pregnancy loss. PLoS One. 2017;12:e0177160.PubMedPubMedCentralCrossRef Rah H, Chung KW, Ko KH, Kim ES, Kim JO, Sakong JH, et al. miR-27a and miR-449b polymorphisms associated with a risk of idiopathic recurrent pregnancy loss. PLoS One. 2017;12:e0177160.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Stavrou S, Mavrogianni D, Siahami A, Loutradis D, Drakakis P. Association study of the miR-196a2T>C and miR-499A>G polymorphisms with the incidence of idiopathic recurrent spontaneous abortions. Biomed J Sci Tech Res. 2018;3:1–4. Stavrou S, Mavrogianni D, Siahami A, Loutradis D, Drakakis P. Association study of the miR-196a2T>C and miR-499A>G polymorphisms with the incidence of idiopathic recurrent spontaneous abortions. Biomed J Sci Tech Res. 2018;3:1–4.
34.
Zurück zum Zitat Amin-Beidokhti M, Mirfakhraie R, Zare-Karizi S, Karamoddin F. The role of parental microRNA alleles in recurrent pregnancy loss: an association study. Reprod BioMed Online. 2017;34:325–30.PubMedCrossRef Amin-Beidokhti M, Mirfakhraie R, Zare-Karizi S, Karamoddin F. The role of parental microRNA alleles in recurrent pregnancy loss: an association study. Reprod BioMed Online. 2017;34:325–30.PubMedCrossRef
35.
36.
Zurück zum Zitat Cho SH, An HJ, Kim KA, Ko JJ, Kim JH, Kim YR, et al. Single nucleotide polymorphisms at miR-146a/196a2 and their primary ovarian insufficiency-related target gene regulation in granulosa cells. PLoS One. 2017;12:e0183479.PubMedPubMedCentralCrossRef Cho SH, An HJ, Kim KA, Ko JJ, Kim JH, Kim YR, et al. Single nucleotide polymorphisms at miR-146a/196a2 and their primary ovarian insufficiency-related target gene regulation in granulosa cells. PLoS One. 2017;12:e0183479.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Uhlenhaut NH, Treier M. Foxl2 function in ovarian development. Mol Genet Metab. 2006;88:225–34.PubMedCrossRef Uhlenhaut NH, Treier M. Foxl2 function in ovarian development. Mol Genet Metab. 2006;88:225–34.PubMedCrossRef
38.
Zurück zum Zitat Governini L, Carrarelli P, Rocha AL, Leo VD, Luddi A, Arcuri F, et al. FOXL2 in human endometrium: hyperexpressed in endometriosis. Reprod Sci. 2014;21:1249–55.PubMedCrossRef Governini L, Carrarelli P, Rocha AL, Leo VD, Luddi A, Arcuri F, et al. FOXL2 in human endometrium: hyperexpressed in endometriosis. Reprod Sci. 2014;21:1249–55.PubMedCrossRef
39.
Zurück zum Zitat Bellessort B, Bachelot A, Heude É, Alfama G, Fontaine A, Le Cardinal M, et al. Role of Foxl2 in uterine maturation and function. Hum Mol Genet. 2015;24:3092–103.PubMedCrossRef Bellessort B, Bachelot A, Heude É, Alfama G, Fontaine A, Le Cardinal M, et al. Role of Foxl2 in uterine maturation and function. Hum Mol Genet. 2015;24:3092–103.PubMedCrossRef
40.
41.
Zurück zum Zitat Han Y, Xia G, Tsang BK. Regulation of cyclin D2 expression and degradation by follicle-stimulating hormone during ratgranulosa cell proliferation in vitro. Biol Reprod. 2013;88:57.PubMedCrossRef Han Y, Xia G, Tsang BK. Regulation of cyclin D2 expression and degradation by follicle-stimulating hormone during ratgranulosa cell proliferation in vitro. Biol Reprod. 2013;88:57.PubMedCrossRef
42.
Zurück zum Zitat Suzuki Y, Kim HW, Ashraf M, Haider HK. Diazoxide potentiates mesenchymal stem cell survival via NF-kappaB-dependent miR-146a expression by targeting Fas. Am J Physiol Heart Circ Physiol. 2010;299:1077–82.CrossRef Suzuki Y, Kim HW, Ashraf M, Haider HK. Diazoxide potentiates mesenchymal stem cell survival via NF-kappaB-dependent miR-146a expression by targeting Fas. Am J Physiol Heart Circ Physiol. 2010;299:1077–82.CrossRef
43.
Zurück zum Zitat Panzan MQ, Mattar R, Maganhin CC, Simões Rdos S, Rossi AG, Motta EL, et al. Evaluation of FAS and caspase-3 in the endometrial tissue of patients with idiopathic infertility and recurrent pregnancy loss. Eur J Obstet Gynecol Reprod Biol. 2013;167:47–52.PubMedCrossRef Panzan MQ, Mattar R, Maganhin CC, Simões Rdos S, Rossi AG, Motta EL, et al. Evaluation of FAS and caspase-3 in the endometrial tissue of patients with idiopathic infertility and recurrent pregnancy loss. Eur J Obstet Gynecol Reprod Biol. 2013;167:47–52.PubMedCrossRef
44.
Zurück zum Zitat Lin RJ, Lin YC, Yu AL. miR-149* induces apoptosis by inhibiting Akt1 and E2F1 in human cancer cells. Mol Carcinog. 2010;49:719–27.PubMed Lin RJ, Lin YC, Yu AL. miR-149* induces apoptosis by inhibiting Akt1 and E2F1 in human cancer cells. Mol Carcinog. 2010;49:719–27.PubMed
45.
Zurück zum Zitat Zhou M, Fu J, Xiao L, Yang S, Song Y, Zhang X, et al. miR-196a overexpression activates the MEK/ERK signal and represses the progesterone receptorand decidualization in eutopic endometrium from women with endometriosis. Hum Reprod. 2016;31:2598–608.PubMedCrossRef Zhou M, Fu J, Xiao L, Yang S, Song Y, Zhang X, et al. miR-196a overexpression activates the MEK/ERK signal and represses the progesterone receptorand decidualization in eutopic endometrium from women with endometriosis. Hum Reprod. 2016;31:2598–608.PubMedCrossRef
46.
Zurück zum Zitat Wang Y, Gan H, Su F, Zhang H, Wang S, Xian J. Role of MAPK/ERK signal pathway in recurrent miscarriage patients by case-control analysis. Int J Clin Exp Pathol. 2016;9:12773–8. Wang Y, Gan H, Su F, Zhang H, Wang S, Xian J. Role of MAPK/ERK signal pathway in recurrent miscarriage patients by case-control analysis. Int J Clin Exp Pathol. 2016;9:12773–8.
47.
Zurück zum Zitat Murakami A, Ishida S, Thurlow J, Revest JM, Dickson C. SOX6 binds CtBP2 to repress transcription from the Fgf-3 promoter. Nucleic Acids Res. 2001;29:3347–55.PubMedPubMedCentralCrossRef Murakami A, Ishida S, Thurlow J, Revest JM, Dickson C. SOX6 binds CtBP2 to repress transcription from the Fgf-3 promoter. Nucleic Acids Res. 2001;29:3347–55.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Kamachi Y, Uchikawa M, Kondoh H. Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet. 2000;16:182–7.PubMedCrossRef Kamachi Y, Uchikawa M, Kondoh H. Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet. 2000;16:182–7.PubMedCrossRef
Metadaten
Titel
Association between miR-146a C > G, miR-149 T > C, miR-196a2 T > C, and miR-499 A > G polymorphisms and susceptibility to idiopathic recurrent pregnancy loss
verfasst von
Meysam Alipour
Maryam Abtin
Asghar Hosseinzadeh
Masoud Maleki
Publikationsdatum
11.10.2019
Verlag
Springer US
Erschienen in
Journal of Assisted Reproduction and Genetics / Ausgabe 11/2019
Print ISSN: 1058-0468
Elektronische ISSN: 1573-7330
DOI
https://doi.org/10.1007/s10815-019-01573-z

Weitere Artikel der Ausgabe 11/2019

Journal of Assisted Reproduction and Genetics 11/2019 Zur Ausgabe

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.