Skip to main content
Erschienen in: BMC Cardiovascular Disorders 1/2021

Open Access 01.12.2021 | Research

Association between smoking and in-hospital mortality in patients with left ventricular dysfunction undergoing coronary artery bypass surgery: a propensity-matched study

verfasst von: Hanwei Tang, Jianfeng Hou, Kai Chen, Xiaohong Huang, Sheng Liu, Shengshou Hu

Erschienen in: BMC Cardiovascular Disorders | Ausgabe 1/2021

Abstract

Background

Data on the effect of smoking on In-hospital outcome in patients with left ventricular dysfunction undergoing coronary artery bypass graft (CABG) surgery are limited. We sought to determine the influence of smoking on CABG patients with left ventricular dysfunction.

Methods

A retrospective study was conducted using data from the China Heart Failure Surgery Registry database. Eligible patients with left ventricular ejection fraction less than 50% underwent isolated CABGS were included. In addition to the use of multivariate regression models, a 1–1 propensity scores matched analysis was performed. Our study (n = 6531) consisted of 3635 smokers and 2896 non-smokers. Smokers were further divided into ex-smokers (n = 2373) and current smokers (n = 1262).

Results

The overall in-hospital morality was 3.9%. Interestingly, current smokers have lower in-hospital mortality than non-smokers [2.3% vs 4.9%; adjusted odds ratio (OR) 0.612 (95% CI 0.395–0.947) ]. No difference was detected in mortality between ex-smokers and non-smokers [3.6% vs 4.9%; adjusted OR 0.974 (0.715–1.327)]. No significant differences in other clinical end points were observed. Results of propensity-matched analyses were broadly consistent.

Conclusions

It is paradoxically that current smokers had lower in-hospital mortality than non-smokers. Future studies should be performed to further understand the biological mechanisms that may explain this ‘smoker’s paradox’ phenomenon.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12872-021-02056-9.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CABG
Coronary artery bypass grafting
CAD
Coronary artery disease
CCS
Canadian Cardiovascular Society
CI
Confidence interval
COPD
Chronic obstructive pulmonary disease
DM
Diabetes mellitus
IABP
Intra-aortic balloon pump
LVEF
Left ventricular ejection fraction
MI
Myocardial infarction
NYHA
New York Heart Association
OR
Odds ratio
PTCA
Percutaneous transluminal coronary angioplasty

Background

Smoking has been well documented as a major risk factor for coronary heart disease (CAD) and premature death [1, 2]. Smoking is also associated with development of left ventricular dysfunction [3]. However, in 1973, Helmers et al. reported that smokers had a lower risk of mortality than non-smokers [4]. Some subsequent studies also showed this so called ‘smoker’s paradox’ phenomenon in different aspects [3, 57]. Coronary artery bypass grafting surgery (CABG) is an important method of treatment of CAD. From a surgical point of view, the impact of smoking on long-term postoperative outcomes have been reported [2, 8], while the association between smoking and in-hospital mortality in CABG patients remains controversial. Few limited studies have failed to show the adverse impact of smoking on in-hospital mortality [9, 10]. The main risk scoring systems in cardiac surgery such as EuroScore and the Society of Thoracic Surgeons risk models also failed to demonstrate the effect of active smoking on operative mortality [11]. Therefore, controversies still exist on this topic. Moreover, data on the effect of smoking on short-term outcome in patients with left ventricular dysfunction undergoing CABGs remain scarce.
It is of important to examine the true effect of smoking on outcome among contemporary patients with left ventricular dysfunction undergoing CABG. The phenomenon of ‘smoking paradox’ has a negative effect on smoking cessation in a public health perspective and surgeon’s practice. In the current study, we aim to examine the effect of different smoking status on the postoperative outcomes of patients with left ventricular dysfunction receiving isolated CABGs.

Methods

Study design

The China Heart Failure Surgery Registry (China-HFSR) was led by Fuwai Hospital and other representative cardiac centres in different regions around China. All centres participate in China-HFSR had annual cardiac surgery volume > 100 cases. In total, 94 centres covering a broad geographic region were included as participants in the study. We included patients ≥ 17 years old who underwent CABG from January 2012 to June 2017 with documented left ventricular ejection fraction (LVEF) < 50%. Patients were excluded if they underwent concomitant valve or other surgeries. These patients were then stratified according to preoperative smoking status (Fig. 1). Current smokers were defined as those who smoked within 1 month before admission. Ex-smokers were defined as those who quitted smoking for at least 1 month. Non-smokers were defined as those who never smoked. All CABG procedures represented standard surgical approaches to surgical myocardial revascularization with and without the use of cardiopulmonary bypass support. This study was approved by the institutional review board at Fuwai Hospital (approval number 887, April 25th, 2017) and carried out in accordance with relevant guidelines and regulations. The informed consent was signed by participants.

Data collection

All data were collected at the local sites from the medical records. The requirements for data collection and the definitions of variables were clearly identified. All data were entered into the database separately by two trained technicians using standardized electronic case report forms at the local sites and then submitted online to the data processing centre. Two separate reviewers from the data processing centre randomly selected and assessed 5–10% of each of the participating centres’ medical records during annual on-site audits. We compared the data in the database and the original medical records. A committee composed of physicians and surgeons determined the correct final value when there was a disagreement. In all patients included in China-HFSR database, 91 (1.4%) of them s don’t have height data, and 78 (1.2%) of which were without weight. Considering the fact that they only accounted for a very small proportion of our patients, we imputed missing continuous variables (height and weight) with different mean values for different sex gender.

Clinical data

The preoperative variables including age, gender, body mass index, New York Heart Association (NYNH) classification, Canadian Cardiovascular Society (CCS) classification, diabetes mellitus (DM), hypertension, hyperlipidaemia, renal failure, chronic obstructive pulmonary disease (COPD), cerebrovascular accident, carotid disease and other peripheral arterial disease, preoperative atrial fibrillation, previous myocardial infarction (MI), percutaneous transluminal coronary angioplasty (PTCA) history, Number of diseased vessels, left main CAD, LVEF, preoperative creatinine and prior cardiovascular surgeries. Data regarding preoperative intra-aortic balloon pump (IABP) insertion, operative priority and cardiopulmonary bypass using were also collected.
The major postoperative complications included re-intubation, prolonged ventilation (> 24 h), MI, mediastinal infection, stroke, renal failure, multiple organ dysfunction syndrome and reoperation for bleeding. MI was counted as a complication if it newly occurred postoperatively meet the following criteria (≥ 1): (1) MI documented in the medical record with an elevation of cardiac troponin values with at least one value above the 10 times 99th percentile upper reference limit; (2) electrocardiograph-documented ST-segment elevation in evolution, Q waves 0.03 s in width and/or one-third or greater of the total QRS complex in 2 or more contiguous leads; (3) new left bundle branch block [12]. Mediastinal infection was defined according to the published expert consensus [13]. Stroke was defined as a central neurological deficit persisting > 24 h (i.e., extremity weakness or loss of motion, loss of consciousness, loss of speech, visual field cuts). Renal failure was defined as an increase in serum creatinine level to > 4 mg/dL, 3 times the most recent preoperative creatinine level, or a new postoperative need for dialysis. Reoperation for bleeding was defined as chest tube drainage ≥ 200 mL/h for at least 3 h requiring surgical intervention.

Statistical analysis

Continuous variables are expressed as either mean ± standard deviation (SD) or medians and interquartile range (IQR) depending upon variable distribution. Categorical variables are presented as frequencies and percentages. We performed a t-test for normally distributed continuous variables; otherwise, the Mann–Whitney U test or Kruskal–Wallis H test was used. This was followed by the Bonferroni t-test with a corrected P value of 0.05/3. Chi square tests or Fisher’s exact tests were used for categorical variables.
We used the following 2 techniques to adjust for potential confounders when comparing outcomes of the different smoking status groups: multiple logistic regression modelling and propensity matching. For the regression-based analyses, the association between smoking status and each clinical end point were adjusted for baseline patient risk by inclusion of the following validated and widely accepted measures of patient-level covariates: age, body mass index, sex, diabetes mellitus, hypertension, hyperlipidemia, chronic renal failure, chronic obstructive pulmonary disease, cerebrovascular accident, carotid disease, peripheral artery disease, previous MI, PTCA history, LVEF, preoperative creatinine, CCS classification, NYHA classification, triple vessel disease, Left main CAD, preoperative IABP, operative priority, off-pump technique and prior cardiovascular history. Model results are reported as odds ratios (OR) with a 95% confidence interval (CIs).
The second method of adjusting for potential confounders involved matching patients with similar estimated probability of smoking status (propensity score). The propensity score was calculated by a multivariable logistic regression model which was developed using the same covariates listed above for the regression-based analyses. Then we matched patients in a 1:1 fashion without replacement [14]. We performed PS matching between ex-smokers and non-smokers, and between current and non-smokers. ORs with 95% CIs comparing the frequency of each end point for ex-smokers vs non-smokers and current smokers versus non-smokers were estimated using univariable logistic regression.
Additional analysis were performed to examine whether the association between smoking status and mortality differed across subgroups based on age, sex, ejection fraction, diabetes mellitus, hypertension and chronic lung disease. Subgroup-specific ORs were estimated and displayed with 95% CIs.
All reported P values are 2 sided, and values of P < 0.05 were considered to indicate statistical significance.When applying for multiple comparison, a Bonferroni adjustment with a corrected P value of 0.0167 (0.05/3) was introduced. All statistical analysis was performed using SPSS version 22.0 (IBM Corp., Armonk, NY).

Results

Baseline characteristics

Of all patients, 55.7% (3635) patients had smoking history and 96.5% (6303) patients received elective surgeries. Smokers were further divided into ex-smokers (n = 2373) and current smokers (n = 1262). Baseline characteristics before matching are presented in Table 1.
Table 1
Baseline demographic and clinical characteristics in overall population
Variable
All patients (n = 6531)
Smoking status
P
Non-smokers (n = 2896)
Ex-smokers (n = 2373)
Current smokers (n = 1262)
Age, mean (SD), years
61.4 (9.2)
62.8 (9.3)
60.7 (8.9)
59.6 (9.1)
< 0.001
Female, n (%)
1060 (16.2)
882 (30.5)
117 (4.9)
61 (4.8)
< 0.001
BMI, median (quartile)
24.5 (22.6, 26.7)
24.4 (22.5, 26.5)
24.6 (22.8, 27.0)
24.7 (22.8, 26.9)
0.001
Diabetes mellitus, n (%)
2225 (34.1)
1067 (36.8)
674 (28.4)
484 (38.4)
< 0.001
Hypertension, n (%)
3571 (54.7)
1629 (56.3)
1245 (52.5)
697 (55.2)
0.021
Hyperlipemia, n (%)
2101 (32.2)
684 (23.6)
834 (35.1)
583 (46.2)
< 0.001
Chronic renal failure, n (%)
128 (2.0)
73 (2.5)
37 (1.6)
18 (1.4)
0.014
COPD, n (%)
108 (1.7)
39 (1.3)
51 (2.1)
18 (1.4)
0.059
Peripheral artery disease, n (%)
281 (4.3)
119 (4.1)
129 (5.4)
33 (2.6)
< 0.001
Carotid disease, n (%)
1061 (16.2)
443 (15.3)
428 (18.0)
190 (15.1)
0.012
Cerebrovascular accident, n (%)
576 (8.8)
290 (10.0)
177 (7.5)
109 (8.6)
0.005
Creatinine, median (quartile), umol/dL
82.0 (70.0, 97.0)
80.6 (67.0, 96.0)
83.0 (72.0, 98.0)
84.0 (72.2, 96.9)
0.583
Left main CAD, n (%)
1800 (27.6)
907 (31.3)
569 (24.0)
324 (25.7)
< 0.001
Triple vessel disease, n (%)
4531 (69.4)
2284 (78.9)
1499 (63.2)
748 (59.3)
< 0.001
Previous MI, n (%)
2787 (42.7)
1110 (38.3)
1112 (46.9)
565 (44.6)
< 0.001
PTCA history, n (%)
844 (12.9)
402 (13.9)
295 (12.4)
147 (11.6)
0.096
CCS class
    
< 0.001
NA, n (%)
1274 (19.5)
584 (20.2)
462 (19.5)
228 (18.1)
 
I, n (%)
914 (14.0)
514 (17.7)
267 (11.3)
133 (10.5)
 
II, n (%)
2196 (33.6)
945 (32.6)
851 (35.9)
400 (31.7)
 
III, n (%)
1720 (26.3)
718 (24.8)
621 (26.2)
381 (30.2)
 
IV, n (%)
427 (6.5)
135 (4.7)
172 (7.2)
120 (9.5)
 
LVEF, Mean (SD), %
42.1 (5.3)
42.3 (5.4)
42.1 (5.3)
41.9 (5.4)
0.09
NYHA class
    
< 0.001
I, n (%)
938 (14.4)
387 (13.4)
387 (16.3)
164 (13.0)
 
II, n (%)
2365 (36.2)
1016 (35.1)
893 (37.6)
456 (36.1)
 
III, n (%)
2846 (43.6)
1340 (46.3)
943 (39.7)
563 (44.6)
 
IV, n (%)
382 (5.8)
153 (5.3)
150 (6.3)
79 (6.3)
 
Prior cardiovascular surgery, n (%)
86 (1.3)
34 (1.2)
36 (1.5)
16 (1.3)
0.546
Elective surgery, n (%)
6303 (96.5)
2811 (97.1)
2282 (96.2)
1210 (95.9)
0.083
Preoperative IABP, n (%)
196 (3.0)
88 (3.0)
62 (2.6)
46 (3.6)
0.219
Number of graft, Median (quartile)
4 (3, 4)
4 (4, 5)
4 (3, 4)
4 (3, 4)
< 0.001
Off-pump surgery, n (%)
1224 (18.7)
328 (11.3)
583 (24.6)
313 (24.8)
< 0.001
EuroSCORE
    
< 0.001
0–2, n (%)
1626 (24.9)
500 (17.3)
714 (30.1)
412 (32.6)
 
3–5, n (%)
3323 (50.9)
1525 (52.7)
1200 (50.6)
598 (47.4)
 
6 plus, n (%)
1582 (24.2)
871 (30.1)
459 (19.3)
252 (20.0)
 
BMI body mass index, CAD coronary vascular disease, CCS Canadian Cardiovascular Society, COPD chronic obstructive pulmonary disease, IABP intra-aortic balloon pump, LFEF left ventricular ejection fraction, MI myocardial infarction, NA not available, NYHA New York Heart Association, PTCA percutaneous transluminal coronary angioplasty, SD standard deviation
Current smokers were slightly younger (59.6 ± 9.1 vs 62.8 ± 9.3 years) with higher proportion of male patients (95.2% vs 69.5%) compared with non-smokers. The incidence of hyperlipidaemia (46.2% vs 23.6%), previous MI (44.8% vs 38.3) and CCS class III/IV (39.7% vs29.5%) were higher in current smokers compared with non-smokers. Compared with non-smokers, current smokers were less likely to have left main CAD (25.7% vs 31.3%) and triple vessel disease (59.3% vs 78.9%). Among ex-smokers, the proportion of peripheral artery disease was higher than non-smokers (5.4% vs 2.6%). The non-smokers were less likely to receive off-pump CABG than ex-smokers (11.3% vs 24.6%) and current smokers (11.3% vs 24.8%).

Operative outcomes

Table 2 summarizes the outcomes from the unmatched groups. The overall in-hospital morality was 3.9%. Interestingly, current smokers have lower in-hospital mortality than non-smokers [2.3% vs 4.9%; adjusted OR 0.612 (95% CI 0.395–0.947)]. No difference was detected in mortality between ex-smokers and non-smokers [3.6% vs 4.9%; adjusted OR 0.974 (0.715–1.327)]. No significant differences in other clinical end points were observed.
Table 2
Number of end point events and covariate-adjusted ORs in overall population
End Point
No. (%) of events by group
OR (95% CI)a
Non-smokers (n = 2896)
Ex-smokers (n = 2373)
Current smokers (n = 1262)
Ex-smokers (n = 2373)
Current smokers (n = 1262)
Mortality
142 (4.9)
86 (3.6)
29 (2.3)
0.974 (0.715–1.327)
0.612 (0.395–0.947)
Re-intubation
88 (3.0)
56 (2.4)
28 (2.2)
0.887 (0.613–1.282)
0.911 (0.575–1.442)
Postoperative MI
33 (1.1)
21 (0.9)
11 (0.9)
0.778 (0.425–1.421)
0.712 (0.341–1.487)
Mediastinal infection
34 (1.2)
13 (0.5)
4 (0.6)
0.599 (0.299–1.199)
0.570 (0.240–1.355)
Postoperative stroke
19 (0.7)
10 (0.4)
5 (0.4)
0.810 (0.351–1.874)
0.756 (0.265–2.153)
Postoperative renal failure
73 (2.5)
51 (2.1)
19 (1.5)
0.941 (0.629–1.409)
0.650 (0.377–1.121)
Ventilation > 24 h
279 (9.6)
235 (9.9)
110 (8.7)
1.081 (0.877–1.332)
0.819 (0.749–1.256)
MODS
61 (2.1)
27 (1.1)
12 (1.0)
0.704 (0.426–1.164)
0.629 (0.324–1.221)
Re-operation
66 (2.3)
58 (2.4)
24 (1.9)
1.070 (0.721–1.587)
0.891 (0.539–1.474)
CI confidence interval, MI myocardial infarction, MODS multiple organ dysfunction syndrome, OR odds ratio
aNon-smokers as reference
After propensity matching, 2 comparable groups [1731 of each for non-smokers vs ex-smokers (Additional file 1: Table S1) and 1032 of each for non-smokers vs current smokers (Additional file 1: Table S2)] were created (Fig. 2). Outcomes for propensity-matched patients are displayed in Table 3 (non-smokers vs ex-smokers) and Table 4 (non-smokers vs current smokers). Operative mortality was similar for non-smokers vs ex-smokers [5.2% vs 4.3%; OR 0.814 (95% CI 0.594–1.116)]. Less mortality was found in current smokers (2.8%) compared with non-smokers [4.9%; OR 0.556 (95% CI 0.350–0.885)]. For the other clinical end points, no significant differences were found.
Table 3
Number of end point events and ORs in propensity-matched group (non-smokers vs ex-smokers)
End Point
No. (%) of events by group
OR (95% CI)
P
Non-smokers (n = 1731)
Ex-smokers (n = 1731)
Mortality
90 (5.2)
74 (4.3)
0.814 (0.594–1.116)
0.201
Re-intubation
65 (3.8)
51 (2.9)
0.778 (0.536–1.130)
0.187
Postoperative MI
22 (1.3)
19 (1.1)
0.862 (0.465–1.599)
0.638
Mediastinal infection
16 (0.9)
11 (0.6)
0.686 (0.317–1.481)
0.337
Postoperative stroke
10 (0.6)
7 (0.4)
0.699 (0.265–1.840)
0.468
Postoperative renal failure
44 (2.5)
45 (2.6)
1.023 (0.672–1.559)
0.914
Ventilation > 24 h
171 (9.9)
177 (10.2)
1.039 (0.388–1.297)
0.735
MODS
34 (2.0)
24 (1.4)
0.702 (0.414–1.188)
0.188
Re-operation
46 (2.7)
48 (2.8)
1.045 (0.993–1.574)
0.834
CI confidence interval, MI myocardial infarction, MODS multiple organ dysfunction syndrome, OR odds ratio
Table 4
Number of end point events and ORs in propensity-matched group (non-smokers vs current smokers)
End Point
No. (%) of events by group
OR (95% CI)
P
Non-smokers (n = 1032)
Current smokers (n = 1032)
Mortality
51 (4.9)
29 (2.8)
0.556 (0.350–0.885)
0.013
Re-intubation
43 (4.2)
27 (2.6)
0.618 (0.379–1.008)
0.054
Postoperative MI
14 (1.4)
10 (1.0)
0.711 (0.315–1.609)
0.414
Mediastinal infection
13 (1.3)
7 (0.7)
0.535 (0.213–1.347)
0.184
Postoperative stroke
6 (0.6)
5 (0.5)
0.833 (0.253–2.736)
0.763
Postoperative renal failure
19 (1.8)
17 (1.6)
0.893 (0.461–1.728)
0.737
Ventilation > 24 h
97 (9.4)
95 (9.2)
0.977 (0.726–1.315)
0.880
MODS
17 (1.6)
12 (1.2)
0.702 (0.334–1.478)
0.702
Re-operation
23 (2.2)
23 (2.2)
1.000 (0.557–1.794)
1.000
CI confidence interval, MI myocardial infarction, MODS multiple organ dysfunction syndrome, OR odds ratio

Subgroup analysis

Effect of smoking status among patient subgroups in the propensity matched cohorts was examined. For each subgroup in non-smokers vs ex-smokers, all the calculations include 1.0 in the 95% CI for the OR and the interaction P value was not significant (P ≥ 0.05) (Additional file 1: Table S3). Of non-smokers vs current smokers, current smokers were found to have lower mortality in patients younger than 65 years [4.6% vs 2.4%; OR 0.503 (95% CI 0.277–0.915)] and patients without COPD (2.9% vs 4.9%; OR 0.566 (95% CI 0.355–0.902)] (Additional file 1: Table S4).

Discussion

The present study reports upon the effect of preoperative smoking status on the operative outcomes of CABG. We performed analyses on the unmatched and propensity-matched cohorts, controlling for the preoperative risk factors. In our study of CABG patients with left ventricular dysfunction, we have not seen a protective effect of smoking in terms of postoperative complications. However, it is paradoxically that current smokers had lower in-hospital mortality than non-smokers, particularly in patients younger than 65 years or patients without COPD.
Smoking substantially increases the risk of developing CAD and HF in men and women [15, 16]. It is estimated that 16.5% of all deaths in men and 1.7% in women were due to smoking in China [17]. In an analysis of the studies of left ventricular dysfunction (SOLVD) database, current smoking was found to be a risk factor of mortality and morbidity in patients with left ventricular dysfunction [18]. The constituents of inhaled tobacco contributing to multiple adverse effect on cardiovascular system like endothelial dysfunction, platelet dysfunction, increased heart rate, increased coagulation, increased blood pressure, increased myocardial oxygen demand and vasoconstriction [3, 19, 20]. These adverse effects might be much more pronounced in patients with impaired ventricular function. Of cardiac surgical patients, some prior studies have reported the deleterious effect of smoking on pulmonary complications [10, 11]. Unfortunately, studies in cardiac surgical patients with impaired left ventricular function remain scarce.
In our analysis, current smoking does not seem to have bearing on postoperative complications and it is paradoxically that current smokers had lower in-hospital mortality than non-smokers. This in part might be due to the difference in preoperative characteristics. Compared with non-smokers, smokers may develop CAD and experience CAD symptoms much earlier in the course of their disease, at a time when their prognosis tends to be still more favourable. In this study, current smokers were slightly younger and did have less left main CAD and triple vessel disease. Difference in clinical outcomes potentially reflects intrinsic differences in risk and in-hospital care.
Fonarow and colleagues put forward a hypothesis that abrupt cessation of smoking during the HF hospitalization improves outcomes among smokers [3]. This theory may also holds true in CABG patients with left ventricular dysfunction. In China, most patients will be admitted to hospitals a couple of days prior to operation (above 1 week) for preoperative evaluation and preparation. It is then that the abrupt cessation of smoking during the hospitalization allows for the rapid stabilization of the balance between oxygen demand and supply. Suskin et al. reported that quitting smoking was associated with a decrease in morbidity and mortality in patients with left ventricular dysfunction [18]. Moreover, the abrupt smoking cessation may also contribute in recovery of airway function [11]. A prospective study from Warner and colleagues showed the benefit effect of a short period of smoking cessation on operative outcomes [21]. As Benedetto et al. reported, smoking cessation reduced the risk for all pulmonary complications [11].
In the current studies, the incidence of COPD in smokers was much lower than studies in western countries [9, 11, 22]. The low incidence of COPD in Chinese surgical patients may partly explain the results of current study. In 2003, Arabaci et al. reported smoking caused obstructive type respiratory problems and worsening of existing restrictive respiratory problems [23]. As many current smokers may not suffer from the worsening of existing respiratory problems during the perioperative period, adverse outcomes may not present during the in-hospital stay.
In subgroup analysis, we detected current smokers have lower mortality compared with non-smokers in patients younger than 65 years rather than in elderly patients. He and colleagues reported smoking history as an independent predictor of mortality in the elderly patients [24]. Published in 2011, Jones and colleagues found current smokers had a higher risk of adverse outcomes of cardiac surgery in the elderlys [25]. Hence it is of important to encourage elderly patients to quit smoking before surgery as these patients may be vulnerable to postoperative complications.
The apparent smoker’s paradox should not be interpreted as a benefit of or justification for smoking. We still advocate that patients stop smoking. In a 20-year follow-up study from van Domburg and colleagues, smoking cessation reduces long-term mortality and repeat revascularization procedures after CABG [8]. A recent study from Masoudkabir et al. showed smoking cessation after CABG could reduce the 5-year mortality by 35% [2]. Shahim and colleagues found current smokers had a higher risk of 5-year adverse outcomes [26]. Smoking is established as an independent risk factor for mortality and recurrent MI [27]. From a prevention perspective, cigarette smoking is a well-established risk factor for cardiovascular disease and death [17, 28] which smoking cessation and controlling programs should be promoted in the whole society.
In spite of the public gradually raised awareness of the hazards of smoking and Chinese government’s effort in the tobacco control, there is still a high prevalence of smoking in current China [17]. One-third of the world’s tobacco is produced and consumed in China [29]. The smoker’s paradox whereby smokers have an increased risk of cardiovascular diseases but have lower mortality for in-hospital HF and PTCA patients has been previously reported [3, 7]. This phenomenon may mislead the public on smoking cessation and many surgeons may ignore the importance of smoking cessation counselling. Understanding the phenomenon of ‘smoking paradox’ is of important in a public health perspective and surgeon’s practice. Future studies are requested to investigate the mechanisms of this phenomenon.

Limitations

There are few limitations in our work. Firstly, the smoking status was determined on the basis of self-report. We did not use biochemical testing to confirm the accuracy of self-reports. Secondly, detailed smoking status regarding packs per day or duration of smoking was not available in this study. Also, there may be residual measured and unmeasured confounding variables which influence the findings. Lastly, we observed in-hospital mortality rather than standard 30-day mortality. However, within these limitations, we believe our work will provide essential data for assisting clinical practices.

Conclusions

As a national-wide multicentre study, we provide insights upon the effect of preoperative smoking status on the operative outcomes of CABG in patients with left ventricular dysfunction. Our findings did not show a protective effect of smoking in terms of postoperative complications. However, it is paradoxically that current smokers had lower in-hospital mortality than non-smokers. Future studies should be performed to further understand the biological mechanisms that may explain this phenomenon.

Acknowledgements

The authors thank all China-HFSR investigators and participants for their contributions: Xin Chen, Yingbin Xiao, Fei Li, Feng Wan, Tao Han, Liangwan Chen, Hongyu Liu, Su Liu, Zhaoyun Cheng, Guimin Zhang, Zhongmin Liu, Chunsheng Wang, Huishan Wang, Zhenya Shen, Zhigang Liu, Chengchao Sun, Xinmin Zhou, Yiming Ni.

Declarations

This study was approved by the institutional review board at Fuwai Hospital (approval number 887, April 25th, 2017) and carried out in accordance with relevant guidelines and regulations. The informed consent was signed by participants.
Nota applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge
Literatur
1.
Zurück zum Zitat Peto R, Lopez AD, Boreham J, Thun M, Heath C Jr. Mortality from tobacco in developed countries: indirect estimation from national vital statistics. Lancet (London, England). 1992;339(8804):1268–78.CrossRef Peto R, Lopez AD, Boreham J, Thun M, Heath C Jr. Mortality from tobacco in developed countries: indirect estimation from national vital statistics. Lancet (London, England). 1992;339(8804):1268–78.CrossRef
2.
Zurück zum Zitat Masoudkabir F, Yavari N, Pashang M, Sadeghian S, Jalali A, Karimi A, Bagheri J, Abbasi K, Davoodi S, Omran AS, et al. Smoking cessation after surgery and midterm outcomes of surgical revascularization. Ann Thorac Surg. 2020;109(6):1874–9.CrossRef Masoudkabir F, Yavari N, Pashang M, Sadeghian S, Jalali A, Karimi A, Bagheri J, Abbasi K, Davoodi S, Omran AS, et al. Smoking cessation after surgery and midterm outcomes of surgical revascularization. Ann Thorac Surg. 2020;109(6):1874–9.CrossRef
3.
Zurück zum Zitat Fonarow GC, Abraham WT, Albert NM, Stough WG, Gheorghiade M, Greenberg BH, O’Connor CM, Nunez E, Yancy CW, Young JB. A smoker’s paradox in patients hospitalized for heart failure: findings from OPTIMIZE-HF. Eur Heart J. 2008;29(16):1983–91.CrossRef Fonarow GC, Abraham WT, Albert NM, Stough WG, Gheorghiade M, Greenberg BH, O’Connor CM, Nunez E, Yancy CW, Young JB. A smoker’s paradox in patients hospitalized for heart failure: findings from OPTIMIZE-HF. Eur Heart J. 2008;29(16):1983–91.CrossRef
4.
Zurück zum Zitat Helmers C. Short and long-term prognostic indices in acute myocardial infarction. A study of 606 patients initially treated in a coronary care unit. Acta Med Scand Suppl. 1973;555:7–26.PubMed Helmers C. Short and long-term prognostic indices in acute myocardial infarction. A study of 606 patients initially treated in a coronary care unit. Acta Med Scand Suppl. 1973;555:7–26.PubMed
5.
Zurück zum Zitat Aune E, Røislien J, Mathisen M, Thelle DS, Otterstad JE. The “smoker’s paradox” in patients with acute coronary syndrome: a systematic review. BMC Med. 2011;9:97.CrossRef Aune E, Røislien J, Mathisen M, Thelle DS, Otterstad JE. The “smoker’s paradox” in patients with acute coronary syndrome: a systematic review. BMC Med. 2011;9:97.CrossRef
6.
Zurück zum Zitat Weisz G, Cox DA, Garcia E, Tcheng JE, Griffin JJ, Guagliumi G, Stuckey TD, Rutherford BD, Mehran R, Aymong E, et al. Impact of smoking status on outcomes of primary coronary intervention for acute myocardial infarction–the smoker’s paradox revisited. Am Heart J. 2005;150(2):358–64.CrossRef Weisz G, Cox DA, Garcia E, Tcheng JE, Griffin JJ, Guagliumi G, Stuckey TD, Rutherford BD, Mehran R, Aymong E, et al. Impact of smoking status on outcomes of primary coronary intervention for acute myocardial infarction–the smoker’s paradox revisited. Am Heart J. 2005;150(2):358–64.CrossRef
7.
Zurück zum Zitat Song C, Fu R, Dou K, Yang J, Xu H, Gao X, Wang H, Liu S, Fan X, Yang Y. Association between smoking and in-hospital mortality in patients with acute myocardial infarction: results from a prospective, multicentre, observational study in China. BMJ Open. 2019;9(8):e030252.CrossRef Song C, Fu R, Dou K, Yang J, Xu H, Gao X, Wang H, Liu S, Fan X, Yang Y. Association between smoking and in-hospital mortality in patients with acute myocardial infarction: results from a prospective, multicentre, observational study in China. BMJ Open. 2019;9(8):e030252.CrossRef
8.
Zurück zum Zitat van Domburg RT, Meeter K, van Berkel DF, Veldkamp RF, van Herwerden LA, Bogers AJ. Smoking cessation reduces mortality after coronary artery bypass surgery: a 20-year follow-up study. J Am Coll Cardiol. 2000;36(3):878–83.CrossRef van Domburg RT, Meeter K, van Berkel DF, Veldkamp RF, van Herwerden LA, Bogers AJ. Smoking cessation reduces mortality after coronary artery bypass surgery: a 20-year follow-up study. J Am Coll Cardiol. 2000;36(3):878–83.CrossRef
9.
Zurück zum Zitat Al-Sarraf N, Thalib L, Hughes A, Tolan M, Young V, McGovern E. Effect of smoking on short-term outcome of patients undergoing coronary artery bypass surgery. Ann Thorac Surg. 2008;86(2):517–23.CrossRef Al-Sarraf N, Thalib L, Hughes A, Tolan M, Young V, McGovern E. Effect of smoking on short-term outcome of patients undergoing coronary artery bypass surgery. Ann Thorac Surg. 2008;86(2):517–23.CrossRef
10.
Zurück zum Zitat Ji Q, Zhao H, Mei Y, Shi Y, Ma R, Ding W. Impact of smoking on early clinical outcomes in patients undergoing coronary artery bypass grafting surgery. J Cardiothorac Surg. 2015;10:16.CrossRef Ji Q, Zhao H, Mei Y, Shi Y, Ma R, Ding W. Impact of smoking on early clinical outcomes in patients undergoing coronary artery bypass grafting surgery. J Cardiothorac Surg. 2015;10:16.CrossRef
11.
Zurück zum Zitat Benedetto U, Albanese A, Kattach H, Ruggiero D, De Robertis F, Amrani M, Raja SG. Smoking cessation before coronary artery bypass grafting improves operative outcomes. J Thorac Cardiovasc Surg. 2014;148(2):468–74.CrossRef Benedetto U, Albanese A, Kattach H, Ruggiero D, De Robertis F, Amrani M, Raja SG. Smoking cessation before coronary artery bypass grafting improves operative outcomes. J Thorac Cardiovasc Surg. 2014;148(2):468–74.CrossRef
12.
Zurück zum Zitat Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, Caforio ALP, Crea F, Goudevenos JA, Halvorsen S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119–77.CrossRef Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, Caforio ALP, Crea F, Goudevenos JA, Halvorsen S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119–77.CrossRef
13.
Zurück zum Zitat Lazar HL, Salm TV, Engelman R, Orgill D, Gordon S. Prevention and management of sternal wound infections. J Thorac Cardiovasc Surg. 2016;152(4):962–72.CrossRef Lazar HL, Salm TV, Engelman R, Orgill D, Gordon S. Prevention and management of sternal wound infections. J Thorac Cardiovasc Surg. 2016;152(4):962–72.CrossRef
14.
Zurück zum Zitat Li F, Zaslavsky AM, Landrum MB. Propensity score weighting with multilevel data. Stat Med. 2013;32(19):3373–87.CrossRef Li F, Zaslavsky AM, Landrum MB. Propensity score weighting with multilevel data. Stat Med. 2013;32(19):3373–87.CrossRef
15.
Zurück zum Zitat Iversen B, Jacobsen BK, Løchen ML. Active and passive smoking and the risk of myocardial infarction in 24,968 men and women during 11 year of follow-up: the Tromsø Study. Eur J Epidemiol. 2013;28(8):659–67.CrossRef Iversen B, Jacobsen BK, Løchen ML. Active and passive smoking and the risk of myocardial infarction in 24,968 men and women during 11 year of follow-up: the Tromsø Study. Eur J Epidemiol. 2013;28(8):659–67.CrossRef
16.
Zurück zum Zitat Wilhelmsen L, Rosengren A, Eriksson H, Lappas G. Heart failure in the general population of men–morbidity, risk factors and prognosis. J Intern Med. 2001;249(3):253–61.CrossRef Wilhelmsen L, Rosengren A, Eriksson H, Lappas G. Heart failure in the general population of men–morbidity, risk factors and prognosis. J Intern Med. 2001;249(3):253–61.CrossRef
17.
Zurück zum Zitat Li S, Meng L, Chiolero A, Ma C, Xi B. Trends in smoking prevalence and attributable mortality in China, 1991–2011. Prev Med. 2016;93:82–7.CrossRef Li S, Meng L, Chiolero A, Ma C, Xi B. Trends in smoking prevalence and attributable mortality in China, 1991–2011. Prev Med. 2016;93:82–7.CrossRef
18.
Zurück zum Zitat Suskin N, Sheth T, Negassa A, Yusuf S. Relationship of current and past smoking to mortality and morbidity in patients with left ventricular dysfunction. J Am Coll Cardiol. 2001;37(6):1677–82.CrossRef Suskin N, Sheth T, Negassa A, Yusuf S. Relationship of current and past smoking to mortality and morbidity in patients with left ventricular dysfunction. J Am Coll Cardiol. 2001;37(6):1677–82.CrossRef
19.
Zurück zum Zitat Nowak J, Murray JJ, Oates JA, FitzGerald GA. Biochemical evidence of a chronic abnormality in platelet and vascular function in healthy individuals who smoke cigarettes. Circulation. 1987;76(1):6–14.CrossRef Nowak J, Murray JJ, Oates JA, FitzGerald GA. Biochemical evidence of a chronic abnormality in platelet and vascular function in healthy individuals who smoke cigarettes. Circulation. 1987;76(1):6–14.CrossRef
20.
Zurück zum Zitat Tsuchiya M, Asada A, Kasahara E, Sato EF, Shindo M, Inoue M. Smoking a single cigarette rapidly reduces combined concentrations of nitrate and nitrite and concentrations of antioxidants in plasma. Circulation. 2002;105(10):1155–7.CrossRef Tsuchiya M, Asada A, Kasahara E, Sato EF, Shindo M, Inoue M. Smoking a single cigarette rapidly reduces combined concentrations of nitrate and nitrite and concentrations of antioxidants in plasma. Circulation. 2002;105(10):1155–7.CrossRef
21.
Zurück zum Zitat Warner MA, Offord KP, Warner ME, Lennon RL, Conover MA, Jansson-Schumacher U. Role of preoperative cessation of smoking and other factors in postoperative pulmonary complications: a blinded prospective study of coronary artery bypass patients. Mayo Clin Proc. 1989;64(6):609–16.CrossRef Warner MA, Offord KP, Warner ME, Lennon RL, Conover MA, Jansson-Schumacher U. Role of preoperative cessation of smoking and other factors in postoperative pulmonary complications: a blinded prospective study of coronary artery bypass patients. Mayo Clin Proc. 1989;64(6):609–16.CrossRef
22.
Zurück zum Zitat Saxena A, Shan L, Dinh DT, Reid CM, Smith JA, Shardey GC, Newcomb AE. Impact of smoking status on outcomes after concomitant aortic valve replacement and coronary artery bypass graft surgery. Thorac Cardiovasc Surg. 2014;62(1):52–9.CrossRef Saxena A, Shan L, Dinh DT, Reid CM, Smith JA, Shardey GC, Newcomb AE. Impact of smoking status on outcomes after concomitant aortic valve replacement and coronary artery bypass graft surgery. Thorac Cardiovasc Surg. 2014;62(1):52–9.CrossRef
23.
Zurück zum Zitat Arabaci U, Akdur H, Yiğit Z. Effects of smoking on pulmonary functions and arterial blood gases following coronary artery surgery in Turkish patients. Jpn Heart J. 2003;44(1):61–72.CrossRef Arabaci U, Akdur H, Yiğit Z. Effects of smoking on pulmonary functions and arterial blood gases following coronary artery surgery in Turkish patients. Jpn Heart J. 2003;44(1):61–72.CrossRef
24.
Zurück zum Zitat He G-W, Acuff TE, Ryan WH, Mack MJ. Risk factors for operative mortality in elderly patients undergoing internal mammary artery grafting. Ann Thorac Surg. 1994;57(6):1453–61.CrossRef He G-W, Acuff TE, Ryan WH, Mack MJ. Risk factors for operative mortality in elderly patients undergoing internal mammary artery grafting. Ann Thorac Surg. 1994;57(6):1453–61.CrossRef
25.
Zurück zum Zitat Jones R, Nyawo B, Jamieson S, Clark S. Current smoking predicts increased operative mortality and morbidity after cardiac surgery in the elderly. Interact Cardiovasc Thorac Surg. 2011;12(3):449–53.CrossRef Jones R, Nyawo B, Jamieson S, Clark S. Current smoking predicts increased operative mortality and morbidity after cardiac surgery in the elderly. Interact Cardiovasc Thorac Surg. 2011;12(3):449–53.CrossRef
26.
Zurück zum Zitat Shahim B, Redfors B, Chen S, Morice MC, Gersh BJ, Puskas JD, Kandzari DE, Merkely B, Horkay F, Crowley A, et al. Outcomes after left main coronary artery revascularization by percutaneous coronary intervention or coronary artery bypass grafting according to smoking status. Am J Cardiol. 2020;127:16–24.CrossRef Shahim B, Redfors B, Chen S, Morice MC, Gersh BJ, Puskas JD, Kandzari DE, Merkely B, Horkay F, Crowley A, et al. Outcomes after left main coronary artery revascularization by percutaneous coronary intervention or coronary artery bypass grafting according to smoking status. Am J Cardiol. 2020;127:16–24.CrossRef
27.
Zurück zum Zitat Shen L, Peterson ED, Li S, Thomas L, Alexander K, Xian Y, Wang TY, Roe MT, He B, Shah BR. The association between smoking and long-term outcomes after non-ST-segment elevation myocardial infarction in older patients. Am Heart J. 2013;166(6):1056–62.CrossRef Shen L, Peterson ED, Li S, Thomas L, Alexander K, Xian Y, Wang TY, Roe MT, He B, Shah BR. The association between smoking and long-term outcomes after non-ST-segment elevation myocardial infarction in older patients. Am Heart J. 2013;166(6):1056–62.CrossRef
28.
Zurück zum Zitat Peto R, Lopez AD, Boreham J, Thun M, Heath C Jr, Doll R. Mortality from smoking worldwide. Br Med Bull. 1996;52(1):12–21.CrossRef Peto R, Lopez AD, Boreham J, Thun M, Heath C Jr, Doll R. Mortality from smoking worldwide. Br Med Bull. 1996;52(1):12–21.CrossRef
29.
Zurück zum Zitat Zhang J, Ou JX, Bai CX. Tobacco smoking in China: prevalence, disease burden, challenges and future strategies. Respirology (Carlton, Vic). 2011;16(8):1165–72.CrossRef Zhang J, Ou JX, Bai CX. Tobacco smoking in China: prevalence, disease burden, challenges and future strategies. Respirology (Carlton, Vic). 2011;16(8):1165–72.CrossRef
Metadaten
Titel
Association between smoking and in-hospital mortality in patients with left ventricular dysfunction undergoing coronary artery bypass surgery: a propensity-matched study
verfasst von
Hanwei Tang
Jianfeng Hou
Kai Chen
Xiaohong Huang
Sheng Liu
Shengshou Hu
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
BMC Cardiovascular Disorders / Ausgabe 1/2021
Elektronische ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-021-02056-9

Weitere Artikel der Ausgabe 1/2021

BMC Cardiovascular Disorders 1/2021 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.