Skip to main content
Erschienen in: BMC Cardiovascular Disorders 1/2020

Open Access 01.12.2020 | Research article

Association between the tissue accumulation of advanced glycation end products and exercise capacity in cardiac rehabilitation patients

verfasst von: Mitsuhiro Kunimoto, Kazunori Shimada, Miho Yokoyama, Tomomi Matsubara, Tatsuro Aikawa, Shohei Ouchi, Megumi Shimizu, Kosuke Fukao, Tetsuro Miyazaki, Tomoyasu Kadoguchi, Kei Fujiwara, Abidan Abulimiti, Akio Honzawa, Miki Yamada, Akie Shimada, Taira Yamamoto, Tohru Asai, Atsushi Amano, Andries J. Smit, Hiroyuki Daida

Erschienen in: BMC Cardiovascular Disorders | Ausgabe 1/2020

Abstract

Background

Advanced glycation end products (AGEs) are associated with aging, diabetes mellitus (DM), and other chronic diseases. Recently, the accumulation of AGEs can be evaluated by skin autofluorescence (SAF). However, the relationship between SAF levels and exercise capacity in patients with cardiovascular disease (CVD) remains unclear. This study aimed to investigate the association between the tissue accumulation of AGEs and clinical characteristics, including exercise capacity, in patients with CVD.

Methods

We enrolled 319 consecutive CVD patients aged ≥40 years who underwent early phase II cardiac rehabilitation (CR) at our university hospital between November 2015 and September 2017. Patient background, clinical data, and the accumulation of AGEs assessed by SAF were recorded at the beginning of CR. Characteristics were compared between two patient groups divided according to the median SAF level (High SAF and Low SAF).

Results

The High SAF group was significantly older and exhibited a higher prevalence of DM than the Low SAF group. The sex ratio did not differ between the two groups. AGE levels showed significant negative correlations with peak oxygen uptake and ventilator efficiency (both P <  0.0001). Exercise capacity was significantly lower in the high SAF group than in the low SAF group, regardless of the presence or absence of DM (P <  0.05). A multivariate logistic regression analysis showed that SAF level was an independent factor associated with reduced exercise capacity (odds ratio 2.10; 95% confidence interval 1.13–4.05; P = 0.02).

Conclusion

High levels of tissue accumulated AGEs, as assessed by SAF, were significantly and independently associated with reduced exercise capacity. These data suggest that measuring the tissue accumulation of AGEs may be useful in patients who have undergone CR, irrespective of whether they have DM.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12872-020-01484-3.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CVD
Cardiovascular disease
HF
Heart failure;
EC
Exercise capacity
AGEs
Advanced glycation end products
DM
Diabetes mellitus
SAF
Skin autofluorescence
CPX
Cardiopulmonary exercise testing
CR
Cardiac rehabilitation
CKD
Chronic kidney disease.

Background

Exercise intolerance is recognized to be an important predictor of adverse outcomes in patients with cardiovascular disease (CVD) [13]. Previous studies demonstrated higher mortality rates in patients with heart failure (HF) with reduced exercise capacity (EC), especially in those with peak oxygen uptake (peak VO2) ≤14 mL/kg/min [47].
Advanced glycation end products (AGEs) are harmful compounds formed when proteins, lipids, and nucleic acids combine with glucose [8]. AGEs accumulate in the body as a result of aging, food intake, and smoking. The reactions that result in AGE accumulation are accelerated under hyperglycemic conditions such as those caused by diabetes mellitus (DM), and in inflammatory conditions, and oxidative stress [9, 10]. AGEs have been shown to directly crosslink proteins, including vascular and muscle collagen, which alters the protein structure and results in dysfunction [8, 11]. Previous studies of the relationship between AGEs and physical function reported that populations with high concentrations of the AGE carboxymethyllysine are more likely to exhibit decreased grip strength and slower walking speed [12, 13].
Skin autofluorescence (SAF) has recently been developed as an accurate and noninvasive method to measure AGE accumulation in the skin. SAF has received attention as its results can provide a useful predictor of all-cause mortality and cardiovascular mortality in patients who are high-risk [1416].
Evidence that supports that the accumulation of AGEs may be associated with reduced EC exists but whether SAF levels are associated with reduced EC in patients with CVD remains unclear. Thus, the aim of this study was to investigate the association between SAF levels and clinical characteristics in patients with CVD and to evaluate the relationship between SAF levels and EC.

Methods

Study population

This retrospective cross-sectional study included 371 consecutive patients who underwent cardiopulmonary exercise testing (CPX) at the beginning of phase II cardiac rehabilitation (CR) at our university hospital between November 2015 and September 2017. Of these, 18 patients were excluded for being aged < 40 years, 34 were excluded because of a lack of SAF data. The final study population consisted of 319 patients (Fig. 1). Written informed consent was provided by all the patients prior to participation. The study protocol was approved by the ethical committee of our institution, and the study was conducted in accordance with the principles of the Helsinki Declaration.

Skin autofluorescence

SAF levels were measured with an AGE Reader (DiagnOptics Technologies B.V., Groningen, Netherlands) [17]. This noninvasively evaluates the accumulation of AGEs in the skin by measuring the level of fluorescence with light excitation [18]. SAF levels were calculated as the ratio of the average light intensity in the 420–600 nm wavelength range and the average excitation light intensity in the 300–420 nm range. A previous study has shown that AGEs bind and accumulate to collagen and elastin in the epithelium and dermis [19]. A study of healthy and diabetic subjects confirmed that SAF levels assessed by the AGE Reader correlated well with skin biopsy assessments of the accumulation of AGEs such as pentosidine and carboxymethyllysine [20]. Thus, SAF levels provide an indication of the accumulation of AGEs in the epithelium and dermis of the skin. In the present study, SAF was measured from the inside of the forearm while the patient was seated.

Data collection

Age, sex, smoking history, comorbidities, and medical history were obtained from the patients’ medical records. Blood samples were collected in the early morning after overnight fasting. A diagnosis of DM was defined by hemoglobin A1c ≥ 6.5% or by receiving treatment for DM. Chronic kidney disease (CKD) was defined as an estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2, calculated by the renal disease equation with the Japanese coefficient, using baseline serum creatinine and modification to diet [21].

Measurements

Body composition, grip strength, SAF level, and EC were assessed at the beginning of CR. Anthropometric parameters, including the percentage of body fat, lean body weight, and muscle mass, were measured by bioelectrical impedance analysis (TANITA, MC-780A, Tokyo, Japan), as described previously [22, 23]. Grip strength was tested in both hands with the patient in a standing position; the higher of the two grip strength values was used in the analysis. EC was assessed by CPX on a cycle ergometer (Strength Ergo 8, Mitsubishi Electric Corp., Tokyo, Japan) with an expiratory gas analysis machine (AE-310S, Minato Medical Science Co., Ltd., Osaka, Japan). A ramp protocol was used with a workload increase of 10 W/min to measure the anaerobic threshold and peak VO2. Heart rate was recorded continuously using a standard 12-lead electrocardiogram, and blood pressure was registered every minute during the exercise testing. Peak VO2 was defined as the highest VO2 value recorded during CPX. The anaerobic threshold point was determined by the V-slope method, as previously described [24]. Patients with a peak VO2 ≤ 14 mL/kg/min were categorized as having reduced EC; the other patients were classified as having non-reduced EC.

Statistical analysis

Continuous variables are presented as mean ± standard deviation. Comparisons between groups were evaluated using Welch’s t test for continuous variables and the chi-squared test for categorical variables. Logistic regression models were used to examine relationships between reduced EC and other factors. We selected covariates with significant differences determined as such by the comparison between the reduced EC and nonreduced EC groups to input into the multivariate analysis. Differences were considered statistically significant at P <  0.05. JMP version 12.0 (SAS Institute, Cary, NC, USA) was used to perform the statistical analyses.

Results

Baseline characteristics and SAF data

In 319 subjects enrolled in the present study, mean age was 66 ± 12 years old, and 256 patients were male (80.3%). Figure 2 shows the distribution of SAF levels. The values of mean and median SAF levels were 2.9 ± 0.6 a.u and 2.8 a.u (interquartile range: 2.5, 3.2 a.u), respectively.

Comparison between the high SAF and low SAF groups

The patients were divided into two groups based on the median value of SAF. The High and Low SAF groups comprised 159 and 160 participants, respectively. Table 1 compares the clinical characteristics between the two groups. There was no significant difference in sex ratio. Compared to the Low SAF group, the High SAF group exhibited a significantly higher mean age, higher mean body fat percentage, and higher prevalence of DM, CKD, and a history of coronary artery bypass grafting. Cardiac function defined as systolic and diastolic function was similar between the two groups. Hemoglobin and albumin levels were significantly lower in the High SAF group than in the Low SAF group, whereas HbA1c was significantly higher. The anaerobic threshold and peak VO2 of the High SAF group were significantly lower than those of the Low SAF group (both P <  0.01).
Table 1
Patient characteristics
 
High SAF(n = 159)
Low SAF(n = 160)
P value
Age
67.9 ± 10.4
60.6 ± 11.8
< 0.01
Male (%)
127 (79.9)
129 (80.6)
0.87
BMI
23.7 ± 3.5
23.3 ± 3.3
0.38
Diabetes mellitus (%)
69 (43.4)
38 (23.8)
< 0.01
Hypertension (%)
107 (67.3)
102 (63.8)
0.51
Dyslipidemia (%)
86 (54.1)
86 (53.8)
0.95
Chronic kidney disease (%)
46 (28.9)
28 (17.6)
0.02
Current smoking (%)
22 (13.8)
22 (13.8)
1
COPD (%)
14 (8.8)
5 (3.1)
0.03
Cancer (%)
0 (0)
3 (1.9)
0.21
History of CVD
 MI (%)
19 (12.0)
16 (10.0)
0.58
 PCI (%)
34 (21.4)
22 (13.8)
0.07
 CABG (%)
9 (5.7)
6 (3.8)
0.41
 Valvular surgery (%)
10 (6.3)
6 (3.8)
0.29
 CHF (%)
32 (20.1)
27 (16.9)
0.45
CVD at the beginning of CR
 Acute myocardial infarction (%)
20 (12.6)
19 (11.9)
0.85
 Effort angina pectoris (%)
28 (17.6))
20 (12.5)
0.20
 PCI (%)
28 (17.6)
25 (15.6)
0.63
 CABG (%)
45 (28.3)
24 (15.0)
< 0.01
 Valvular disease (%)
58 (36.5)
59 (36.9)
0.94
 Valvular surgery (%)
47 (29.8)
50 (31.3)
0.77
 Aortic disease (%)
10 (6.3)
13 (8.1)
0.53
 Peripheral artery disease (%)
8 (5.0)
3 (1.9)
0.12
 Atrial fibrillation (%)
24 (15.1)
26 (16.3)
0.78
Anthropometric data
 Body fat percentage (%)
23.4 ± 7.7
21.4 ± 8.5
0.03
 Lean body weight (kg)
48.6 ± 8.4
50.1 ± 8.7
0.13
 Trunk muscle mass (kg)
24.8 ± 3.9
25.7 ± 4.2
0.06
 Upper limb muscle mass (kg)
4.6 ± 1.0
4.8 ± 1.0
0.15
 Lower limb muscle mass (kg)
16.6 ± 4.0
17.1 ± 3.5
0.32
 Grip strength (kg)
29.9 ± 8.2
32.3 ± 8.4
0.04
Echocardiography
 LVEF (%)
56 ± 14
57 ± 15
0.74
 E/A
1.3 ± 0.9
1.4 ± 0.9
0.42
 E/e’
14.1 ± 0.7
13.0 ± 0.7
0.28
Laboratory data
 Hemoglobin (g/dL)
13.3 ± 1.9
13.9 ± 1.7
< 0.01
 Albumin (g/dL)
3.9 ± 0.4
4.0 ± 0.5
0.03
 Creatinine (mg/dL)
1.11 ± 1.4
0.8 ± 0.3
< 0.01
 eGFR (mL/min/1.73 m2)
70.1 ± 25.7
77.2 ± 19.4
< 0.01
 TG (mg/dL)
114 ± 63
130 ± 87
0.07
 HDL cholesterol (mg/dL)
49 ± 15
50 ± 16
0.68
 LDL cholesterol (mg/dL)
100 ± 28
100 ± 30
0.88
 HbA1c (%)
6.1 ± 0.8
5.8 ± 0.6
< 0.01
 BNP (pg/nL)
200.6 ± 516.0
160 ± 287
0.40
 Skin autofluorescence (a.u)
3.3 ± 0.4
2.4 ± 0.3
< 0.01
Medication
 Aspirin (%)
130 (82.3)
12 (78.1)
0.35
 ACE-I/ARB (%)
66 (41.8)
62 (38.8)
0.58
 Statin (%)
106 (67.1)
87 (54.4)
0.02
 β blocker (%)
116 (73.4)
116 (72.5)
0.85
 Ca antagonist (%)
29 (18.4)
21 (13.1)
0.20
 Loop diuretics (%)
110 (69.6)
108 (67.5)
0.68
 Oral hypoglycemic agent (%)
35 (22.2)
13 (8.1)
< 0.01
 Insulin (%)
14 (8.9)
0 (0)
< 0.01
Anaerobic threshold (AT)
 Workload (W)
43 ± 14
49 ± 15
< 0.01
 AT (mL/kg/min)
10.7 ± 2.2
11.8 ± 2.5
< 0.01
Peak exercise
 HR (/min)
111 ± 19
116 ± 20
0.03
 SBP (mmHg)
178 ± 30
173 ± 31
0.16
 DBP (mmHg)
86 ± 17
87 ± 17
0.41
 RER
1.12 ± 0.11
1.11 ± 0.10
0.18
 Workload (W)
77 ± 20
86 ± 21
< 0.01
 Peak VO2 (mL/kg/min)
15.6 ± 3.5
17.2 ± 3.8
< 0.01
 VE/VCO2
32.4 ± 7.5
29.5 ± 6.5
< 0.01
High SAF; defined as SAF levels > 2.8
Data are presented as the mean value ± SD. BMI body mass index, COPD chronic obstructive pulmonary disease, CVD cardiovascular disease, MI myocardial infarction, PCI percutaneous coronary intervention, CABG coronary artery bypass graft, CHF congestive heart failure, CR cardiac rehabilitation, LV left ventricular, EF ejection fraction, E early diastolic filling velocity, A late diastolic filling velocity, e’ early diastolic tissue velocity, eGFR estimate glomerular filtration rate, TG triglyceride, HDL high-density lipoprotein cholesterol, LDL low-density lipoprotein cholesterol, HbA1c hemoglobin A1c, BNP B-type natriuretic peptide, HR heart rate, SBP systolic blood pressure, DBP diastolic blood pressure, RER respiratory exchange ratio, peak VO2 peak oxygen uptake

Comparison between the diabetes and non-diabetes groups

The patients were divided into two groups by DM status and then classified as high or low SAF according to the median SAF level for the group (3.0 a.u. for the DM group and 2.7 a.u. for the non-DM group). Comparisons of the clinical characteristics between the high and low SAF subgroups tended to show the same trends in the DM and non-DM groups (Supplemental Tables 1 and 2). In the DM group, peak VO2 was significantly lower in the high SAF subgroup than in the low SAF subgroup (14.5 ± 3.1 vs. 16.1 ± 3.9 mL/kg/min, respectively; P <  0.05). Similarly, in the non-DM group, peakVO2 was significantly lower in the high SAF subgroup compared to the low SAF subgroup (16.4 ± 3.5 vs. 17.5 ± 3.8 mL/kg/min; P <  0.05) (Fig. 3).

Association between SAF levels and reduced EC

Reduced EC is considered to be clinically important [47]. Therefore, we performed a logistic regression analysis to investigate the factors that were independently associated with reduced EC, defined as peak VO2 ≤ 14 mL/kg/min (Supplemental Table 3 shows the comparisons of the clinical characteristics between the reduced and non-reduced EC groups). After adjusting for age, sex, BMI, DM, Atrial fibrillation, body fat percentage, E/e’, albumin, eGFR, HDL-cholesterol, BNP, aspirin and SAF, SAF level was found to be a significant independent factor associated with reduced EC (odds ratio 2.10, 95% confidence interval 1.13–4.05; P = 0.02) (Table 2).
Table 2
Logistic regression analysis of reduced EC
Variables
Univariate
Multivariate
Odds ratio
95% CI
P value
Odds ratio
95% CI
P value
Age
1.05
1.03–1.08
<  0.01
1.04
1.00–1.09
0.04
Female
1.82
1.01–3.22
< 0.05
0.97
0.31–2.96
0.96
BMI
1.08
1.01–1.17
< 0.05
0.98
0.83–1.15
0.76
Diabetes mellitus
2.64
1.61–4.38
<  0.01
1.56
0.74–3.26
0.24
Atrial fibrillation
3.99
2.15–7.52
<  0.01
1.48
0.55–3.90
0.43
Albumin
0.45
0.26–0.77
<  0.01
1.22
0.56–2.72
0.62
eGFR
0.97
0.96–0.99
<  0.01
0.99
0.97–1.01
0.18
BNP
1.00
1.00–1.002
<  0.01
1.00
0.99–1.00
0.73
E/e’
1.06
1.02–1.10
<  0.01
1.05
1.00–1.10
0.04
Body fat percentage
1.09
1.05–1.13
<  0.01
1.07
0.99–1.16
0.054
HDL cholesterol
0.98
0.96–0.99
< 0.05
0.98
0.96–1.01
0.14
Aspirin
0.46
0.26–0.83
<  0.01
0.57
0.20–1.63
0.29
SAF
2.63
1.72–4.13
<  0.01
2.10
1.13–4.05
0.02
EC exercise capacity, CI confidence interval, BMI body mass index, eGFR estimate glomerular filtration rate, BNP B-type natriuretic peptide, E early diastolic filling velocity, e’ early diastolic tissue velocity, HDL high density lipoproteins, SAF skin autofluorescence

Discussion

The results of this study showed that EC was significantly lower in patients with higher SAF levels regardless of their DM status and that SAF levels were independently associated with reduced EC, even while cardiac systolic and diastolic function were similar between both groups. To the best of our knowledge, this is the first study to demonstrate an association between SAF levels and reduced EC among patients with CVD who underwent CR.
Several studies reported an association between plasma AGEs and lower physical function in community-dwelling elderly people [12, 13]. In addition, a study of a Japanese population reported that SAF levels were significantly higher in the study group with lower muscle mass (defined by the Asian Working Group for Sarcopenia’s skeletal muscle mass index criteria) and were a significant independent factor associated with low skeletal muscle index values [17]. The results of the present study further confirm the relationship between SAF levels and reduced EC. This is an important finding because impaired EC is known to be a powerful predictor of poor prognosis [13]. A previous study of patients with HF with systolic dysfunction reported that SAF level were significantly higher and EC was significantly lower in patients with DM than in those without DM [25]. In addition, the patients with SAF levels above the mean value demonstrated lower EC [25]. Our findings are consistent with those of the previous report, and we additionally found that patients with higher SAF levels demonstrated significantly lower EC, even in the patients without DM.
It has been reported that patients with DM showed reduced muscle function and EC [2628]. Although the determinants of impaired physical function in patients with DM are poorly understood, several mechanisms have been proposed [29]. Previous studies demonstrated an inverse correlation between EC measured by peak VO2 and insulin resistance, and that increased SAF levels were positively associated with insulin resistance in patients with DM [3032]. It has also been reported that serum AGE levels were positively correlated with insulin resistance even in non-DM patients [33]. Furthermore, previous studies reported that diabetes and hyperglycemia are associated with mitochondrial dysfunction and increased levels of mitochondrial reactive oxygen species in the vasculature, resulting in endothelial nitric oxide synthase inhibition [34, 35]. In addition to these direct effects, AGEs can bind with AGE receptors, which can result in endothelial dysfunction and the enhanced production of reactive oxygen species [36]. Animal experiments suggested that endothelial nitric oxide could be a factor in EC regulation [3437]. Crosslinking of myocardial collagen with AGEs may contribute to increased myocardial stiffness and diastolic dysfunction [11, 36]. In addition, left ventricular diastolic dysfunction due to DM is associated with decreased left ventricular compliance, resulting in a restricted ability to increase cardiac output during exercise, thereby limiting EC [38, 39]. Previous studies have reported that diastolic dysfunction assessed by E/e’ is a strong predictor of exercise intolerance, and this association was independent of DM [40, 41]. Consistent with these studies, our investigation demonstrated that E/e’ was one of the significant factors influencing reduced EC. In the present study, age was also associated with reduced EC. It has been suggested that the effects of aging on exercise intolerance are due in part to decreased activity and changes in body composition [42]. Moreover, the accumulation of AGEs has also been observed to be associated with aging, lifestyle habits such as specific food intake, and smoking, in addition to the presence of chronic inflammatory conditions such as metabolic syndrome, arteriosclerosis, and renal disease [9, 10, 43]. The deterioration of EC with AGE accumulation may, therefore, be the result of AGEs causing the functional decline of several organ systems that regulate EC, regardless of DM status. A recent meta-analysis demonstrated that SAF levels were a predictor of mortality in high-risk patients [15]. This could potentially be explained by the association between high SAF levels and reduced EC observed in the present study. As for interventions, a recent study reported that alagebrium, proposed as an AGE-breaker, did not ameliorate EC and cardiac function, but also failed to lower SAF levels in patients with HF [44]. Thus, further studies are needed to elucidate the mechanisms by which AGEs affect EC.
Body fat percentage also tended to have an effect on reduced EC in the present study. Although interactions between AGEs and adipocytes have not been fully clarified [45], the accumulation of body fat may relate to deterioration in insulin sensitivity, increased intracellular lipids in skeletal muscle, and the decreased metabolic ability of mitochondria, ultimately resulting in decreased oxygen intake during exercise [4649].
This study exhibits several limitations. First, this was a single-center and retrospective cross-sectional study with a small sample size, so we could not establish a causal relationship between SAF level and reduced EC. Second, we enrolled patients with CVD who underwent CR. Third, the method of SAF assessment did not measure the total accumulation of all AGEs in the body. Fourth, SAF represents not only the fluorescence values resulting from skin AGEs, but also from other fluorophores such as keratin, therefore assessment of SAF may not be an accurate measurement of the skin’s AGE content [50]. Fifth, previous studies suggest that the reliability of AGE analysis in skin may depend on skin color, as this affects the skin’s tendency to absorb excitation light [51]. Sixth, SAF is strongly influenced by the use of skin creams, which leads to elevated SAF values and decreased skin reflectance [52]. Seventh, SAF is a surrogate marker of tissue accumulation of AGEs. Whether skin AGEs reflect the accumulation of AGEs in cardiac tissue is an important question, and further investigations are needed to answer it. Finally, the diagnosis of DM may have been underestimated because some patients did not undergo an oral glucose tolerance test.

Conclusion

In conclusion, this study demonstrated that high levels of tissue accumulated AGEs, as assessed by SAF, were significantly and independently associated with reduced EC. These data suggest that the measurement of the tissue accumulation of AGEs may be useful for patients undergoing CR, including those without DM. Further studies should be carried out to determine whether elevated SAF levels are a specific predicter of decline in EC in patients undergoing CR and to corroborate these findings in other patients with CVD.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12872-020-01484-3.

Acknowledgments

The authors wish to thank all study participants and members of date collection in Cardiovascular Rehabilitation and Fitness.
Approval was received from the Juntendo University and authorization for the usage of medical records was obtained. The study protocol was approved by the ethical committee of Juntendo University Hospital, and the study was conducted in accordance with the principles of the Helsinki Declaration. Written informed consents from all patients enrolled were obtained.
Not Applicable.

Competing interests

A.J. Smit is co-founder and shareholder of Diagnoptics Technologies, the company which developed the AGE reader. The other authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Vanhees L, Fagard R, Thijs L, Staessen J, Amery A. Prognostic significance of peak exercise capacity in patients with coronary artery disease. J Am Coll Cardiol. 1994;23(2):358–63.PubMedCrossRef Vanhees L, Fagard R, Thijs L, Staessen J, Amery A. Prognostic significance of peak exercise capacity in patients with coronary artery disease. J Am Coll Cardiol. 1994;23(2):358–63.PubMedCrossRef
2.
Zurück zum Zitat Leeper NJ, Myers J, Zhou M, Nead KT, Syed A, Kojima Y, et al. Exercise capacity is the strongest predictor of mortality in patients with peripheral arterial disease. J Vasc Surg. 2013;57(3):728–33.PubMedCrossRef Leeper NJ, Myers J, Zhou M, Nead KT, Syed A, Kojima Y, et al. Exercise capacity is the strongest predictor of mortality in patients with peripheral arterial disease. J Vasc Surg. 2013;57(3):728–33.PubMedCrossRef
3.
Zurück zum Zitat Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801.PubMedCrossRef Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801.PubMedCrossRef
4.
Zurück zum Zitat Mancini DM, Eisen H, Kussmaul W, Mull R, Edmunds LH Jr, Wilson JR. Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation. 1991;83(3):778–86.PubMedCrossRef Mancini DM, Eisen H, Kussmaul W, Mull R, Edmunds LH Jr, Wilson JR. Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation. 1991;83(3):778–86.PubMedCrossRef
5.
Zurück zum Zitat Gitt AK, Wasserman K, Kilkowski C, Kleemann T, Kilkowski A, Bangert M, et al. Exercise anaerobic threshold and ventilatory efficiency identify heart failure patients for high risk of early death. Circulation. 2002;106(24):3079–84.PubMedCrossRef Gitt AK, Wasserman K, Kilkowski C, Kleemann T, Kilkowski A, Bangert M, et al. Exercise anaerobic threshold and ventilatory efficiency identify heart failure patients for high risk of early death. Circulation. 2002;106(24):3079–84.PubMedCrossRef
6.
Zurück zum Zitat Osada N, Chaitman BR, Miller LW, Yip D, Cishek MB, Wolford TL, et al. Cardiopulmonary exercise testing identifies low risk patients with heart failure and severely impaired exercise capacity considered for heart transplantation. J Am Coll Cardiol. 1998;31(3):577–82.PubMedCrossRef Osada N, Chaitman BR, Miller LW, Yip D, Cishek MB, Wolford TL, et al. Cardiopulmonary exercise testing identifies low risk patients with heart failure and severely impaired exercise capacity considered for heart transplantation. J Am Coll Cardiol. 1998;31(3):577–82.PubMedCrossRef
7.
Zurück zum Zitat Zugck C, Haunstetter A, Kruger C, Kell R, Schellberg D, Kubler W, et al. Impact of beta-blocker treatment on the prognostic value of currently used risk predictors in congestive heart failure. J Am Coll Cardiol. 2002;39(10):1615–22.PubMedCrossRef Zugck C, Haunstetter A, Kruger C, Kell R, Schellberg D, Kubler W, et al. Impact of beta-blocker treatment on the prognostic value of currently used risk predictors in congestive heart failure. J Am Coll Cardiol. 2002;39(10):1615–22.PubMedCrossRef
8.
Zurück zum Zitat Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.PubMedCrossRef Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.PubMedCrossRef
9.
Zurück zum Zitat Prasad K, Dhar I, Caspar-Bell G. Role of advanced Glycation end products and its receptors in the pathogenesis of cigarette smoke-induced cardiovascular disease. Int J Angiol. 2015;24(2):75–80.PubMed Prasad K, Dhar I, Caspar-Bell G. Role of advanced Glycation end products and its receptors in the pathogenesis of cigarette smoke-induced cardiovascular disease. Int J Angiol. 2015;24(2):75–80.PubMed
11.
Zurück zum Zitat Kovacic JC, Castellano JM, Farkouh ME, Fuster V. The relationships between cardiovascular disease and diabetes: focus on pathogenesis. Endocrinol Metab Clin N Am. 2014;43(1):41–57.CrossRef Kovacic JC, Castellano JM, Farkouh ME, Fuster V. The relationships between cardiovascular disease and diabetes: focus on pathogenesis. Endocrinol Metab Clin N Am. 2014;43(1):41–57.CrossRef
12.
Zurück zum Zitat Dalal M, Ferrucci L, Sun K, Beck J, Fried LP, Semba RD. Elevated serum advanced glycation end products and poor grip strength in older community-dwelling women. J Gerontol A Biol Sci Med Sci. 2009;64(1):132–7.PubMedCrossRef Dalal M, Ferrucci L, Sun K, Beck J, Fried LP, Semba RD. Elevated serum advanced glycation end products and poor grip strength in older community-dwelling women. J Gerontol A Biol Sci Med Sci. 2009;64(1):132–7.PubMedCrossRef
13.
Zurück zum Zitat Semba RD, Bandinelli S, Sun K, Guralnik JM, Ferrucci L. Relationship of an advanced glycation end product, plasma carboxymethyl-lysine, with slow walking speed in older adults: the InCHIANTI study. Eur J Appl Physiol. 2010;108(1):191–5.PubMedCrossRef Semba RD, Bandinelli S, Sun K, Guralnik JM, Ferrucci L. Relationship of an advanced glycation end product, plasma carboxymethyl-lysine, with slow walking speed in older adults: the InCHIANTI study. Eur J Appl Physiol. 2010;108(1):191–5.PubMedCrossRef
14.
Zurück zum Zitat Yamagishi S, Fukami K, Matsui T. Evaluation of tissue accumulation levels of advanced glycation end products by skin autofluorescence: a novel marker of vascular complications in high-risk patients for cardiovascular disease. Int J Cardiol. 2015;185:263–8.PubMedCrossRef Yamagishi S, Fukami K, Matsui T. Evaluation of tissue accumulation levels of advanced glycation end products by skin autofluorescence: a novel marker of vascular complications in high-risk patients for cardiovascular disease. Int J Cardiol. 2015;185:263–8.PubMedCrossRef
15.
Zurück zum Zitat Cavero-Redondo I, Soriano-Cano A, Alvarez-Bueno C, Cunha PG, Martinez-Hortelano JA, Garrido-Miguel M, et al. Skin autofluorescence-indicated advanced Glycation end products as predictors of cardiovascular and all-cause mortality in high-risk subjects: a systematic review and meta-analysis. J Am Heart Assoc. 2018;7(18):e009833.PubMedPubMedCentralCrossRef Cavero-Redondo I, Soriano-Cano A, Alvarez-Bueno C, Cunha PG, Martinez-Hortelano JA, Garrido-Miguel M, et al. Skin autofluorescence-indicated advanced Glycation end products as predictors of cardiovascular and all-cause mortality in high-risk subjects: a systematic review and meta-analysis. J Am Heart Assoc. 2018;7(18):e009833.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat van Waateringe RP, Fokkens BT, Slagter SN, van der Klauw MM, van Vliet-Ostaptchouk JV, Graaff R, et al. Skin autofluorescence predicts incident type 2 diabetes, cardiovascular disease and mortality in the general population. Diabetologia. 2019;62(2):269–80.PubMedCrossRef van Waateringe RP, Fokkens BT, Slagter SN, van der Klauw MM, van Vliet-Ostaptchouk JV, Graaff R, et al. Skin autofluorescence predicts incident type 2 diabetes, cardiovascular disease and mortality in the general population. Diabetologia. 2019;62(2):269–80.PubMedCrossRef
17.
Zurück zum Zitat Kato M, Kubo A, Sugioka Y, Mitsui R, Fukuhara N, Nihei F, et al. Relationship between advanced glycation end-product accumulation and low skeletal muscle mass in Japanese men and women. Geriatr Gerontol Int. 2017;17(5):785–90.PubMedCrossRef Kato M, Kubo A, Sugioka Y, Mitsui R, Fukuhara N, Nihei F, et al. Relationship between advanced glycation end-product accumulation and low skeletal muscle mass in Japanese men and women. Geriatr Gerontol Int. 2017;17(5):785–90.PubMedCrossRef
18.
Zurück zum Zitat Meerwaldt R, Graaff R, Oomen PHN, Links TP, Jager JJ, Alderson NL, et al. Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia. 2004;47(7):1324–30.PubMedCrossRef Meerwaldt R, Graaff R, Oomen PHN, Links TP, Jager JJ, Alderson NL, et al. Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia. 2004;47(7):1324–30.PubMedCrossRef
20.
Zurück zum Zitat Lutgers HL, Graaff R, Links TP, Ubink-Veltmaat LJ, Bilo HJ, Gans RO, et al. Skin autofluorescence as a noninvasive marker of vascular damage in patients with type 2 diabetes. Diabetes Care. 2006;29(12):2654–9.PubMedCrossRef Lutgers HL, Graaff R, Links TP, Ubink-Veltmaat LJ, Bilo HJ, Gans RO, et al. Skin autofluorescence as a noninvasive marker of vascular damage in patients with type 2 diabetes. Diabetes Care. 2006;29(12):2654–9.PubMedCrossRef
21.
Zurück zum Zitat Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53(6):982–92.PubMedCrossRef Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53(6):982–92.PubMedCrossRef
22.
Zurück zum Zitat Nishitani M, Shimada K, Masaki M, Sunayama S, Kume A, Fukao K, et al. Effect of cardiac rehabilitation on muscle mass, muscle strength, and exercise tolerance in diabetic patients after coronary artery bypass grafting. J Cardiol. 2013;61(3):216–21.PubMedCrossRef Nishitani M, Shimada K, Masaki M, Sunayama S, Kume A, Fukao K, et al. Effect of cardiac rehabilitation on muscle mass, muscle strength, and exercise tolerance in diabetic patients after coronary artery bypass grafting. J Cardiol. 2013;61(3):216–21.PubMedCrossRef
23.
Zurück zum Zitat Nishitani-Yokoyama M, Miyauchi K, Shimada K, Yokoyama T, Ouchi S, Aikawa T, et al. Impact of physical activity on coronary plaque volume and components in acute coronary syndrome patients after early phase II cardiac rehabilitation. Circ J. 2018;83(1):101–9.PubMedCrossRef Nishitani-Yokoyama M, Miyauchi K, Shimada K, Yokoyama T, Ouchi S, Aikawa T, et al. Impact of physical activity on coronary plaque volume and components in acute coronary syndrome patients after early phase II cardiac rehabilitation. Circ J. 2018;83(1):101–9.PubMedCrossRef
24.
Zurück zum Zitat Kunimoto M, Shimada K, Yokoyama M, Matsubara T, Aikawa T, Ouchi S, et al. Relationship between the Kihon checklist and the clinical parameters in patients who participated in cardiac rehabilitation. Geriatr Gerontol Int. 2019;19(4):287–92.PubMedCrossRef Kunimoto M, Shimada K, Yokoyama M, Matsubara T, Aikawa T, Ouchi S, et al. Relationship between the Kihon checklist and the clinical parameters in patients who participated in cardiac rehabilitation. Geriatr Gerontol Int. 2019;19(4):287–92.PubMedCrossRef
25.
Zurück zum Zitat Willemsen S, Hartog JW, Hummel YM, van Ruijven MH, van der Horst IC, van Veldhuisen DJ, et al. Tissue advanced glycation end products are associated with diastolic function and aerobic exercise capacity in diabetic heart failure patients. Eur J Heart Fail. 2011;13(1):76–82.PubMedCrossRef Willemsen S, Hartog JW, Hummel YM, van Ruijven MH, van der Horst IC, van Veldhuisen DJ, et al. Tissue advanced glycation end products are associated with diastolic function and aerobic exercise capacity in diabetic heart failure patients. Eur J Heart Fail. 2011;13(1):76–82.PubMedCrossRef
26.
Zurück zum Zitat Park SW, Goodpaster BH, Strotmeyer ES, de Rekeneire N, Harris TB, Schwartz AV, et al. Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes. 2006;55(6):1813–8.PubMedCrossRef Park SW, Goodpaster BH, Strotmeyer ES, de Rekeneire N, Harris TB, Schwartz AV, et al. Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes. 2006;55(6):1813–8.PubMedCrossRef
27.
Zurück zum Zitat Kunitomi M, Takahashi K, Wada J, Suzuki H, Miyatake N, Ogawa S, et al. Re-evaluation of exercise prescription for Japanese type 2 diabetic patients by ventilatory threshold. Diabetes Res Clin Pract. 2000;50(2):109–15.PubMedCrossRef Kunitomi M, Takahashi K, Wada J, Suzuki H, Miyatake N, Ogawa S, et al. Re-evaluation of exercise prescription for Japanese type 2 diabetic patients by ventilatory threshold. Diabetes Res Clin Pract. 2000;50(2):109–15.PubMedCrossRef
28.
Zurück zum Zitat Nishitani M, Shimada K, Sunayama S, Masaki Y, Kume A, Fukao K, et al. Impact of diabetes on muscle mass, muscle strength, and exercise tolerance in patients after coronary artery bypass grafting. J Cardiol. 2011;58(2):173–80.PubMedCrossRef Nishitani M, Shimada K, Sunayama S, Masaki Y, Kume A, Fukao K, et al. Impact of diabetes on muscle mass, muscle strength, and exercise tolerance in patients after coronary artery bypass grafting. J Cardiol. 2011;58(2):173–80.PubMedCrossRef
29.
30.
Zurück zum Zitat Nadeau KJ, Zeitler PS, Bauer TA, Brown MS, Dorosz JL, Draznin B, et al. Insulin resistance in adolescents with type 2 diabetes is associated with impaired exercise capacity. J Clin Endocrinol Metab. 2009;94(10):3687–95.PubMedPubMedCentralCrossRef Nadeau KJ, Zeitler PS, Bauer TA, Brown MS, Dorosz JL, Draznin B, et al. Insulin resistance in adolescents with type 2 diabetes is associated with impaired exercise capacity. J Clin Endocrinol Metab. 2009;94(10):3687–95.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Nadeau KJ, Regensteiner JG, Bauer TA, Brown MS, Dorosz JL, Hull A, et al. Insulin resistance in adolescents with type 1 diabetes and its relationship to cardiovascular function. J Clin Endocrinol Metab. 2010;95(2):513–21.PubMedCrossRef Nadeau KJ, Regensteiner JG, Bauer TA, Brown MS, Dorosz JL, Hull A, et al. Insulin resistance in adolescents with type 1 diabetes and its relationship to cardiovascular function. J Clin Endocrinol Metab. 2010;95(2):513–21.PubMedCrossRef
32.
Zurück zum Zitat Uruska A, Gandecka A, Araszkiewicz A, Zozulinska-Ziolkiewicz D. Accumulation of advanced glycation end products in the skin is accelerated in relation to insulin resistance in people with type 1 diabetes mellitus. Diabet Med. 2019;36(5):620–5. Uruska A, Gandecka A, Araszkiewicz A, Zozulinska-Ziolkiewicz D. Accumulation of advanced glycation end products in the skin is accelerated in relation to insulin resistance in people with type 1 diabetes mellitus. Diabet Med. 2019;36(5):620–5.
33.
Zurück zum Zitat Tahara N, Yamagishi S, Matsui T, Takeuchi M, Nitta Y, Kodama N, et al. Serum levels of advanced glycation end products (AGEs) are independent correlates of insulin resistance in nondiabetic subjects. Cardiovasc Ther. 2012;30(1):42–8.PubMedCrossRef Tahara N, Yamagishi S, Matsui T, Takeuchi M, Nitta Y, Kodama N, et al. Serum levels of advanced glycation end products (AGEs) are independent correlates of insulin resistance in nondiabetic subjects. Cardiovasc Ther. 2012;30(1):42–8.PubMedCrossRef
34.
Zurück zum Zitat Knaub LA, McCune S, Chicco AJ, Miller M, Moore RL, Birdsey N, et al. Impaired response to exercise intervention in the vasculature in metabolic syndrome. Diab Vasc Dis Res. 2013;10(3):222–38.PubMedCrossRef Knaub LA, McCune S, Chicco AJ, Miller M, Moore RL, Birdsey N, et al. Impaired response to exercise intervention in the vasculature in metabolic syndrome. Diab Vasc Dis Res. 2013;10(3):222–38.PubMedCrossRef
35.
Zurück zum Zitat Srinivasan S, Hatley ME, Bolick DT, Palmer LA, Edelstein D, Brownlee M, et al. Hyperglycaemia-induced superoxide production decreases eNOS expression via AP-1 activation in aortic endothelial cells. Diabetologia. 2004;47(10):1727–34.PubMedCrossRef Srinivasan S, Hatley ME, Bolick DT, Palmer LA, Edelstein D, Brownlee M, et al. Hyperglycaemia-induced superoxide production decreases eNOS expression via AP-1 activation in aortic endothelial cells. Diabetologia. 2004;47(10):1727–34.PubMedCrossRef
36.
37.
Zurück zum Zitat Maxwell AJ, Schauble E, Bernstein D, Cooke JP. Limb blood flow during exercise is dependent on nitric oxide. Circulation. 1998;98(4):369–74.PubMedCrossRef Maxwell AJ, Schauble E, Bernstein D, Cooke JP. Limb blood flow during exercise is dependent on nitric oxide. Circulation. 1998;98(4):369–74.PubMedCrossRef
38.
Zurück zum Zitat Fang ZY, Sharman J, Prins JB, Marwick TH. Determinants of exercise capacity in patients with type 2 diabetes. Diabetes Care. 2005;28(7):1643–8.PubMedCrossRef Fang ZY, Sharman J, Prins JB, Marwick TH. Determinants of exercise capacity in patients with type 2 diabetes. Diabetes Care. 2005;28(7):1643–8.PubMedCrossRef
39.
Zurück zum Zitat Kitzman DW, Higginbotham MB, Cobb FR, Sheikh KH, Sullivan MJ. Exercise intolerance in patients with heart failure and preserved left ventricular systolic function: failure of the frank-Starling mechanism. J Am Coll Cardiol. 1991;17(5):1065–72.PubMedCrossRef Kitzman DW, Higginbotham MB, Cobb FR, Sheikh KH, Sullivan MJ. Exercise intolerance in patients with heart failure and preserved left ventricular systolic function: failure of the frank-Starling mechanism. J Am Coll Cardiol. 1991;17(5):1065–72.PubMedCrossRef
41.
Zurück zum Zitat Fontes-Carvalho R, Sampaio F, Teixeira M, Rocha-Gonçalves F, Gama V, Azevedo A, et al. Left ventricular diastolic dysfunction and E/E' ratio as the strongest echocardiographic predictors of reduced exercise capacity after acute myocardial infarction. Clin Cardiol. 2015;38(4):222–9.PubMedPubMedCentralCrossRef Fontes-Carvalho R, Sampaio F, Teixeira M, Rocha-Gonçalves F, Gama V, Azevedo A, et al. Left ventricular diastolic dysfunction and E/E' ratio as the strongest echocardiographic predictors of reduced exercise capacity after acute myocardial infarction. Clin Cardiol. 2015;38(4):222–9.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Hawkins S, Wiswell R. Rate and mechanism of maximal oxygen consumption decline with aging:implications for exercise training. Sports Med. 2003;33(12):877–88.PubMedCrossRef Hawkins S, Wiswell R. Rate and mechanism of maximal oxygen consumption decline with aging:implications for exercise training. Sports Med. 2003;33(12):877–88.PubMedCrossRef
43.
Zurück zum Zitat Luevano-Contreras C, Gomez-Ojeda A, Macias-Cervantes MH, Garay-Sevilla ME. Dietary advanced Glycation end products and Cardiometabolic risk. Curr Diab Rep. 2017;17(8):63.PubMedCrossRef Luevano-Contreras C, Gomez-Ojeda A, Macias-Cervantes MH, Garay-Sevilla ME. Dietary advanced Glycation end products and Cardiometabolic risk. Curr Diab Rep. 2017;17(8):63.PubMedCrossRef
44.
Zurück zum Zitat Hartog JW, Willemsen S, van Veldhuisen DJ, Posma JL, van Wijk LM, Hummel YM, et al. Effects of alagebrium, an advanced glycation endproduct breaker, on exercise tolerance and cardiac function in patients with chronic heart failure. Eur J Heart Fail. 2011;13(8):899–908.PubMedCrossRef Hartog JW, Willemsen S, van Veldhuisen DJ, Posma JL, van Wijk LM, Hummel YM, et al. Effects of alagebrium, an advanced glycation endproduct breaker, on exercise tolerance and cardiac function in patients with chronic heart failure. Eur J Heart Fail. 2011;13(8):899–908.PubMedCrossRef
45.
Zurück zum Zitat Boyer F, Vidot JB, Dubourg AG, Rondeau P, Essop MF, Bourdon E. Oxidative stress and adipocyte biology: focus on the role of AGEs. Oxidative Med Cell Longev. 2015;2015:534873.CrossRef Boyer F, Vidot JB, Dubourg AG, Rondeau P, Essop MF, Bourdon E. Oxidative stress and adipocyte biology: focus on the role of AGEs. Oxidative Med Cell Longev. 2015;2015:534873.CrossRef
46.
Zurück zum Zitat Stewart KJ. Exercise training and the cardiovascular consequences of type 2 diabetes and hypertension: plausible mechanisms for improving cardiovascular health. JAMA. 2002;288(13):1622–31.PubMedCrossRef Stewart KJ. Exercise training and the cardiovascular consequences of type 2 diabetes and hypertension: plausible mechanisms for improving cardiovascular health. JAMA. 2002;288(13):1622–31.PubMedCrossRef
47.
Zurück zum Zitat Ribisl PM, Lang W, Jaramillo SA, Jakicic JM, Stewart KJ, Bahnson J, et al. Exercise capacity and cardiovascular/metabolic characteristics of overweight and obese individuals with type 2 diabetes: the look AHEAD clinical trial. Diabetes Care. 2007;30(10):2679–84.PubMedCrossRef Ribisl PM, Lang W, Jaramillo SA, Jakicic JM, Stewart KJ, Bahnson J, et al. Exercise capacity and cardiovascular/metabolic characteristics of overweight and obese individuals with type 2 diabetes: the look AHEAD clinical trial. Diabetes Care. 2007;30(10):2679–84.PubMedCrossRef
48.
Zurück zum Zitat Wei M, Gibbons LW, Kampert JB, Nichaman MZ, Blair SN. Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes. Ann Intern Med. 2000;132(8):605–11.PubMedCrossRef Wei M, Gibbons LW, Kampert JB, Nichaman MZ, Blair SN. Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes. Ann Intern Med. 2000;132(8):605–11.PubMedCrossRef
49.
Zurück zum Zitat Rovira-Llopis S, Banuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM. Mitochondrial dynamics in type 2 diabetes: pathophysiological implications. Redox Biol. 2017;11:637–45.PubMedPubMedCentralCrossRef Rovira-Llopis S, Banuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM. Mitochondrial dynamics in type 2 diabetes: pathophysiological implications. Redox Biol. 2017;11:637–45.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Koetsier M, Nur E, Chunmao H, Lutgers HL, Links TP, Smit AJ, et al. Skin color independent assessment of aging using skin autofluorescence. Opt Express. 2010;18(14):14416–29.PubMedCrossRef Koetsier M, Nur E, Chunmao H, Lutgers HL, Links TP, Smit AJ, et al. Skin color independent assessment of aging using skin autofluorescence. Opt Express. 2010;18(14):14416–29.PubMedCrossRef
51.
Zurück zum Zitat Mulder DJ, Water TV, Lutgers HL, Graaff R, Gans RO, Zijlstra F, et al. Skin autofluorescence, a novel marker for glycemic and oxidative stress-derived advanced glycation endproducts: an overview of current clinical studies, evidence, and limitations. Diabetes Technol Ther. 2006;8(5):523–35.PubMedCrossRef Mulder DJ, Water TV, Lutgers HL, Graaff R, Gans RO, Zijlstra F, et al. Skin autofluorescence, a novel marker for glycemic and oxidative stress-derived advanced glycation endproducts: an overview of current clinical studies, evidence, and limitations. Diabetes Technol Ther. 2006;8(5):523–35.PubMedCrossRef
52.
Zurück zum Zitat Noordzij MJ, Lefrandt JD, Graaff R, Smit AJ. Dermal factors influencing measurement of skin autofluorescence. Diabetes Technol Ther. 2011;13(2):165–70.PubMedCrossRef Noordzij MJ, Lefrandt JD, Graaff R, Smit AJ. Dermal factors influencing measurement of skin autofluorescence. Diabetes Technol Ther. 2011;13(2):165–70.PubMedCrossRef
Metadaten
Titel
Association between the tissue accumulation of advanced glycation end products and exercise capacity in cardiac rehabilitation patients
verfasst von
Mitsuhiro Kunimoto
Kazunori Shimada
Miho Yokoyama
Tomomi Matsubara
Tatsuro Aikawa
Shohei Ouchi
Megumi Shimizu
Kosuke Fukao
Tetsuro Miyazaki
Tomoyasu Kadoguchi
Kei Fujiwara
Abidan Abulimiti
Akio Honzawa
Miki Yamada
Akie Shimada
Taira Yamamoto
Tohru Asai
Atsushi Amano
Andries J. Smit
Hiroyuki Daida
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Cardiovascular Disorders / Ausgabe 1/2020
Elektronische ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-020-01484-3

Weitere Artikel der Ausgabe 1/2020

BMC Cardiovascular Disorders 1/2020 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.