Skip to main content
Erschienen in: BMC Infectious Diseases 1/2019

Open Access 01.12.2019 | Research article

Association between the vaginal microbiome and high-risk human papillomavirus infection in pregnant Chinese women

verfasst von: Yulian Chen, Zubei Hong, Wenjing Wang, Liying Gu, Hua Gao, Lihua Qiu, Wen Di

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2019

Abstract

Background

In this study, the association between high-risk human papillomavirus (hrHPV) infection and the vaginal microbiome in pregnant women was evaluated in Chinese cohorts.

Methods

The vaginal bacterial composition of four groups, 38 hrHPV-infected pregnant women (PHR, n = 38), pregnant women without HPV infection (PN, n = 48), nonpregnant women with hrHPV infection (NPHR, n = 19) and nonpregnant women without HPV infection (NPN, n = 30), was characterized by deep sequencing of barcoded 16S rRNA gene fragments (V3–4) using Illumina MiSeq.

Results

The results revealed that both pregnancy and HPV infection can increase vaginal bacterial microbial richness and diversity, with the bacterial composition being most influenced by pregnancy. Lactobacillus was the most dominant genus among all samples. NPN samples were dominated by CST (community state type) III, mainly composed of Lactobacillus iners. Both pregnancy and hrHPV infection were accompanied by an increased proportion of CST I (dominated by Lactobacillus crispatus), as opposed to CST III. Bifidobacterium, Bacillus, Megasphaera, Sneathia, Prevotella, Gardnerella, Fastidiosipila and Dialister were found to be biomarkers for hrHPV-infected women, though different genera (Bifidobacterium, Megasphaera, Bacillus, Acidovorax, Oceanobacillus and Lactococcus) were associated with hrHPV-infected pregnant women.

Conclusions

This work uncovered a probable synergistic effect of hrHPV infection and pregnancy on the vaginal microbial composition. HPV infection in pregnant women was associated with a more complex and diverse microbial environment.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12879-019-4279-6) contains supplementary material, which is available to authorized users.
Yulian Chen and Zubei Hong contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CIN
Cervical intraepithelial neoplasia
CST
Community state type
HPV
Human papillomavirus
hrHPV
High-risk human papillomavirus
LEfSe
Linear discriminant analysis (LDA) effect size
OTUs
Operational taxonomic units
PCoA
Principal coordinates analysis
RDA
Redundancy analysis
RDP
Ribosomal Database Project
TCT
ThinPrep cytology test

Background

Human papillomavirus (HPV), a type of DNA virus, is associated with cervical intraepithelial neoplasia (CIN) and cervical adenocarcinoma. Indeed, HPV infection is closely related with cervical cancer and it is also present in other anogenital, head and neck cancers. According to their oncogenic potential, more than 100 types of HPV were classified as high-risk, probable high-risk, and low-risk types [1]. More than 40 types are sexually transmitted and infect the anus and genitals. Compared to warts caused by low-risk HPV types, high-risk HPV types, which account for 99% of cervical neoplasias, are usually asymptomatic [1], and as a result, these latter types are more difficult to detect. Many factors have been proven to increase the risk of genital HPV infection, e.g., sexual behaviors, number of sexual partners, early onset of sexual activity and coinfection with other sexually transmitted infections [24].
A large number of microorganisms inhabit the female genital tract, and hundreds of studies have revealed that a dominance of Lactobacillus lowers bacterial richness and diversity, indicating a healthy vaginal status. A healthy microbial biofilm may prevent or hinder many urogenital diseases, such as Candida infection [5, 6], sexually transmitted diseases [7], urinary tract infections [8, 9] and human immunodeficiency virus (HIV) infection [10]. Some studies to date have also reported that changes in the vaginal microbial structure have a close connection with HPV infection [1114] and CIN progression [1517].
Pregnancy is a unique physiological state, and the composition of the vaginal microbiota changes when women become pregnant due to fluctuations in hormone levels [18, 19]. It has been claimed that a vaginal bacterial composition dominated by one or two species of Lactobacillus is especially present during pregnancy [1820]. However, dysbiosis of the vaginal microbiota during pregnancy has been reported to be associated with many complications of pregnancy, such as an increased risk of miscarriage, preterm birth and endometritis [18, 21, 22], yet few studies have investigated the relationship between HPV infection and the vaginal microbiome in pregnant women. It has been reported that children born to HPV-positive mothers have a significantly higher risk for developing infantile anal and genital warts [23], though the occurrence rate of cervical precancerous lesions during pregnancy is comparable to that of nonpregnant women [24]. Overall, the prevalence of HPV in pregnant women remains controversial in the literature, varying from 16.8 to 34.2% [2528]. Hence, it is still under debate whether pregnant women are predisposed toward HPV infection, and the factors that may influence susceptibility are unclear. Because the vaginal microbiome plays an important role in HPV infection in nonpregnant women, we hypothesized that a different vaginal microbial environment during pregnancy might facilitate HPV infection.
Therefore, the aim of this study is to investigate the association between the vaginal microbial composition and high-risk HPV infection in pregnant women. We attempt to distinguish a different microbial profile of HPV-infected pregnant women from that of nonpregnant women.

Methods

Study population and sample collection

Between May 2016 and September 2016, 38 hrHPV (high-risk human papillomavirus)-infected pregnant women (PHR, n = 38) and 48 pregnant women without HPV infection (PN, n = 48) and with an uncomplicated pregnancy were recruited for this study at their first antenatal care visit at the Department of Obstetrics, Renji Hospital of Shanghai, Jiao Tong University School of Medicine. The inclusion criteria for this cohort study were as follows: age ranging from 25 to 40 years; gestational age between 16 and 30 weeks; and no obvious medical problems or adverse outcomes during any previous pregnancy, such as preterm delivery, diabetes, autoimmune disease or malignant tumors. Participants who had participated in sexual activity or vaginal lavage within 72 h of sampling, reported cervical disease or genital HPV infection, reported vaginal bleeding in the preceding weeks, or used probiotics, antibiotics or corticoids in the preceding 2 weeks were excluded. Two other nonpregnant groups with the same age range and a normal medical history were established as control groups: nonpregnant women with hrHPV infection (NPHR, n = 19) and nonpregnant women without HPV infection (NPN, n = 30).
All enrolled women were preliminarily screened by both an HPV genotyping test and the ThinPrep cytology test (TCT). HPV detection and genotyping were performed using a commercial HPV genotyping kit for 21 HPV types (Hybribio®, Guangdong): 15 high-risk HPV types (16, 18, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68) and 6 low-risk HPV types (6, 11, 42, 43,44 and 81). Pap smears of cervical exfoliated cells were evaluated by two experienced pathologists. Cytological cell samples were categorized according to Bethesda System criteria [29].
Samples for vaginal microbial analysis were collected from the lateral and posterior fornix using a sterile swab under direct visualization during a speculum examination. The vaginal swab samples were immediately frozen and stored at − 80 °C until extraction.

Total bacterial genomic DNA extraction and MiSeq sequencing

The swabs obtained were thawed on ice, and cells were suspended in transport buffer by vortexing and transferred to a sterile DNase/RNase-free 2.0 mL tube for enzymatic lysis. The lysate was purified using a QIAamp DNA Mini Kit (Qiagen®) according to the manufacturer’s recommendations. The total genomic DNA quality was assessed by 1% agarose gel electrophoresis, and the DNA concentration was measured using a Nanodrop ND-2000 (Nanodrop®).
The V3–4 hypervariable regions of the 16S rRNA gene were amplified using primers 338F (ACTCCTACGGGAGGCAGCA) and 806R (GGACTACHVGGGTWTCTAAT). An 8-bp barcode sequence was added to the ends of both the forward and reverse primers. Amplification was performed in 50-μl reactions with TransStart Fast Pfu DNA Polymerase (TransGen Biotech®), 200 nM of each primer and 2 μl of template. The reactions were performed using a GeneAmp PCR System 9700 (Applied Biosystems®) under the following thermal profile: 94 °C for 2 min, followed by 30 cycles of 94 °C for 30 s, 57 °C for 30 s, and 72 °C for 30 s, and one cycle of 72 °C for 10 min and a 4 °C hold. Three PCR products per sample were pooled to reduce reaction-level PCR bias. PCR products were examined by 2% agarose gel electrophoresis and then purified using an AxyPrep DNA Gel Extraction Kit (AXYGEN®). Amplicons were quantified using the QuantiFluor-ST™ system (Promega®). All sequencing was performed using the Illumina MiSeq platform at Majorbio Biopharm Technology Company (Shanghai).

Sequence analysis

Low-quality sequences with an average quality score less than 20, a length shorter than 50 bp, or any mismatches to the primers or barcode containing chimeras were removed by Trimmomatic [30]. Operational taxonomic units (OTUs) were defined using a cutoff value of 97% by QIIME. The taxonomy of OTUs (from phylum to species) was determined using the Ribosomal Database Project (RDP) classifier script (version 2.2). A Silva database was also used in this study (Release 128 http://​www.​arb-silva.​de). Chimeric sequences and singletons were removed prior to taxonomic assignments.
The Chao richness estimator and Shannon alpha-diversity index were calculated using mothur (version v.1.30.1) [31]. Comparisons between different groups were assessed by Student’s t-test. Based on unweighted UniFrac distances calculated by the vegan package implemented in R [32], principal coordinates analysis (PCoA) was used to assess the difference in overall microbial community composition for beta-diversity assessment among four groups using R and tested by ANOSIM test. Taxonomic differences between the four groups were analyzed using the nonparametric Kruskal-Wallis test at different levels. Microbiological markers were detected using the linear discriminant analysis (LDA) effect size (LEfSe) algorithm [33]. To conform to vaginal community state types (CSTs) [34], hierarchical clustering analysis was conducted based on Jensen–Shannon distances between all pairs of community states and Ward linkage methods, as previously published [35]. Redundancy analysis (RDA) was applied to evaluate correlation between specific taxa and HPV infection or pregnancy using Canoco [36]. Heatmaps were generated and statistical analyses performed using R. A p-value < 0.05 was considered significant in all statistical analyses mentioned above.

Results

Characteristics of the study population

The average ages of each group (PHR, PN, NPHR, NPN) were 30.13 ± were, 29.77 ± 29., 33.53 ± 364 and 34.90 ± 4.17 years, respectively. The main genotype of HPV in both pregnant and nonpregnant women was HPV-16 (Additional file 1: Table S1 and Additional file 2: Table S2). All cytological tests were normal, and no lesions were detected. The demographic characteristics of each group are presented in the Additional file 3: Table S3).

Sequencing results

After filtering low-quality reads, 3,968,879 assembled clean reads were obtained from 135 samples, with a mean read length of 447.37 ± 7n57 bp. For normalization, the reads in each sample were randomly subsampled to the lowest number of 20,308 in sample NP_24 (PN group). After removing singletons (the OTUs contained less than 2 reads), 320 OTUs were identified, ranging from 10 OTUs in sample 4398 (NPN group) to 199 OTUs in sample 142_HH (PHR group) (Additional file 4: Table S4).

Vaginal microbiota richness and diversity

At the OTU level, microbial richness and diversity were estimated using Chao and Shannon indices, respectively, as shown in Fig. 1. These two indices revealed that both pregnancy and HPV infection increased vaginal bacterial richness and diversity. The means of Chao and Shannon indices were much higher in groups PN (135.97 ± 7ere and 0.82 ± and, respectively) and PHR (151.24 ± (151. and 0.96 ± and, respectively) than in NPHR (94.20 ± 094sp and 0.91 ± and, respectively) and NPN (29.94 ± (29. and 0.51 ± 1nd, respectively). Furthermore, the influence of pregnancy on bacterial richness was greater than that of HPV infection (Chao index, PN vs. NPHR: 135.97 ± N vs. > 94.20 ± 4.20., p = 0.002 < 0.01).

Vaginal bacterial structure and beta-diversity in different groups

In PCoA, the first two principal components explained 36.99 and 7.55%, respectively, of the variance along the first and second axes, with the PHR, PN and NPHR samples visually separated from the NPN sample (Fig. 2). Comparison between two groups based on the ANOSIM test revealed that the bacterial structure of groups PHR, PN, NPHR and NPN were significantly different from each other, except for PHR vs. PN (R = − 0.0062, p = 0.545) (Additional file 7: Table S5).

Taxonomy of the vaginal microbiota in different groups

Overall, 22 bacterial phyla were recovered across all samples (Additional file 5: Figure S1), and 99% of the samples were dominated by Firmicutes, Actinobacteria, Bacteroidetes and Proteobacteria (Additional file 5: Figure S1). Firmicutes was the most abundant phylum, accounting for 85.57, 78.32, 88.73, and 82.94% of the NPN, NPHR, PN and PHR groups, respectively (Fig. 3a). Furthermore, pregnancy tended to increase the proportion of Firmicutes (PHR > NPN, PN > NPN, p < 0.05), but no influence was found for HPV infection (NPN vs. NPHR, p > 0.05). There were no differences among the different groups with regard to the proportion of Actinobacteria (Fig. 3b). The percentage of Bacteroidetes was significantly higher in the PHR group (3.06%) than in the NPN group (1.40%) but was lower in the PN group (1.10%) (Fig. 3c). Moreover, the proportions of Proteobacteria (Fig. 3d) were significantly increased after pregnancy, from 0.19% in the NPN group to 3.04% in the PHR group and 2.61% in the PN group (p < 0.05). HPV infection also decreased the relative percentage of Proteobacteria, from 2.61% in the PN group to 0.98% in the NPHR group (p < 0.05), though HPV infection did not change the dynamics of Proteobacteria during pregnancy (PHR vs. PN, p > 0.05).
At the genus level, a total of 192 taxa were found across all samples (Additional file 6: Figure S2), with Lactobacillus being the most dominant genus overall. In addition, the proportion of Lactobacillus was significantly reduced during pregnancy and HPV infection compared to the NPN group (PHR: 75.27%, PN: 81.30%, NPHR: 70.10%, NPN: 84.58%) (Fig. 4a). In addition, pregnancy had a negative effect on the abundance of Bifidobacterium, which sharply decreased from 4.37% in the NPHR group to 0.02% in the PHR group (p < 0.05) (Fig. 4b). Pregnancy, however, increased the relative percentage of Streptococcus (Fig. 4h) from 0.19% in the NPN group to 1.11% in the PN group (p < 0.05). It was surprising to find that the abundance of Bifidobacterium was increased in HPV-infected patients (from 1.72% in the NPN group to 4.37% in the NPHR group, p < 0.01) (Fig. 4b). Conversely, HPV infection had a negative effect on the abundance of Anaerococcus, though pregnancy did not influence its proportions (NPHR: 0.04%, PHR: 0.002% vs. NPN: 0.27%, p < 0.05) (Fig. 4d). Megasphaera was significantly more abundant in the PHR group (3.74%) than in the NPN group (0.10%) (Fig. 4e), which revealed that the association between pregnancy and HPV infection increased the proportion of Megasphaera. The dual effect of pregnancy and HPV infection (PHR: 0.01% vs. NPN: 0.19%) also influenced the abundance of Streptococcus (Fig. 4h).

Identification of vaginal microbiological markers in different groups

LEfSe modeling was employed to identify microbiological markers related to HPV infection and pregnancy (Fig. 5). The threshold for the logarithmic LDA model score for discriminative features in this study was 3.5. The most abundant genus in the NPN group was Lactobacillus. HPV infection was strongly associated with two genera, Bifidobacterium and Bacillus. Streptococcus at the genus level, Lachnospiraceae at the family level, and Clostridiales at the order level were three taxa related to pregnancy. Nevertheless, the PHR group was associated with Acidovorax and members of the families Comamonadaceae, both from the phylum Proteobacteria.

Characteristics of vaginal community state types (CSTs) for different groups

The vaginal bacterial CST analysis visualized by hierarchical clustering revealed that all samples clustered into five major groups: CST I, CST II, CSTII, CST IV and CST V (Fig. 6). The most commonly observed community was CST I (64/135, 47.4%), followed by CST III (38/135, 28.1%), CST IV (26/135, 19.3%), CST II (2/135, 1.5%) and CST V (5/135, 3.7%). The proportions of CSTs in different groups are shown in Table 1. Samples in the NPN group were assigned to CST III (18/30, 60.0%). Pregnancy converted the vaginal bacterial community structure from CST III to CST I, as the PN group was dominated by CST I (24/48, 50.0%) and presented less CST III (10/48, 20.8%). Similarly, the proportion of CST I increased to 52.6% (10/19) in the NPHR group. CST I was also dominant in hrHPV-infected pregnant women (group PHR) (22/38, 57.9%), and hrHPV infection increased the proportions of CST IV in both pregnant and nonpregnant women, as NPHR (31.6%) > PHR (23.7%) > PN (14.6%) > NPN (13.3%).
Table 1
The distribution of community state types (CSTs) in different groups
 
PN
N (%)
PHR
N (%)
NPN
N (%)
NPHR
N (%)
CST I
24 (50.00)
22 (57.90)
8 (26.70)
10 (52.60)
CST II
2 (4.20)
0 (0)
0 (0)
0 (0)
CST III
10 (20.80)
7 (18.40)
18 (60.00)
3 (15.80)
CST IV
7 (14.60)
9 (23.70)
4 (13.30)
6 (31.60)
CST V
5 (10.40)
0 (0)
0 (0)
0 (0)

Redundancy analysis of samples

The results of RDA (Fig. 7) showed that the abundances of Megasphaera, Sneathia, Prevotella, Gardnerella, Fastidiosipila and Dialister correlated positively with HPV infection; in contrast, the abundances of Lactobacillus, Streptococcus and Shuttleworthia correlated negatively with HPV infection. In addition, the abundance of Shuttleworthia correlated positively with pregnancy, and that of Gardnerella correlated negatively with pregnancy. The abundances of Bacillus, Acidovorax, Oceanobacillus, Lactococcus and Bifidobacterium correlated positively with a dual influence of pregnancy and HPV infection.

Discussion

Our study addressed an undetermined topic about the association between the vaginal microbiota and hrHPV infection in pregnant women. We observed that both pregnancy and hrHPV infection were accompanied by increased vaginal bacterial richness and diversity. Lactobacillus was still the most abundant genus in all groups; however, both hrHPV infection and pregnancy had a negative influence on its abundance. Pregnancy and hrHPV infection were also accompanied by an increased proportion of CST I (dominated by Lactobacillus crispatus), as opposed to CST III. The abundances of various genera were differentially influenced by hrHPV infection and pregnancy. Overall, more anaerobic bacteria were associated with hrHPV infection and pregnancy.
According to our results, pregnancy increased vaginal bacterial richness and diversity, though some previous studies have reported lower vaginal microbial diversity during pregnancy [19, 20, 37]. A possible reason for the different findings might be that higher estrogen concentrations during pregnancy resulting in an accumulation of glycogen metabolized to lactic acid by Lactobacillus spp. on the upper layer of the vaginal epithelium, and leading to an increased abundance of Lactobacillus spp. in the vagina, thus decreasing overall bacterial richness and diversity. In this study, we observed a reduced abundance of Lactobacillus during pregnancy, which might lead to the growth of other bacteria, increasing bacterial diversity and richness in pregnant women. A similar result was reported in another study of a Chinese cohort, whereby Huang et al. found higher vaginal bacterial diversity in pregnant women, especially in the first trimester [38]. A reasonable explanation might be that fluctuation in the vaginal microbiota differs between Asian populations and Western populations and is heavily influenced by ethnicity. Regardless, the intrinsic causes need to be further studied by investigations of larger scope.
HPV infection can increase vaginal bacterial richness and diversity and lower the percentage of Lactobacillus [11, 12], and our results are in agreement with these previous studies. HPV infection is thought to alter the acidic environment of the vagina, which might promote outbreaks of bacteria [12]. In addition, the mucosal immunity and inflammation induced by HPV infection, including induction of pro-inflammatory cytokines, production of reactive oxygen species and activation of immune cells, might lead to changes in the vaginal microbiota [39]. However, other studies have indicated that hrHPV is not necessarily sufficient to induce changes in the cervicovaginal microbiota [17, 40], even though enrichment of certain anaerobic bacteria was found in patients with CIN lesions [17]. As we did not conduct cervical biopsy for high-risk HPV-infected women in our study, the presence of CIN was not assessed. Hence, we cannot exclude the possibility that the vaginal microbiota was also influenced by CIN lesions [17]. Interestingly, we found that the influence of pregnancy on bacterial richness was greater than that of HPV infection. To date, Tuominen H. et al. has also reported an altered microbial composition in cervix and placenta of HPV positive pregnant women [14]. However, it remains uncertain whether the changes result from HPV or other factors. Although both pregnancy and hrHPV infection reduced the abundance of Lactobacillus, which may contribute to increased bacterial richness and diversity, it is clear that the underlying mechanisms responsible are different. Changes in physiological hormones and the immunosuppressive state that occurs during pregnancy might lead to a fragile balance of the vaginal microbiome, which should be further explored in future studies.
Regarding community state types, the most abundant CST among nonpregnant reproductive-age women (NPN) was CST III, which was in accordance with the results from an Asian population in the study by Ravel et al. [34]. The most dominant CST in the hrHPV infection and pregnancy groups (PN, PHR and NPHR) was CST I. The predominant CSTs during pregnancy reported in previous studies varied from CST III to CST I [19, 37, 41]. Several previous studies have shown that L. iners and L. crispatus are the two most abundant Lactobacillus species found in pregnant women [18, 19, 37, 38, 4143]. In the vagina, a bacterial community change from CST III to CST IV is commonly observed, thus indicating that a colonization of anaerobes is more frequent in an L. iners-dominant VMB (vaginal microbiome). Conversely, an L. crispatus-dominant VMB has been associated with a low-stress environment and an adequate level of autophagy by vaginal epithelial cells to remove harmful cytoplasmic components, as well as bacteria, in pregnant women [41]. Similarly, the predominant CSTs in cases of HPV infection are controversial. Lee et al. reported that the prevalence of HPV infection did not differ between CST III and CST I [12], whereas another study found a higher HPV infection rate for an L. iners-dominant VMB [13]. It should be noted that these studies were performed using cohorts of different ethnicities, which might be one of the reasons for the differences. We also observed HPV infection to be associated with an increased proportion of CST IV in both nonpregnant and pregnant women. In two longitudinal studies, CST IV dominated by anaerobic bacteria comprised the greatest proportion of HPV-positive samples, and CST IV was associated with an increased risk of transitioning to an HPV-positive state [13, 44].
HPV infection and pregnancy equally influenced the vaginal microbial composition, but different specific genera were enriched in hrHPV-infected or pregnant women. Bifidobacterium, Bacillus, Megasphaera, Sneathia, Prevotella, Gardnerella, Fastidiosipila and Dialister were identified as significant taxa in nonpregnant hrHPV-infected populations; in previous studies, anaerobic bacteria such as Bacillus, Megasphaera, Sneathia, Prevotella, Gardnerella and Dialister have been associated with HPV infection [12, 13, 45, 46]. In general, a microenvironment with a high proportion of anaerobic bacteria and a lower proportion of Lactobacillus spp. is more susceptible to HPV infection. A surprising finding was that Bifidobacterium, a type of lactic acid-producing probiotic [47], was enriched in HPV-positive women. Although participants who used probiotics in the preceding 2 weeks were excluded from the study, we cannot rule out the influence of probiotics taken prior to that time, and they might have some persistent effects on the vaginal microbiota [48]. It has been hypothesized that Bifidobacterium might be able to guarantee a healthy vaginal balance by the production of lactic acid, in the lack of Lactobacillus. However, there are several cases reporting Bifidobacterium species as pathogens in various infectious conditions [49, 50], and a high level of stress inducers has been detected in vaginal epithelial cells when Bifidobacterium predominated the VMB [38]. Hence, the role of members of this genus should be further investigated. However, as both HPV infection and pregnancy are able to influence the vaginal microbiome, an inconsistent profiling of significant bacteria was found in hrHPV-infected pregnant women compared to nonpregnant women. Anaerobic bacteria (Megasphaera and Bacillus) and lactic acid-producing bacteria (Bifidobacterium and Lactococcus) were identified in these samples. Moreover, we found novel vaginal bacterial taxa, i.e., Acidovorax and Oceanobacillus, which were also associated with HPV infection in pregnant women. Nevertheless, the roles of these microorganisms are not clear and should be investigated further. These findings support our hypothesis that hrHPV infection and pregnancy have a dual effect on increasing vaginal bacterial diversity, leading to a differentially altered vaginal microbiota in HPV-infected pregnant women compared to nonpregnant HPV-infected women.
The strength of this study is that it addressed still-unresolved issues regarding the association between the VMB and HPV infection in pregnant women. We found high diversity and richness for the vaginal microbiome during pregnancy in a Chinese cohort and uncovered that pregnancy and HPV infection have a probable synergistic effect on altering the VMB, which caused a more complicated vaginal bacterial environment in pregnant women with hrHPV infection. The limitations of this study were that it was a small, cross-sectional study, and thus we could not determine any causation between the VMB and HPV infection or pregnancy. Further studies with longitudinal sampling are needed to assess correlations between the dynamics of the VMB microbiome and the transition of HPV at early, mild, and late gestational stages as well as postpartum and to investigate its relationship with different subtypes of HPV.

Conclusion

This work uncovered a probable synergistic effect of hrHPV infection and pregnancy on the vaginal microbial composition. Despite not having measured hormone level in our patients, pregnancy status seems to be a bigger driver of the vaginal diversity in our cohort, as other studies demonstrated that HPV alone does not lead to changes in it [17, 40]. HPV infection in pregnant women was associated with a more complex and diverse microbial environment.

Acknowledgements

None
This study was approved by the Institutional Review Board of Renji Hospital, School of Medicine, Shanghai Jiao Tong University (registration number: 2018–026), and all experiments were performed in accordance with relevant guidelines and regulations. All participants provided written informed consent. Upon enrollment, some of the participants were asked to complete a questionnaire detailing sexual and reproductive health history and hygiene practices with demographic information.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Muñoz N, Bosch FX, De SS, Herrero R, Castellsagué X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348(6):518–27.PubMedCrossRef Muñoz N, Bosch FX, De SS, Herrero R, Castellsagué X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348(6):518–27.PubMedCrossRef
2.
Zurück zum Zitat Erickson BK, Alvarez RD, Huh WK. Human papillomavirus: what every provider should know. Am J Obstet Gynecol. 2013;208(3):169–75.PubMedCrossRef Erickson BK, Alvarez RD, Huh WK. Human papillomavirus: what every provider should know. Am J Obstet Gynecol. 2013;208(3):169–75.PubMedCrossRef
3.
Zurück zum Zitat Hariri S, Unger ER, Sternberg M, Dunne EF, Swan D, Patel S, et al. Prevalence of genital human papillomavirus among females in the United States, the national health and nutrition examination survey, 2003-2006. J Infect Dis. 2011;204(4):566–73.PubMedCrossRef Hariri S, Unger ER, Sternberg M, Dunne EF, Swan D, Patel S, et al. Prevalence of genital human papillomavirus among females in the United States, the national health and nutrition examination survey, 2003-2006. J Infect Dis. 2011;204(4):566–73.PubMedCrossRef
4.
Zurück zum Zitat Hernández-Girón C, Smith JS, Lorincz A, Lazcano E, Hernández-Avila M, Salmerón J. High-risk human papillomavirus detection and related risk factors among pregnant and nonpregnant women in Mexico. Sex Transm Dis. 2005;32(32):613–8.PubMedCrossRef Hernández-Girón C, Smith JS, Lorincz A, Lazcano E, Hernández-Avila M, Salmerón J. High-risk human papillomavirus detection and related risk factors among pregnant and nonpregnant women in Mexico. Sex Transm Dis. 2005;32(32):613–8.PubMedCrossRef
5.
Zurück zum Zitat Deidda F, Amoruso A, Nicola S, Graziano T, Pane M, Allesina S, et al. The in vitro effectiveness of Lactobacillus fermentum against different Candida species compared with broadly used azoles. J Clin Gastroenterol. 2016;50:S171.PubMedCrossRef Deidda F, Amoruso A, Nicola S, Graziano T, Pane M, Allesina S, et al. The in vitro effectiveness of Lactobacillus fermentum against different Candida species compared with broadly used azoles. J Clin Gastroenterol. 2016;50:S171.PubMedCrossRef
6.
Zurück zum Zitat Prieto D, Pla J. Distinct stages during colonization of the mouse gastrointestinal tract by Candida albicans. Front Microbiol. 2015;6(1):792.PubMedPubMedCentral Prieto D, Pla J. Distinct stages during colonization of the mouse gastrointestinal tract by Candida albicans. Front Microbiol. 2015;6(1):792.PubMedPubMedCentral
7.
Zurück zum Zitat Borgdorff H, Tsivtsivadze E, Verhelst R, Marzorati M, Jurriaans S, Ndayisaba GF, et al. Lactobacillus-dominated cervicovaginal microbiota associated with reduced HIV/STI prevalence and genital HIV viral load in African women. ISME J. 2014;8(9):1781–93.PubMedPubMedCentralCrossRef Borgdorff H, Tsivtsivadze E, Verhelst R, Marzorati M, Jurriaans S, Ndayisaba GF, et al. Lactobacillus-dominated cervicovaginal microbiota associated with reduced HIV/STI prevalence and genital HIV viral load in African women. ISME J. 2014;8(9):1781–93.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Kirjavainen PV, Pautler S, Baroja ML, Anukam K, Crowley K, Carter K, et al. Abnormal immunological profile and vaginal microbiota in women prone to urinary tract infections. Clin Vaccine Immunol. 2009;16(1):29–36.PubMedCrossRef Kirjavainen PV, Pautler S, Baroja ML, Anukam K, Crowley K, Carter K, et al. Abnormal immunological profile and vaginal microbiota in women prone to urinary tract infections. Clin Vaccine Immunol. 2009;16(1):29–36.PubMedCrossRef
9.
Zurück zum Zitat Messano GA. Inadequate antibiotic therapy of genitourinary tract infections could be responsible for viral sexually transmitted diseases. Ann Ig. 2013;25(6):553–4.PubMed Messano GA. Inadequate antibiotic therapy of genitourinary tract infections could be responsible for viral sexually transmitted diseases. Ann Ig. 2013;25(6):553–4.PubMed
10.
Zurück zum Zitat Chehoud C, Stieh DJ, Bailey AG, Laughlin AL, Allen SA, McCotter KL, et al. Associations of the vaginal microbiota with HIV infection, bacterial vaginosis, and demographic factors. AIDS. 2017;31(7):895–904.PubMedCrossRef Chehoud C, Stieh DJ, Bailey AG, Laughlin AL, Allen SA, McCotter KL, et al. Associations of the vaginal microbiota with HIV infection, bacterial vaginosis, and demographic factors. AIDS. 2017;31(7):895–904.PubMedCrossRef
11.
Zurück zum Zitat Gao W, Weng J, Gao Y, Chen X. Comparison of the vaginal microbiota diversity of women with and without human papillomavirus infection: a cross-sectional study. BMC Infect Dis. 2013;13(1):271.PubMedPubMedCentralCrossRef Gao W, Weng J, Gao Y, Chen X. Comparison of the vaginal microbiota diversity of women with and without human papillomavirus infection: a cross-sectional study. BMC Infect Dis. 2013;13(1):271.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Lee JE, Lee S, Lee H, Song YM, Lee K, Han MJ, et al. Association of the vaginal microbiota with human papillomavirus infection in a Korean twin cohort. PLoS One. 2013;8(5):e63514.PubMedPubMedCentralCrossRef Lee JE, Lee S, Lee H, Song YM, Lee K, Han MJ, et al. Association of the vaginal microbiota with human papillomavirus infection in a Korean twin cohort. PLoS One. 2013;8(5):e63514.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Brotman RM, Shardell MD, Gajer P, Tracy JK, Zenilman JM, Ravel J, et al. Interplay between the temporal dynamics of the vaginal microbiota and human papillomavirus detection. J Infect Dis. 2014;210(11):1723.PubMedPubMedCentralCrossRef Brotman RM, Shardell MD, Gajer P, Tracy JK, Zenilman JM, Ravel J, et al. Interplay between the temporal dynamics of the vaginal microbiota and human papillomavirus detection. J Infect Dis. 2014;210(11):1723.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Tuominen H, Rautava S, Syrjänen S, Collado MC, Rautava J. HPV infection and bacterial microbiota in the placenta, uterine cervix and oral mucosa. Sci Rep. 2018;8:9787.PubMedPubMedCentralCrossRef Tuominen H, Rautava S, Syrjänen S, Collado MC, Rautava J. HPV infection and bacterial microbiota in the placenta, uterine cervix and oral mucosa. Sci Rep. 2018;8:9787.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Mitra A, Macintyre DA, Lee YS, Smith A, Marchesi JR, Lehne B, et al. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. Sci Rep. 2015;5:16865.PubMedPubMedCentralCrossRef Mitra A, Macintyre DA, Lee YS, Smith A, Marchesi JR, Lehne B, et al. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. Sci Rep. 2015;5:16865.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Oh HY, Kim BS, Seo SS, Kong JS, Lee JK, Park SY, et al. The association of uterine cervical microbiota with an increased risk for cervical intraepithelial neoplasia in Korea. Clin Microbiol Infect. 2015;21(7):674.e1–9.CrossRef Oh HY, Kim BS, Seo SS, Kong JS, Lee JK, Park SY, et al. The association of uterine cervical microbiota with an increased risk for cervical intraepithelial neoplasia in Korea. Clin Microbiol Infect. 2015;21(7):674.e1–9.CrossRef
18.
Zurück zum Zitat Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Bieda J, et al. The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at term. Microbiome. 2014;2:18.PubMedPubMedCentralCrossRef Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Bieda J, et al. The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at term. Microbiome. 2014;2:18.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat MacIntyre DA, Chandiramani M, Lee YS, Kindinger L, Smith A, Angelopoulos N, et al. The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci Rep. 2015;5:8988.PubMedPubMedCentralCrossRef MacIntyre DA, Chandiramani M, Lee YS, Kindinger L, Smith A, Angelopoulos N, et al. The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci Rep. 2015;5:8988.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Aagaard K, Riehle K, Ma J, Segata N, Mistretta TA, Coarfa C, et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS One. 2012;7(6):e36466.PubMedPubMedCentralCrossRef Aagaard K, Riehle K, Ma J, Segata N, Mistretta TA, Coarfa C, et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS One. 2012;7(6):e36466.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Son K-A, Kim M, Kim YM, Kim SH, Choi S-J, Oh S-y, et al. Prevalence of vaginal microorganisms among pregnant women according to trimester and association with preterm birth. Obstet Gynecol Sci. 2018;61(1):38–47.PubMedCrossRef Son K-A, Kim M, Kim YM, Kim SH, Choi S-J, Oh S-y, et al. Prevalence of vaginal microorganisms among pregnant women according to trimester and association with preterm birth. Obstet Gynecol Sci. 2018;61(1):38–47.PubMedCrossRef
22.
Zurück zum Zitat Wang J, Sun C, Liu C, Yang Y, Lu W. Comparison of vaginal microbial community structure in healthy and endometritis dairy cows by PCR-DGGE and real-time PCR. Anaerobe. 2016;38:1–6.PubMedCrossRef Wang J, Sun C, Liu C, Yang Y, Lu W. Comparison of vaginal microbial community structure in healthy and endometritis dairy cows by PCR-DGGE and real-time PCR. Anaerobe. 2016;38:1–6.PubMedCrossRef
23.
Zurück zum Zitat Merckx M, Liesbeth WV, Arbyn M, Meys J, Weyers S, Temmerman M, et al. Transmission of carcinogenic human papillomavirus types from mother to child: a meta-analysis of published studies. Eur J Cancer Prev. 2013;22(3):277–85.PubMedCrossRef Merckx M, Liesbeth WV, Arbyn M, Meys J, Weyers S, Temmerman M, et al. Transmission of carcinogenic human papillomavirus types from mother to child: a meta-analysis of published studies. Eur J Cancer Prev. 2013;22(3):277–85.PubMedCrossRef
24.
Zurück zum Zitat Palle C, Bangsbøll S, Andreasson B. Cervical intraepithelial neoplasia in pregnancy. Int J Gynaecol Obstet. 1982;20(2):111–8.CrossRef Palle C, Bangsbøll S, Andreasson B. Cervical intraepithelial neoplasia in pregnancy. Int J Gynaecol Obstet. 1982;20(2):111–8.CrossRef
25.
Zurück zum Zitat Liu P, Xu L, Sun Y, Wang Z. The prevalence and risk of human papillomavirus infection in pregnant women. Epidemiol Infect. 2014;142(8):1567–78.PubMedCrossRef Liu P, Xu L, Sun Y, Wang Z. The prevalence and risk of human papillomavirus infection in pregnant women. Epidemiol Infect. 2014;142(8):1567–78.PubMedCrossRef
26.
Zurück zum Zitat Morrison EA, Gammon MD, Goldberg GL, Vermund SH, Burk RD. Pregnancy and cervical infection with human papillomaviruses. Int J Gynecol Obstet. 1996;54(2):125–30.CrossRef Morrison EA, Gammon MD, Goldberg GL, Vermund SH, Burk RD. Pregnancy and cervical infection with human papillomaviruses. Int J Gynecol Obstet. 1996;54(2):125–30.CrossRef
27.
Zurück zum Zitat Schmeink CE, Melchers WJ, Hendriks JC, Quint WG, Massuger LF, Bekkers RL. Human papillomavirus detection in pregnant women: a prospective matched cohort study. J Womens Health. 2012;21(12):1295.CrossRef Schmeink CE, Melchers WJ, Hendriks JC, Quint WG, Massuger LF, Bekkers RL. Human papillomavirus detection in pregnant women: a prospective matched cohort study. J Womens Health. 2012;21(12):1295.CrossRef
28.
Zurück zum Zitat Trottier H, Mayrand MH, Baggio ML, Galan L, Ferenczy A, Villa LL, et al. Risk of human papillomavirus (HPV) infection and cervical neoplasia after pregnancy. BMC Pregnancy Childbirth. 2015;15(1):244.PubMedPubMedCentralCrossRef Trottier H, Mayrand MH, Baggio ML, Galan L, Ferenczy A, Villa LL, et al. Risk of human papillomavirus (HPV) infection and cervical neoplasia after pregnancy. BMC Pregnancy Childbirth. 2015;15(1):244.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Solomon D, Davey D, Kurman R. Bethesda system\terminology for reporting results of cervical cytology. JAMA. 2002;287(287):2114–9.PubMedCrossRef Solomon D, Davey D, Kurman R. Bethesda system\terminology for reporting results of cervical cytology. JAMA. 2002;287(287):2114–9.PubMedCrossRef
31.
Zurück zum Zitat Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41.PubMedPubMedCentralCrossRef Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat R. Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; R. Core Team; 2018. Available online: http://www.R-project.org/. Accessed 1 Nov 2018 R. Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; R. Core Team; 2018. Available online: http://​www.​R-project.​org/​. Accessed 1 Nov 2018
33.
Zurück zum Zitat Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60.PubMedPubMedCentralCrossRef Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;108:4680–7.PubMedCrossRef Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;108:4680–7.PubMedCrossRef
35.
Zurück zum Zitat Gajer P, Brotman RM, Bai GY, Sakamoto J, Schuette UME, Zhong X, et al. Temporal dynamics of the human vaginal microbiota. Sci Transl Med. 2012;4(132):132ra52.PubMedPubMedCentralCrossRef Gajer P, Brotman RM, Bai GY, Sakamoto J, Schuette UME, Zhong X, et al. Temporal dynamics of the human vaginal microbiota. Sci Transl Med. 2012;4(132):132ra52.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Braak TCJF. CANOCO-an extension of DECORANA to analyze species-environment relationships. Hydrobiologia. 1989;184(3):169–70.CrossRef Braak TCJF. CANOCO-an extension of DECORANA to analyze species-environment relationships. Hydrobiologia. 1989;184(3):169–70.CrossRef
37.
Zurück zum Zitat Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Nikita L, et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome. 2014;2(1):4.PubMedPubMedCentralCrossRef Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Nikita L, et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome. 2014;2(1):4.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Huang YE, Wang Y, He Y, Ji Y, Wang LP, Sheng HF, et al. Homogeneity of the vaginal microbiome at the cervix, posterior fornix, and vaginal canal in pregnant Chinese women. Microb Ecol. 2015;69(2):407–14.PubMedCrossRef Huang YE, Wang Y, He Y, Ji Y, Wang LP, Sheng HF, et al. Homogeneity of the vaginal microbiome at the cervix, posterior fornix, and vaginal canal in pregnant Chinese women. Microb Ecol. 2015;69(2):407–14.PubMedCrossRef
40.
Zurück zum Zitat Malgorzata BH, Wioleta L, Myers JE, Keiffer TR, Stephen DG, Paula P, et al. A new cell culture model to genetically dissect the complete human papillomavirus life cycle. PLoS Pathog. 2018;14(3):e1006846.CrossRef Malgorzata BH, Wioleta L, Myers JE, Keiffer TR, Stephen DG, Paula P, et al. A new cell culture model to genetically dissect the complete human papillomavirus life cycle. PLoS Pathog. 2018;14(3):e1006846.CrossRef
41.
Zurück zum Zitat Nasioudis D, Forney LJ, Schneider GM, Gliniewicz K, France MT, Boester A, et al. The composition of the vaginal microbiome in first trimester pregnant women influences the level of autophagy and stress in vaginal epithelial cells. J Reprod Immunol. 2017;123:35.PubMedCrossRef Nasioudis D, Forney LJ, Schneider GM, Gliniewicz K, France MT, Boester A, et al. The composition of the vaginal microbiome in first trimester pregnant women influences the level of autophagy and stress in vaginal epithelial cells. J Reprod Immunol. 2017;123:35.PubMedCrossRef
42.
Zurück zum Zitat Hyman RW, Fukushima M, Jiang H, Fung E, Rand L, Johnson B, et al. Diversity of the vaginal microbiome correlates with preterm birth. Reprod Sci. 2014;21(1):32–40.PubMedPubMedCentralCrossRef Hyman RW, Fukushima M, Jiang H, Fung E, Rand L, Johnson B, et al. Diversity of the vaginal microbiome correlates with preterm birth. Reprod Sci. 2014;21(1):32–40.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Salinas AM, Osorio VG, Endara PF, Salazar ER, Vasco GP, Vivero SG, et al. Bacterial identification of the vaginal microbiota in Ecuadorian pregnant teenagers: an exploratory analysis. PeerJ. 2018;6:e4317.PubMedPubMedCentralCrossRef Salinas AM, Osorio VG, Endara PF, Salazar ER, Vasco GP, Vivero SG, et al. Bacterial identification of the vaginal microbiota in Ecuadorian pregnant teenagers: an exploratory analysis. PeerJ. 2018;6:e4317.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Jalil EM, Bastos FI, Melli PP, Duarte G, Simoes RT, Yamamoto AY, et al. HPV clearance in postpartum period of HIV-positive and negative women: a prospective follow-up study. BMC Infect Dis. 2013;13(1):1–9.CrossRef Jalil EM, Bastos FI, Melli PP, Duarte G, Simoes RT, Yamamoto AY, et al. HPV clearance in postpartum period of HIV-positive and negative women: a prospective follow-up study. BMC Infect Dis. 2013;13(1):1–9.CrossRef
45.
Zurück zum Zitat Łaniewski P, Barnes D, Goulder A, Cui H, Roe DJ, Chase DM, et al. Linking cervicovaginal immune signatures, HPV and microbiota composition in cervical carcinogenesis in non-Hispanic and Hispanic women. Sci Rep. 2018;8(1):7593.PubMedPubMedCentralCrossRef Łaniewski P, Barnes D, Goulder A, Cui H, Roe DJ, Chase DM, et al. Linking cervicovaginal immune signatures, HPV and microbiota composition in cervical carcinogenesis in non-Hispanic and Hispanic women. Sci Rep. 2018;8(1):7593.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Paola MD, Sani C, Clemente AM, Iossa A, Perissi E, Castronovo G, et al. Characterization of cervico-vaginal microbiota in women developing persistent high-risk human papillomavirus infection. Sci Rep. 2017;7(1):10200.PubMedPubMedCentralCrossRef Paola MD, Sani C, Clemente AM, Iossa A, Perissi E, Castronovo G, et al. Characterization of cervico-vaginal microbiota in women developing persistent high-risk human papillomavirus infection. Sci Rep. 2017;7(1):10200.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Mayo B, Sinderen DV, Ventura M. Genome analysis of food grade lactic acid-producing Bacteria: from basics to applications. Curr Genomics. 2008;9(3):169–83.PubMedPubMedCentralCrossRef Mayo B, Sinderen DV, Ventura M. Genome analysis of food grade lactic acid-producing Bacteria: from basics to applications. Curr Genomics. 2008;9(3):169–83.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Verdenelli MC, Cecchini C, Coman MM, Silvi S, Orpianesi C, Coata G, et al. Impact of probiotic synbio® administered by vaginal suppositories in promoting vaginal health of apparently healthy women. Curr Microbiol. 2016;73(4):483–90.PubMedCrossRef Verdenelli MC, Cecchini C, Coman MM, Silvi S, Orpianesi C, Coata G, et al. Impact of probiotic synbio® administered by vaginal suppositories in promoting vaginal health of apparently healthy women. Curr Microbiol. 2016;73(4):483–90.PubMedCrossRef
49.
Zurück zum Zitat Bhaskar MM, Sistla S, Kumaravel S. A case of pyometrocolpos with Bifidobacterium, species. Anaerobe. 2017;44:48–50.PubMedCrossRef Bhaskar MM, Sistla S, Kumaravel S. A case of pyometrocolpos with Bifidobacterium, species. Anaerobe. 2017;44:48–50.PubMedCrossRef
Metadaten
Titel
Association between the vaginal microbiome and high-risk human papillomavirus infection in pregnant Chinese women
verfasst von
Yulian Chen
Zubei Hong
Wenjing Wang
Liying Gu
Hua Gao
Lihua Qiu
Wen Di
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2019
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-019-4279-6

Weitere Artikel der Ausgabe 1/2019

BMC Infectious Diseases 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.