Skip to main content
Erschienen in: BMC Gastroenterology 1/2012

Open Access 01.12.2012 | Research article

Association of an NFKB1 intron SNP (rs4648068) with gastric cancer patients in the Han Chinese population

verfasst von: Renquan Lu, Xiang Gao, Yin Chen, Jian Ni, Yongfu Yu, Sheng Li, Lin Guo

Erschienen in: BMC Gastroenterology | Ausgabe 1/2012

Abstract

Background

Hyperactivation of nuclear factor-κB (NF-κB) is associated with various types of tumors. This study investigated the susceptibility of the rs4648068 A/G genotype in the intron region of NFKB1 to gastric cancer and the association of this polymorphism with clinicopathologic variables in gastric cancer patients.

Methods

A hospital-based case–control study of 248 gastric cancer patients and 192 control individuals was conducted in Fudan University Shanghai Cancer Center (Shanghai, China). Single nucleotide polymorphism (SNP) rs4648068 genotype in NFKB1 from blood samples of a total of 440 people was analyzed by polymerase chain reaction-based genotyping.

Results

The frequencies of the AA, AG, and GG genotypes of the rs4648068 polymorphism were 31.5%, 47.2%, and 21.3% in the gastric cancer patients and 29.7%, 59.9%, and 10.4% in the control individuals, respectively. We found that the GG genotype was associated with a significantly increased risk of gastric cancer (P = 0.042). Furthermore, among the gastric cancer cases, the rs4648068 GG genotype was associated with high clinical stage (AOR = 2.27, 95% CI: 1.11- 4.66), lymph node involvement (AOR = 2.90, 95% CI = 1.40- 6.03) and serosa invasion (AOR = 2.78, 95% CI = 1.34- 5.75). However, rs4648068 genotypes were not associated with tumor differentiation in gastric cancer patients.

Conclusions

Homozygous rs4648068 GG was associated with an increased risk of gastric cancer, especially for the lymph node status and serosa invasion in Han Chinese population.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-230X-12-87) contains supplementary material, which is available to authorized users.
Renquan Lu, Xiang Gao contributed equally to this work.

Competing interests

The authors have no competing interests to declare.

Background

Gastric cancer (GC) is the second leading cause of cancer-related deaths and the fourth most frequent cancer in the world [1]. Generally, GC mortality is ranked the highest in Eastern Asia (China, Japan), Eastern Europe, and South America compared with other cancerous tumors, whereas GC mortality is ranked the lowest in North America and most parts of Africa. The etiology of this cancer is multifactorial, involving both genetic and environmental risk factors. To clarify the genetic background of the gastric cancer, it is necessary to specifically identify the genetic factors such as single nucleotide polymorphisms (SNPs).
Nuclear factor kappa B (NF-κB) is a family of structurally related eukaryotic transcription factors that are persistently active in the pathogenesis of numerous malignancies, including prostate [2], breast [3, 4], colorectal [5], pancreatic [6], oral [7], and gastric carcinoma cancer [8]. The NF-κB family contains five members in mammals: NFKB1 encoding p50, NFKB2 encoding p52, RELA encoding p65, REL encoding c-Rel, and RELB encoding Rel-B. The most common dimer is the p65/p50 heterodimer. The human NFKB1 gene is located at chromosome 4q24. Several groups have shown that there is a relationship between gastric cancer and the polymorphisms of NFKB1 promoter regions [9, 10], and local tumor growth and lymph node spread in gastric cancer have also been proven to be associated with N-myc downstream-regulated genes in previous reports [1113]. This study investigated the possible association between the SNP polymorphisms of NFKB1 and susceptibility to gastric cancer and its tumor behavior.
We first screened SNPs throughout the entire NFKB1 gene locus and selected 4 SNP sites from 99 SNP sites that were in linkage disequilibrium (LD) in the Hapmap CHB (Han Chinese in Beijing, China) data: rs12509517 and rs4648068, which are in LD with the tagging SNP rs230539 (r2 > 0.8), and rs4648065 and rs4648037 (r2 < 0.8). The genetic associations of the SNPs were examined by comparing the genotypes of 30 unrelated gastric cancer patients with those of 30 healthy controls in a small-scale genotyping study. Then, we conducted a large-scale case–control study on the Han Chinese population to investigate the association of the rs4648068 polymorphism with gastric cancer and clinicopathologic variables of gastric cancer patients using quantitative real-time PCR (qRT-PCR).

Methods

Patients and tissue samples

A total of 440 unrelated Chinese participants including 248 patients with gastric cancer and 192 unaffected control participants were recruited with written informed consent, and all human samples were collected with the approval of the Ethics Committee at the Fudan University Cancer Hospital. All subjects were part of the Han population in China. Age, gender, and other clinicopathologic characteristics were evaluated by reviewing medical charts and pathologic records. There were no differences in age and gender between gastric cancer patients and the control participants (P > 0.05).

Sample preparation and NFKB1 genotyping

DNA samples were prepared and genotyped as described previously [14, 15]. Briefly, genomic DNA was extracted from peripheral blood samples of each study subject using the TIANamp Blood DNA Kit (Tiangen Biotech, China). Four NFKB1 SNPs (rs12509517, rs4648068, rs4648065, rs4648037) were genotyped by SYBR allelic discrimination, and their corresponding qRT-PCR specific primers are listed in Table 1. PCRs were run in a 20 μL reaction solution containing 30 ng of template DNA and 10 μL SYBR Premix Ex Taq (Takara, Japan) according to the manufacturer’s instructions. PCR was performed at 95°C for 10 min and 40 cycles at 95°C for 30 s and 58°C for 30 s. The samples were amplified, read, and analyzed in Opticon® Fluorescence Temperature Cycler (MJ Research, Canada).
Table 1
Primers used for quantitative real-time PCR assays
SNP
Primer
Primer sequence
rs12509517
Upstream fwd
5’ ACG TAC TAG GAA GTC CTA C 3’
 
Upstream fmut
5’ ACG TAC TAG GAA GTC CTA G 3’
 
Downstream rev
5’ GGT TAT GCA GGA TGT TAC CAT TGG 3’
rs4648065
Upstream fwd
5’ TAA CGT ATG CA A CAG GAA C 3’
 
Upstream fmut
5’ TAA CGT ATG CA A CAG GAA T3’
 
Downstream rev
5’ GAT ATC TTT CTG CAC CTA GGA CTG3’
rs4648068
Upstream fwd
5”TAA TTG TTA GAG ATT CCA A 3’
 
Upstream fmut
5’ TAA TTG TTA GAG ATT CCA G3’
 
Downstream rev
5’ ACA ATG TTA GAT TTT ACC ATG ATT3’
rs4648037
Upstream fwd
5’ TAA CAC CTT AAA AGG GTG C3’
 
Upstream fmut
5’ TAA CAC CTT AAA AGG GTG T3’
 
Downstream rev
5’ ATC ATT TAA TCA GTT GCC ATT GGG3’

Statistical analysis

The Haploview 4.2 software (http://​www.​broad.​mit.​edu/​mpg) was used to draw a LD map for 99 SNPs (with minor allele frequency ≥ 0.05) located in the NFKB1 region according to the genotype data for Han Chinese populations of the International HapMap Project (HapMap Data Rel 27 Phase II + III, Feb09, on NCBI B36 assembly, dbSNP b126) and to measure the pairwise LD values between SNPs. The SNPs that were tagged by these 4 SNPs with r2 > 0.6 can be illustrated with the LD map [16].
Adjusted odds ratio (AOR) and associated 95% confidence interval (CI) were calculated using multivariate logistic regression analysis. The comparison of age and gender were performed by student t- test and Pearson chi-square test, respectively, where P < 0.05 indicated a significant difference. All of the association calculations were conducted with SPSS (version 13.0; SPSS Inc., Chicago).

Results

Gastric cancer susceptibility association of 4 NFKB1 SNPs

To identify the genetic variations in NFKB1 that are associated with a susceptibility to gastric cancer, we examined the NFKB1 region and selected 4 SNP sites from 99 SNP sites in LD of NFKB1: rs12509517 and rs4648068, which are in LD with the tagging SNP rs230539 (r2 > 0.8), and rs4648065 and rs4648037 (r2 < 0.8). According to the genotype data for the CHB by the International HapMap Project, the values of LD between these 4 SNPs and other ungenotyped polymorphisms in the HapMap database are shown in Additional file: 1 Figure S1, in which rs4648037, rs4648065, rs4648068, and rs12509517 are located at sites 142, 168, 169, and 188, respectively. As illustrated in this Additional file: 1 Figure S1, all of the ungenotyped polymorphisms were tagged by these 4 tag SNPs with r2 > 0.6.
A small-scale qRT-PCR genotyping study was conducted to examine the genetic association of these SNPs with gastric cancer. Because polymorphisms in intron or exon regions are all reported to regulate transcription and translocation [1720], we selected 2 intron polymorphisms (rs12509517, rs4648068) and 2 exon SNPs (rs4648065, rs4648037) out of the SNP pool for our analysis.
Comparison of 30 gastric cancer patients and 30 healthy control individuals showed that only SNP rs4648068 had a significant association with susceptibility to gastric cancer (P = 0.029), whereas the other 3 SNPs showed no association with susceptibility to gastric cancer (Table 2). Of the individuals with gastric cancer, 33.3% had the GG genotype in rs4648068, compared with 10% with the GG genotype in the healthy control individuals. In contrast, the probability of AA alleles in gastric cancer patients is 13.3% less than that in healthy controls. Surprisingly, this SNP, rs4648068, is in the intron region of the NFKB1 gene. Because there are many previous reports on intronic SNPs that were associated with the activity of protein expression [21], diseases [22], or disorders [23] through gene regulation and transcript processing [24], we conducted a large-scale study of rs4648068.
Table 2
Genotype distribution of 4 SNPs in gastric cancer patients and control subjects
 
Cases (n = 30)
Health Controls (n = 30)
AOR (95%CI)
PValue
 
n
%
n
%
  
rs12509517
      
GG
14
46.7
9
30.0
1.08(0.53-2.21)
0.601
CG
12
40.0
18
60.0
0.76(0.31-1.63)
0.420
CC
4
13.3
3
10.0
1.00
 
rs4648065
      
TT
6
20.0
3
10.0
1.73(0.83-4.12)
0.313
CT
8
26.7
3
10.0
1.62(0.99-2.69)
0.065
CC
16
53.3
24
80.0
1.00
 
rs4648068
      
GG
10
33.3
3
10.0
2.90(1.01-6.93)
0.029*
AG
16
53.4
17
56.7
1.68(0.62-4.01)
0.293
AA
4
13.3
10
33.3
1.00
 
rs4648037
      
TT
15
50.0
22
73.3
0.63(0.28-1.39)
0.193
CT
8
26.7
5
16.7
0.67(0.40-1.83)
0.390
CC
7
23.3
3
10.0
1.00
 
AOR, adjusted odds ratio, which was calculated using multivariate logistic regression adjusted by age and gender; CI, confidence interval.

An NFKB1 polymorphism is associated with an increased risk of gastric cancer

After the preliminary small-scale genotyping, we conducted a large-scale genotyping study of rs4648068. Analysis of the rs4648068 genotype polymorphism showed a significant difference between gastric cancer patients and control individuals (Table 3). The rs4648068 GG genotype was significantly more common in the gastric cancer patients than in the control individuals (P = 0.042), which further implied that homozygous GG was a genetic risk factor for gastric cancer and agreed well with the results of our preliminary small-scale genotyping study described above. Results of stratified analyses by age, clinical stage, tumor differentiation, lymph node status, and serosa invasion with the NFKB1 rs4648068 A/G polymorphism variant genotypes and alleles are presented in Table 4.
Table 3
Genotype distribution and allelic frequencies of NFKB1 rs4648068 polymorphism in gastric cancer patients and control subjects
 
Gastric Cancer
Controls
AOR (95%CI)Δ
PvalueΔ
Cases (n)
248
192
/
/
Age
57 ± 11*
53 ± 15
/
/
Gender (M/F)
160/88**
119/73
/
/
Genotype
    
GG(%)
53(21.3)#
20(10.4)
1.92(1.02-3.60)
0.042
AG(%)
117(47.2)
115(59.9)
0.75(0.48-1.16)
0.195
AA (%)
78(31.5)
57(29.7)
1.00
 
Allelic frequencies
    
G(%)
223(45.0)
155(40.4)
1.13(0.99-1.36)
0.198
A(%)
273(55.0)
229(59.6)
1.00
 
* and **, P > 0.05 and minor allele frequency (MAF) = 0.346; M, male; F, female; #, P = 0.042 (GG is risk factor); Δ , multivariate logistic regression adjusted by age and gender.
Table 4
Association between the genotype of the NFKB1 rs4648068 polymorphism and patient characteristics
 
N
GG
AOR (95%CI)Δ
PvalueΔ
GA
AOR (95%CI)Δ
PvalueΔ
AA
AOR (95%CI)Δ PvalueΔ
G
A
AOR (95%CI)*
Pvalue*
Clinical Stage
             
III + IV
128
33(25.8)
2.27(1.11 ~ 4.66)
0.025
62(48.4)
1.55(0.87 ~ 2.78)
0.139
33(25.8)
-
128(50.0)
128(50.0)
1.86(1.22 ~ 2.82)
0.004
I + II
120 20(16.7)
-
  
55(45.8)
-
 
45(37.5)
-
95(39.6)
145(60.4)
-
 
Tumor differentiation
             
Poor
118
29(24.6)
1.34(0.66-2.70)
0.418
52(44.1)
0.89(0.50 ~ 1.58)
0.680
37(31.4)
-
110(46.6)
126(53.4)
1.08(0.71 ~ 1.63)
0.729
Well & moderate
130
24(18.5)
-
 
65(50.0)
-
 
41(31.5)
-
113(43.5)
147(56.5)
-
 
Lymph node status
             
Positive
111
29(26.1)
2.90 (1.40 ~ 6.03)
0.004
59(53.2)
2.44(1.33-4.50)
0.004
23(20.7)
-
117(52.7)
105(47.3)
2.67(1.72 ~ 4.13)
0.001
Negative
137
24(17.5)
-
 
58(42.3)
-
 
55(40.1)
 
106(38.7)
168(61.3)
-
 
Serosa invasion
             
Positive
126
34(27.0)
2.78(1.34 ~ 5.75)
0.006
62(49.2)
1.74(0.97-3.13)
0.064
30(23.8)
-
130(51.6)
122 (48.4)
2.17(1.42 ~ 3.31)
0.001
Negative
122
19(15.6)
-
 
55(45.1)
  
48(39.3)
-
93(38.1)
151 (61.9)
-
 
Δ, Multivariate logistic regression adjusted by age and gender (genotype AA, AOR = 1.00); *, multivariate logistic regression adjusted by age and gender (A carrier, AOR = 1.00).

Association between NFKB1 rs4648068 polymorphism and age/gender of gastric cancer patients

The role of the rs4648068 polymorphism in different age groups and gender groups of gastric cancer patients was evaluated. Because age and gender are reported to be the 2 major risk factors of gastric cancer, and this disease is reported to be more common in men over the age of 55 than in other groups [2528], we divided the gastric cancer patients into 2 age groups (age ≤ 55 and age > 55), or groups that were divided by gender. However, the associations of this polymorphism with age and gender were not statistically significant.

Association of NFKB1 rs4648068 polymorphism and clinical stage of gastric cancer

We evaluated whether the association between the rs4648068 polymorphism and gastric cancer was modified by the clinical stages of the cancer by dividing the gastric cancer patients into 2 groups: clinical stages I + II and clinical stages III + IV. The frequency of the GG genotype in clinical stages III + IV was significantly higher than that in clinical stages I + II (P = 0.025, AOR = 2.27, 95% CI: 1.11- 4.66), indicating an association between high clinical stage and the G allele (Table 4).

NFKB1 rs4648068 is associated with the survival of gastric cancer patients

As indicated in Table 4, lymph node status and serosa invasion were significantly associated with the survival of gastric cancer patients. Stratified analyses by lymph node status showed that patients carrying the G allele were more likely than those carrying the A allele to have a positive lymph node status (52.7% versus 38.7%, P = 0.001). Furthermore, there was a significant correlation between the genotype and serosa invasion. The frequency of the GG genotype in serosa invasion-positive patients was significantly higher than that in serosa invasion-negative patients (27.0% versus 15.6%, P = 0.006). The frequency of G carriers in serosa invasion-positive patients was also significantly higher than that in serosa invasion-negative patients (51.6% versus 38.1%, P = 0.001, AOR = 2.17, 95% CI: 1.42- 3.31). However, rs4648068 genotypes were not associated with the tumor differentiation in gastric cancer patients (Table 4).

Discussion

NF-κB was reported to be a proinflammatory transcription factor, which could bind the enhancer of the kappa light chain of immunoglobulin and promote tumorigenesis [29, 30]. The rs4648068 (A > G) polymorphism was identified in a study of the analysis of variation in NFKB1 genes and expression levels of NF-κB regulated molecules, and SNP rs4648068 was subsequently reported to be associated with VCAM1 and LDL phenotypes [31, 32].
Considering there is a relationship between gastric cancer and the promoter region of NFKB1[9, 10] and many reports also showed that the genetic variations in introns might involve alternative gene regulation, transcript processing, or chromosomal rearrangements [16, 17, 23, 24], the association between the rs4648068 polymorphism in NFKB1 and gastric cancer has been studied. Here, we found that the rs4648068 polymorphism had a significantly different distribution in gastric cancer patients and healthy control individuals in a preliminary small-scale genotyping study (P = 0.029). Therefore, we investigated the role of the NFKB1 rs4648068 polymorphism in gastric cancer susceptibility in the Han Chinese population in a case–control study. The results indicated that people with the homozygous GG alleles in rs4648068 had a 2.65-fold increased risk of gastric cancer compared people carrying other rs4648068 alleles (P = 0.042).
Surprisingly, although reports showed that age and gender are the 2 major risk factors of gastric cancer, and gastric cancer is reported to be more common in men over the age of 55 than in other groups of individuals [2528], our stratified analysis by age and gender did not modify the association between rs4648068 and the risk of gastric cancer. Lewander’s group [33] and Gao’s group [34] have reported that the genetic polymorphisms have the opposite effect in Swedish populations compared with Chinese populations and in Asian populations compared with Caucasian populations. Whether our results are ethnically dependent requires further elucidation. In addition, although the minor allele frequency (MAF) of rs4648068 is high (0.346), this conclusion would be more convincing if it can be replicated in another cohort.
On the basis of our genetic association data in the Han Chinese population, the SNP within an NFKB1 intron region (rs4648068) showed marginal significance. This suggested that there might be correlation between NFKB1 genotypes and the gastric cancer clinicopathologic characteristics such as lymph node status and serosa invasion because of the different associations that were observed for the high-risk subsets and the low-risk subsets.
The SNP rs4648068 (A or G) resides in intron 11 of NFKB1, occupying position 103,518,305 of chromosome 4. The predominant nucleotide at this position is A for human, chimpanzee, and macaque, but G for orangutan, mouse, and dog. There is no conserved trait at this position in the genome of elephants, opossum, chicken, or zebrafish, although the corresponding region is Nfkb in these organisms. The percentages of the A and G alleles in the Han Chinese ethic group in Beijing are 0.609 and 0.391 (http://​www.​Hapmap.​org), respectively; our study in Shanghai found that the percentages of the A and G alleles are 0.551 and 0.449, respectively. The discrepancy may result from geographic factors because the percentages of A and G alleles in Han Chinese in Denver, Colorado, are also different from the above findings (A: 0.596; G: 0.404, data from http://​www.​Hapmap.​org). To elucidate the potential functional role of SNP rs4648068, we also performed a bioinformatic data mining study using the UCSC genome browser (http://​genome.​ucsc.​edu/​cgi-bin/​hgTracks) and Encode databases. The region near rs4648068 in intron 11 of NFKB1 exhibited increased levels of H3K9me1 and H3K4me1 (the highest value of H3K9me1 is 15, while the increase of the H3K4me1 level is not as remarkable as that of H3K9me1). These tracks displayed maps of chromatin state that were generated by the Broad/MGH ENCODE group using chromatin immunoprecipitation coupled with sequencing (ChIP-seq). Chemical modifications (methylation for H3K9me1 and acetylation for H3K4me1) to the histone proteins that are present in chromatin influence gene expression by changing the accessibility of the chromatin to transcription factors. The increased levels of chemo-modification imply that rs4648408 may be located in a regulatory element, such as an enhancer. Hence, the G allele of rs4648068 may alter the power of a potential enhancer, which may have an influence on disease in the host.
In the present study, we observed that the frequency of the G allele in clinical stages III + IV patients was significantly higher than that in clinical stages I + II patients, indicating that this polymorphism is associated with high clinical stage (P = 0.025). On the other hand, the stratified analysis by lymph node status showed that patients with the GG genotype and G carriers were more likely than those with the AA genotype and A carriers to have a positive lymph node status (P = 0.004 and 0.001, respectively), suggesting that this polymorphism might contribute to the constitutive NF-κB activity in gastric cancer.
Our investigations also demonstrated that the frequency of the GG homozygous_genotype in serosa invasion-positive patients was significantly higher than that in serosa invasion-negative patients (P = 0.006). Tumor invasion is regulated by numerous NF-κB target gene products, including MMP-9, TIMP-1/2, PAL 2, CXCR4, interleukin-8 (IL-8), and other chemokines [29, 35, 36]. NF-κB plays an essential role in the migration and the organ-specific homing of metastatic breast cancer cells [35, 37].

Further study

In our future experiments, we plan to use a dual-luciferase reporter assay in gastric cancer cell lines (MKN28, SNU216, SNU16, SCG7901, and HGC-27) to observe the LPS-induced luciferase expression level, which correlates with the mRNA level, to explore whether the mechanism of this association involves alternative gene regulation and transcript processing.

Conclusions

In this study, we have shown that people who carry the GG homozygous_genotype of the rs4648068 polymorphism in the NFKB1 gene appear to be at increased risk for developing gastric cancer. Furthermore, in gastric cancer patients, the G allele is associated with high clinical stage, positive lymph node status, and positive serosa invasion.

Author contributions

RQL designed the study and analyzed and interpreted the data. XG participated in clinical data and information collection. YC and SHL collected all samples and performed qRT-PCR genotyping experiments. YFY and JN were involved in statistical analysis of the data and drafted and edited the manuscript. LG conceived and supervised the project and reviewed the manuscript. All authors have read and approved the final manuscript.

Acknowledgments

This research was supported by grants from the National Basic Research Program of China (2010CB933902) and Science and Technology Commission of Shanghai Municipality (074119642). We are deeply grateful to Dr. Megan Hitchins for her enlightening instruction on the bioinformatics in this study.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors have no competing interests to declare.
Literatur
1.
Zurück zum Zitat Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61: 69-90. 10.3322/caac.20107.CrossRefPubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61: 69-90. 10.3322/caac.20107.CrossRefPubMed
2.
Zurück zum Zitat Chen CD, Sawyers CL: NF-kappa B activates prostate-specific antigen expression and is upregulated in androgen-independent prostate cancer. Mol Cell Biol. 2002, 22: 2862-2870. 10.1128/MCB.22.8.2862-2870.2002.CrossRefPubMedPubMedCentral Chen CD, Sawyers CL: NF-kappa B activates prostate-specific antigen expression and is upregulated in androgen-independent prostate cancer. Mol Cell Biol. 2002, 22: 2862-2870. 10.1128/MCB.22.8.2862-2870.2002.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Tai DI, Tsai SL, Chang YH, Huang SN, Chen TC, Chang KS, Liaw YF: Constitutive activation of nuclear factor kappaB in hepatocellular carcinoma. Cancer. 2000, 89: 2274-2281. 10.1002/1097-0142(20001201)89:11<2274::AID-CNCR16>3.0.CO;2-2.CrossRefPubMed Tai DI, Tsai SL, Chang YH, Huang SN, Chen TC, Chang KS, Liaw YF: Constitutive activation of nuclear factor kappaB in hepatocellular carcinoma. Cancer. 2000, 89: 2274-2281. 10.1002/1097-0142(20001201)89:11<2274::AID-CNCR16>3.0.CO;2-2.CrossRefPubMed
4.
Zurück zum Zitat Biswas DK, Dai SC, Cruz A, Weiser B, Graner E, Pardee AB: The nuclear factor kappa B (NF-kappa B): a potential therapeutic target for estrogen receptor negative breast cancers. Proc Natl Acad Sci U S A. 2001, 98: 10386-10391. 10.1073/pnas.151257998.CrossRefPubMedPubMedCentral Biswas DK, Dai SC, Cruz A, Weiser B, Graner E, Pardee AB: The nuclear factor kappa B (NF-kappa B): a potential therapeutic target for estrogen receptor negative breast cancers. Proc Natl Acad Sci U S A. 2001, 98: 10386-10391. 10.1073/pnas.151257998.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Lind DS, Hochwald SN, Malaty J, Rekkas S, Hebig P, Mishra G, Moldawer LL, Copeland EM, Mackay S: Nuclear factor-kappa B is upregulated in colorectal cancer. Surgery. 2001, 130: 363-369. 10.1067/msy.2001.116672.CrossRefPubMed Lind DS, Hochwald SN, Malaty J, Rekkas S, Hebig P, Mishra G, Moldawer LL, Copeland EM, Mackay S: Nuclear factor-kappa B is upregulated in colorectal cancer. Surgery. 2001, 130: 363-369. 10.1067/msy.2001.116672.CrossRefPubMed
6.
Zurück zum Zitat Wang W, Abbruzzese JL, Evans DB, Chiao PJ: Overexpression of urokinase-type plasminogen activator in pancreatic adenocarcinoma is regulated by constitutively activated RelA. Oncogene. 1999, 18: 4554-4563. 10.1038/sj.onc.1202833.CrossRefPubMed Wang W, Abbruzzese JL, Evans DB, Chiao PJ: Overexpression of urokinase-type plasminogen activator in pancreatic adenocarcinoma is regulated by constitutively activated RelA. Oncogene. 1999, 18: 4554-4563. 10.1038/sj.onc.1202833.CrossRefPubMed
7.
Zurück zum Zitat Rueda B, Nunez C, Lopez-Nevot MA, Paz Ruiz M, Urcelay E, De la Concha EG, Martin J: Functional polymorphism of the NFKB1 gene promoter is not relevant in predisposition to celiac disease. Scand J Gastroenterol. 2006, 41: 420-423. 10.1080/00365520500325929.CrossRefPubMed Rueda B, Nunez C, Lopez-Nevot MA, Paz Ruiz M, Urcelay E, De la Concha EG, Martin J: Functional polymorphism of the NFKB1 gene promoter is not relevant in predisposition to celiac disease. Scand J Gastroenterol. 2006, 41: 420-423. 10.1080/00365520500325929.CrossRefPubMed
8.
Zurück zum Zitat Uranishi H, Tetsuka T, Yamashita M, Asamitsu K, Shimizu M, Itoh M, Okamoto T: Involvement of the pro-oncoprotein TLS (translocated in liposarcoma) in nuclear factor-kappa B p65-mediated transcription as a coactivator. J Biol Chem. 2001, 276: 13395-13401. 10.1074/jbc.M011176200.CrossRefPubMed Uranishi H, Tetsuka T, Yamashita M, Asamitsu K, Shimizu M, Itoh M, Okamoto T: Involvement of the pro-oncoprotein TLS (translocated in liposarcoma) in nuclear factor-kappa B p65-mediated transcription as a coactivator. J Biol Chem. 2001, 276: 13395-13401. 10.1074/jbc.M011176200.CrossRefPubMed
9.
Zurück zum Zitat Kim JG, Sohn SK, Chae YS, Moon JH, Kim SN, Kang BW, Kim GC, Lee MH, Jeon SW, Chung HY, Yu W: No association of the NFKB1 insertion/deletion promoter polymorphism with survival in patients with gastric cancer. Jpn J Clin Oncol. 2009, 39: 497-501. 10.1093/jjco/hyp056.CrossRefPubMed Kim JG, Sohn SK, Chae YS, Moon JH, Kim SN, Kang BW, Kim GC, Lee MH, Jeon SW, Chung HY, Yu W: No association of the NFKB1 insertion/deletion promoter polymorphism with survival in patients with gastric cancer. Jpn J Clin Oncol. 2009, 39: 497-501. 10.1093/jjco/hyp056.CrossRefPubMed
10.
Zurück zum Zitat Lo SS, Chen JH, Wu CW, Lui WY: Functional polymorphism of NFKB1 promoter may correlate to the susceptibility of gastric cancer in aged patients. Surgery. 2009, 145: 280-285. 10.1016/j.surg.2008.11.001.CrossRefPubMed Lo SS, Chen JH, Wu CW, Lui WY: Functional polymorphism of NFKB1 promoter may correlate to the susceptibility of gastric cancer in aged patients. Surgery. 2009, 145: 280-285. 10.1016/j.surg.2008.11.001.CrossRefPubMed
11.
Zurück zum Zitat Tchernitsa O, Kasajima A, Schafer R, Kuban RJ, Ungethum U, Gyorffy B, Neumann U, Simon E, Weichert W, Ebert MP, Rocken C: Systematic evaluation of the miRNA-ome and its downstream effects on mRNA expression identifies gastric cancer progression. J Pathol. 2010, 222: 310-319. 10.1002/path.2759.CrossRefPubMed Tchernitsa O, Kasajima A, Schafer R, Kuban RJ, Ungethum U, Gyorffy B, Neumann U, Simon E, Weichert W, Ebert MP, Rocken C: Systematic evaluation of the miRNA-ome and its downstream effects on mRNA expression identifies gastric cancer progression. J Pathol. 2010, 222: 310-319. 10.1002/path.2759.CrossRefPubMed
12.
Zurück zum Zitat Inagaki Y, Tang W, Xu HL, Guo Q, Mafune K, Konishi T, Nakata M, Sugawara Y, Kokudo N: Localization of N-myc downstream-regulated gene 1 in gastric cancer tissue. Dig Liver Dis. 2009, 41: 96-103. 10.1016/j.dld.2008.04.003.CrossRefPubMed Inagaki Y, Tang W, Xu HL, Guo Q, Mafune K, Konishi T, Nakata M, Sugawara Y, Kokudo N: Localization of N-myc downstream-regulated gene 1 in gastric cancer tissue. Dig Liver Dis. 2009, 41: 96-103. 10.1016/j.dld.2008.04.003.CrossRefPubMed
13.
Zurück zum Zitat Akiyama Y, Watkins N, Suzuki H, Jair KW, van Engeland M, Esteller M, Sakai H, Ren CY, Yuasa Y, Herman JG, Baylin SB: GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol Cell Biol. 2003, 23: 8429-8439. 10.1128/MCB.23.23.8429-8439.2003.CrossRefPubMedPubMedCentral Akiyama Y, Watkins N, Suzuki H, Jair KW, van Engeland M, Esteller M, Sakai H, Ren CY, Yuasa Y, Herman JG, Baylin SB: GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol Cell Biol. 2003, 23: 8429-8439. 10.1128/MCB.23.23.8429-8439.2003.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Wang S, Tian L, Zeng Z, Zhang M, Wu K, Chen M, Fan D, Hu P, Sung JJ, Yu J: IkappaBalpha polymorphism at promoter region (rs2233408) influences the susceptibility of gastric cancer in Chinese. BMC Gastroenterol. 2010, 10: 15-10.1186/1471-230X-10-15.CrossRefPubMedPubMedCentral Wang S, Tian L, Zeng Z, Zhang M, Wu K, Chen M, Fan D, Hu P, Sung JJ, Yu J: IkappaBalpha polymorphism at promoter region (rs2233408) influences the susceptibility of gastric cancer in Chinese. BMC Gastroenterol. 2010, 10: 15-10.1186/1471-230X-10-15.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Ju H, Lim B, Kim M, Kim YS, Kim WH, Ihm C, Noh SM, Han DS, Yu HJ, Choi BY, Kang C: A regulatory polymorphism at position −309 in PTPRCAP is associated with susceptibility to diffuse-type gastric cancer and gene expression. Neoplasia. 2009, 11: 1340-1347.CrossRefPubMedPubMedCentral Ju H, Lim B, Kim M, Kim YS, Kim WH, Ihm C, Noh SM, Han DS, Yu HJ, Choi BY, Kang C: A regulatory polymorphism at position −309 in PTPRCAP is associated with susceptibility to diffuse-type gastric cancer and gene expression. Neoplasia. 2009, 11: 1340-1347.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA: Selecting a maximally informative set of singlenucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet. 2004, 74: 106-120. 10.1086/381000.CrossRefPubMed Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA: Selecting a maximally informative set of singlenucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet. 2004, 74: 106-120. 10.1086/381000.CrossRefPubMed
17.
Zurück zum Zitat Sjakste T, Paramonova N, Grislis Z, Trapina I, Kairisa D: Analysis of the single-nucleotide polymorphism in the 5'UTR and part of intron I of the sheep MSTN gene. DNA Cell Biol. 2011, 30: 433-444. 10.1089/dna.2010.1153.CrossRefPubMed Sjakste T, Paramonova N, Grislis Z, Trapina I, Kairisa D: Analysis of the single-nucleotide polymorphism in the 5'UTR and part of intron I of the sheep MSTN gene. DNA Cell Biol. 2011, 30: 433-444. 10.1089/dna.2010.1153.CrossRefPubMed
18.
Zurück zum Zitat Zhu LB, Xu Q, Hong CY, Yue Z, Zhang Y, Ye HN, Yuan Y: XPC gene intron 11 C/A polymorphism is a predictive biomarker for the sensitivity to NP chemotherapy in patients with non-small cell lung cancer. Anticancer Drugs. 2010, 21: 669-673.PubMed Zhu LB, Xu Q, Hong CY, Yue Z, Zhang Y, Ye HN, Yuan Y: XPC gene intron 11 C/A polymorphism is a predictive biomarker for the sensitivity to NP chemotherapy in patients with non-small cell lung cancer. Anticancer Drugs. 2010, 21: 669-673.PubMed
19.
Zurück zum Zitat Chen P, Xie LJ, Huang GY, Zhao XQ, Chang C: Mutations of connexin43 in fetuses with congenital heart malformations. Chin Med J (Engl). 2005, 118: 971-976. Chen P, Xie LJ, Huang GY, Zhao XQ, Chang C: Mutations of connexin43 in fetuses with congenital heart malformations. Chin Med J (Engl). 2005, 118: 971-976.
20.
Zurück zum Zitat Zhang X, Fu L, Zhang Q, Yan L, Ma Y, Tu B, Liu N, Qiao J: Association of TRB3 Q84R polymorphism with polycystic ovary syndrome in Chinese women. Reprod Biol Endocrinol. 2011, 9: 46-10.1186/1477-7827-9-46.CrossRefPubMedPubMedCentral Zhang X, Fu L, Zhang Q, Yan L, Ma Y, Tu B, Liu N, Qiao J: Association of TRB3 Q84R polymorphism with polycystic ovary syndrome in Chinese women. Reprod Biol Endocrinol. 2011, 9: 46-10.1186/1477-7827-9-46.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Elens L, Bouamar R, Hesselink DA, Haufroid V, van der Heiden IP, van Gelder T, van Schaik RH: A New Functional CYP3A4 Intron 6 Polymorphism Significantly Affects Tacrolimus Pharmacokinetics in Kidney Transplant Recipients. Clin Chem. 2011, 57: 1574-1583. 10.1373/clinchem.2011.165613.CrossRefPubMed Elens L, Bouamar R, Hesselink DA, Haufroid V, van der Heiden IP, van Gelder T, van Schaik RH: A New Functional CYP3A4 Intron 6 Polymorphism Significantly Affects Tacrolimus Pharmacokinetics in Kidney Transplant Recipients. Clin Chem. 2011, 57: 1574-1583. 10.1373/clinchem.2011.165613.CrossRefPubMed
22.
Zurück zum Zitat Chuo LJ, Wu ST, Chang HI, Kuo YM: Extremely rare incidence of the UBQLN1 polymorphism (UBQ-8i) in Taiwan Chinese with Alzheimer's disease. Neurosci Lett. 2010, 475: 108-109. 10.1016/j.neulet.2010.03.061.CrossRefPubMed Chuo LJ, Wu ST, Chang HI, Kuo YM: Extremely rare incidence of the UBQLN1 polymorphism (UBQ-8i) in Taiwan Chinese with Alzheimer's disease. Neurosci Lett. 2010, 475: 108-109. 10.1016/j.neulet.2010.03.061.CrossRefPubMed
23.
Zurück zum Zitat Athanasiu L, Mattingsdal M, Melle I, Inderhaug E, Lien T, Agartz I, Lorentzen S, Morken G, Andreassen OA, Djurovic S: Intron 12 in NTRK3 is associated with bipolar disorder. Psychiatry Res. 2011, 185: 358-362. 10.1016/j.psychres.2010.05.011.CrossRefPubMed Athanasiu L, Mattingsdal M, Melle I, Inderhaug E, Lien T, Agartz I, Lorentzen S, Morken G, Andreassen OA, Djurovic S: Intron 12 in NTRK3 is associated with bipolar disorder. Psychiatry Res. 2011, 185: 358-362. 10.1016/j.psychres.2010.05.011.CrossRefPubMed
24.
Zurück zum Zitat Weickert CS, Miranda-Angulo AL, Wong J, Perlman WR, Ward SE, Radhakrishna V, Straub RE, Weinberger DR, Kleinman JE: Variants in the estrogen receptor alpha gene and its mRNA contribute to risk for schizophrenia. Hum Mol Genet. 2008, 17: 2293-2309. 10.1093/hmg/ddn130.CrossRefPubMedPubMedCentral Weickert CS, Miranda-Angulo AL, Wong J, Perlman WR, Ward SE, Radhakrishna V, Straub RE, Weinberger DR, Kleinman JE: Variants in the estrogen receptor alpha gene and its mRNA contribute to risk for schizophrenia. Hum Mol Genet. 2008, 17: 2293-2309. 10.1093/hmg/ddn130.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Silecchia G, Greco F, Bacci V, Boru C, Pecchia A, Casella G, Rizzello M, Basso N: Results after laparoscopic adjustable gastric banding in patients over 55 years of age. Obes Surg. 2005, 15: 351-356. 10.1381/0960892053576622.CrossRefPubMed Silecchia G, Greco F, Bacci V, Boru C, Pecchia A, Casella G, Rizzello M, Basso N: Results after laparoscopic adjustable gastric banding in patients over 55 years of age. Obes Surg. 2005, 15: 351-356. 10.1381/0960892053576622.CrossRefPubMed
26.
Zurück zum Zitat Christie J, Shepherd NA, Codling BW, Valori RM: Gastric cancer below the age of 55: implications for screening patients with uncomplicated dyspepsia. Gut. 1997, 41: 513-517. 10.1136/gut.41.4.513.CrossRefPubMedPubMedCentral Christie J, Shepherd NA, Codling BW, Valori RM: Gastric cancer below the age of 55: implications for screening patients with uncomplicated dyspepsia. Gut. 1997, 41: 513-517. 10.1136/gut.41.4.513.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Arendt R, Hauzeui F: Relations between age, gastric juice secretion and gastritis. Z Alternsforsch. 1973, 27: 161-167.PubMed Arendt R, Hauzeui F: Relations between age, gastric juice secretion and gastritis. Z Alternsforsch. 1973, 27: 161-167.PubMed
28.
Zurück zum Zitat Billington BP: Gastric ulcer: age, sex, and a curious retrogression. Australas Ann Med. 1960, 9: 111-121.PubMed Billington BP: Gastric ulcer: age, sex, and a curious retrogression. Australas Ann Med. 1960, 9: 111-121.PubMed
29.
Zurück zum Zitat Aggarwal BB: Nuclear factor-kappaB: the enemy within. Cancer Cell. 2004, 6: 203-208. 10.1016/j.ccr.2004.09.003.CrossRefPubMed Aggarwal BB: Nuclear factor-kappaB: the enemy within. Cancer Cell. 2004, 6: 203-208. 10.1016/j.ccr.2004.09.003.CrossRefPubMed
30.
Zurück zum Zitat Sen R, Baltimore D: Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell. 1986, 47: 921-928. 10.1016/0092-8674(86)90807-X.CrossRefPubMed Sen R, Baltimore D: Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell. 1986, 47: 921-928. 10.1016/0092-8674(86)90807-X.CrossRefPubMed
31.
Zurück zum Zitat Liu-Mares W, Sun Z, Bamlet WR, Atkinson EJ, Fridley BL, Slager SL, de Andrade M, Goode EL: Analysis of variation in NF-kappaB genes and expression levels of NF-kappaB-regulated molecules. BMC Proc. 2007, 1 (Suppl 1): S126-10.1186/1753-6561-1-s1-s126.CrossRefPubMedPubMedCentral Liu-Mares W, Sun Z, Bamlet WR, Atkinson EJ, Fridley BL, Slager SL, de Andrade M, Goode EL: Analysis of variation in NF-kappaB genes and expression levels of NF-kappaB-regulated molecules. BMC Proc. 2007, 1 (Suppl 1): S126-10.1186/1753-6561-1-s1-s126.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Kraja AT, Culverhouse R, Daw EW, Wu J, Van Brunt A, Province MA, Borecki IB: The Genetic Analysis Workshop 16 Problem 3: simulation of heritable longitudinal cardiovascular phenotypes based on actual genome-wide single-nucleotide polymorphisms in the Framingham Heart Study. BMC Proc. 2009, 3 (Suppl 7): S4-10.1186/1753-6561-3-s7-s4.CrossRefPubMedPubMedCentral Kraja AT, Culverhouse R, Daw EW, Wu J, Van Brunt A, Province MA, Borecki IB: The Genetic Analysis Workshop 16 Problem 3: simulation of heritable longitudinal cardiovascular phenotypes based on actual genome-wide single-nucleotide polymorphisms in the Framingham Heart Study. BMC Proc. 2009, 3 (Suppl 7): S4-10.1186/1753-6561-3-s7-s4.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Lewander A, Butchi AK, Gao J, He LJ, Lindblom A, Arbman G, Carstensen J, Zhang ZY, Sun XF: Polymorphism in the promoter region of the NFKB1 gene increases the risk of sporadic colorectal cancer in Swedish but not in Chinese populations. Scand J Gastroenterol. 2007, 42: 1332-1338. 10.1080/00365520701396026.CrossRefPubMed Lewander A, Butchi AK, Gao J, He LJ, Lindblom A, Arbman G, Carstensen J, Zhang ZY, Sun XF: Polymorphism in the promoter region of the NFKB1 gene increases the risk of sporadic colorectal cancer in Swedish but not in Chinese populations. Scand J Gastroenterol. 2007, 42: 1332-1338. 10.1080/00365520701396026.CrossRefPubMed
34.
Zurück zum Zitat Gao L, Nieters A, Brenner H: Meta-analysis: tumour invasion-related genetic polymorphisms and gastric cancer susceptibility. Aliment Pharmacol Ther. 2008, 28: 565-573. 10.1111/j.1365-2036.2008.03760.x.CrossRefPubMed Gao L, Nieters A, Brenner H: Meta-analysis: tumour invasion-related genetic polymorphisms and gastric cancer susceptibility. Aliment Pharmacol Ther. 2008, 28: 565-573. 10.1111/j.1365-2036.2008.03760.x.CrossRefPubMed
35.
Zurück zum Zitat Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G: Inflammation and cancer: how hot is the link?. Biochem Pharmacol. 2006, 72: 1605-1621. 10.1016/j.bcp.2006.06.029.CrossRefPubMed Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G: Inflammation and cancer: how hot is the link?. Biochem Pharmacol. 2006, 72: 1605-1621. 10.1016/j.bcp.2006.06.029.CrossRefPubMed
36.
Zurück zum Zitat Yang J, Pan WH, Clawson GA, Richmond A: Systemic targeting inhibitor of kappaB kinase inhibits melanoma tumor growth. Cancer Res. 2007, 67: 3127-3134. 10.1158/0008-5472.CAN-06-3547.CrossRefPubMedPubMedCentral Yang J, Pan WH, Clawson GA, Richmond A: Systemic targeting inhibitor of kappaB kinase inhibits melanoma tumor growth. Cancer Res. 2007, 67: 3127-3134. 10.1158/0008-5472.CAN-06-3547.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Huang S, Robinson JB, Deguzman A, Bucana CD, Fidler IJ: Blockade of nuclear factor-kappaB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Res. 2000, 60: 5334-5339.PubMed Huang S, Robinson JB, Deguzman A, Bucana CD, Fidler IJ: Blockade of nuclear factor-kappaB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Res. 2000, 60: 5334-5339.PubMed
Metadaten
Titel
Association of an NFKB1 intron SNP (rs4648068) with gastric cancer patients in the Han Chinese population
verfasst von
Renquan Lu
Xiang Gao
Yin Chen
Jian Ni
Yongfu Yu
Sheng Li
Lin Guo
Publikationsdatum
01.12.2012
Verlag
BioMed Central
Erschienen in
BMC Gastroenterology / Ausgabe 1/2012
Elektronische ISSN: 1471-230X
DOI
https://doi.org/10.1186/1471-230X-12-87

Weitere Artikel der Ausgabe 1/2012

BMC Gastroenterology 1/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.