Skip to main content
Erschienen in: Systematic Reviews 1/2019

Open Access 01.12.2019 | Protocol

Association of incident dialysis modality with mortality: a protocol for systematic review and meta-analysis of randomized controlled trials and cohort studies

verfasst von: Mark R. Marshall, Chun-Yuan Hsiao, Philip K. Li, Masaaki Nakayama, S. Rabindranath, Rachael C. Walker, Xueqing Yu, Suetonia C. Palmer

Erschienen in: Systematic Reviews | Ausgabe 1/2019

Abstract

Background

At least 2.6 million adults and children receive dialysis treatment for end-stage kidney disease (ESKD) worldwide. The large majority of these receive hemodialysis (HD), while the remaining receive peritoneal dialysis (PD). Peritoneal dialysis may be associated with similar mortality outcomes as HD, and patient-reported outcomes are potentially increased with PD. Existing evidence for the mortality associated with PD was summarized over 20 years ago, and there has been greater marginal improvement in survival with PD relative to HD since that time. It is therefore timely to reexamine the question of differential mortality by modality and summarize evidence from more contemporary practice settings.

Methods/design

Electronic databases will be systematically searched for publications that report the association between dialysis modality (HD or PD) with death from any cause and cause-specific death in incident patients with end-stage kidney disease. The database searches will be supplemented by searching through citations and references and consultation with experts. Studies published before 1995 will be excluded. Screening of both titles and abstracts will be done by two independent reviewers. All disagreements will be resolved by an independent third reviewer. A quantitative meta-analysis of effect sizes and standard errors will be applied.

Discussion

Our systematic review will update previous evidence summaries and provide a quantitative and standardized assessment of the contemporary literature comparing HD and PD including published and unpublished non-English studies from greater China, Taiwan, and Japan. This review will inform shared decision-making around initial dialysis modality choice and jurisdiction-level considerations of dialysis practice.

Systematic review registration

PROSPERO CRD42018111829
Abkürzungen
APD
Automated peritoneal dialysis
CAPD
Continuous ambulatory peritoneal dialysis
CB-ISTIC
Chongqing Branch of Institute of Scientific & Technical information of China
CCPD
Company Profiles Database
CCPD
Continuous cyclic peritoneal dialysis
CFPD
Continuous flow peritoneal dialysis
ChiCTR
China’s Clinical Trial Registry
ESKD
End-stage kidney disease
GRADE
Grading of Recommendations Assessment, Development and Evaluation
HD
Hemodialysis
ICTRP
International Clinical Trials Registry Platform Search Portal
IPD
Intermittent peritoneal dialysis
JPRN
Japan Primary Registries Network
NIPD
Nocturnal intermittent peritoneal dialysis
PD
Peritoneal dialysis
PET
Peritoneal equilibration test
RCT
Randomized controlled trial
TAO
Taiwan Academic Online
TPD
Tidal peritoneal dialysis

Introduction

Rationale

At least 2.6 million adults and children receive dialysis treatment for end-stage kidney disease (ESKD) worldwide, and a substantial number remain without access to dialysis care [1]. Globally, close to 90% of long-term dialysis patients receive hemodialysis (HD) with the remaining receive peritoneal dialysis (PD). The distribution of dialysis modality, however, varies widely by health jurisdiction and country. Peritoneal dialysis may be associated with similar mortality outcomes as compared to HD [24], although patient-reported outcomes are potentially increased with PD (e.g., patient satisfaction [57], life participation [8], treatment flexibility and intrusiveness [9], self-management [7], some domains of health-related quality of life [10, 11], and health utility [1214]). Importantly, for most health care systems, PD is less expensive to provide than HD, and economic evaluations suggest improved productivity and societal outcomes with greater use of PD [1520].
There are several potential barriers to the adoption of PD, some of which relate to clinician attitudes towards its safety and efficacy relative to HD. Where there is strong clinical belief, adoption of PD is higher irrespective of financial or infrastructure constraints [2124]. When there is equipoise, the addressing of barriers becomes critical to increased adoption [25]. Clinician uptake of PD may of course depend on non-medical factors, such as financial incentives [26], clinical culture and disposition among peers [27], and familiarity and confidence in achieving the outcomes that are seen in centers of excellence [28, 29].
Existing evidence for the mortality associated with PD was summarized over 20 years ago, when outcomes associated with PD were accepted to be inferior to HD [30, 31]. Since those reviews, new evidence has emerged on outcomes from Australia and New Zealand [32], Canada [33, 34], the USA [35, 36], the Netherlands [37], Denmark [38], Taiwan [39], and Korea [40]. These studies indicate a greater marginal improvement in survival with PD relative to HD over the last two decades, with recent health technology assessments suggesting that the conclusions from the older studies may no longer be valid [16, 41, 42]. It is therefore timely to re-examine the question of differential mortality by modality and summarize evidence from more contemporary practice settings.
We will conduct a systematic review to evaluate the association between dialysis modality (HD or PD) with death from any cause and cause-specific death in incident patients with end-stage kidney disease. The primary outcome will be death from any cause.

Methods

We will conduct a systematic review with meta-analysis according to reporting standards [43]. Literature searchers, identification of eligible studies, data extraction, and bias assessment will be undertaken independently by at least two researchers.

PICO tables and eligibility criteria

The PICO criteria were agreed by the review researchers and defined as follows. Participants of eligible trials and studies will be adults and children with incidence of end-stage kidney disease starting long-term dialysis treatment. The intervention will consider any type of PD and its variants (continuous ambulatory PD (CAPD), automated PD (APD)/continuous cyclic PD (CCPD), (nocturnal) intermittent PD (IPD/NIPD), tidal PD (TPD), or continuous flow PD (CFPD)). The comparison will consider HD and its variants (hemofiltration, hemodiafiltration, acid-free biofiltration). We will exclude studies evaluating combined HD and PD strategies, or where the hemodialysis comprises intensive dialysis (i.e., greater than 3.5 times per week, or greater than 6 h per treatment [44]). The primary outcome will be death from any cause.
Eligible studies and trials will include published or unpublished reports in any language that assess associations between PD and HD with the outcome of interest. We will include randomized controlled trials and quasi-RCTs and prospectively or retrospectively recruited longitudinal cohort studies. We will exclude studies published before 1995. Narrative reviews and health technology assessments related to the topic will be retained to investigate their references for further eligible studies.
We will identify studies and trials from a highly sensitive literature search to identify all published and unpublished studies (Appendix in Table 1). The following databases will be searched from inception to present: MEDLINE; Embase; CENTRAL; Ichushi-Web; clinical trials registries (ClinicalTrials.gov, International Clinical Trials Registry Platform Search Portal (ICTRP), EU Clinical Trials Register, Japan Primary Registries Network (JPRN), China’s Clinical Trial Registry (ChiCTR)); China National Knowledge Infrastructure (www.​cnki.​net); Chongqing VIP Information Co., Ltd., formerly known as Database Research Center under Chongqing Branch of Institute of Scientific & Technical information of China (CB-ISTIC, www.​wanfangdata.​com.​cn); HK government library (https://​www.​hkpl.​gov.​hk/​en/​e-resources/​e-databases/​keyword/​e-database/​all/​1); Hyread full-text database of Taiwan (http://​www.​hyread.​com.​tw/​hyreadnew/); Ericdata Higher Education Knowledge Base (http://​www.​ericdata.​com/); Taiwan Journal Papers Index System (http://​readopac.​ncl.​edu.​tw/​nclJournal/​index.​htm); TAO Taiwan Academic Online (http://​tao.​wordpedia.​com/​); and Ariti library (http://​www.​airitilibrary.​com/).
We will search manually for additional studies by cross-checking the reference lists of all included primary studies and lists of relevant systematic reviews. In addition, study authors and experts will be contacted for additional studies. The search strategy will be developed by the research team in collaboration with an experienced librarian and checked by a referee according to the Peer Review of Electronic Search Strategies (PRESS) guidelines. The search strategy is shown in Appendix. Search results will be managed using Endnote (Clarivate Analytics, Philadelphia, PA).

Study selection

The title and abstract of each article will be screened and assessed against predefined inclusion criteria by two independent reviewers. Full texts of all potentially relevant articles will then be assessed for inclusion by two reviewers independently. Disagreements will be resolved through discussion and consensus or consulting a third person. The corresponding authors of eligible articles will be contacted for clarification where necessary. We will record the reasons for exclusion and report the study selection process using the PRISMA flow diagram. A list of excluded studies will be provided.

Data extraction

A standardized data extraction sheet will be designed and tested. Two reviewers will independently extract data from the included studies. Any disagreements will be resolved through discussion and consensus or by involving a third reviewer. Where necessary, studies will be translated before assessment and data extraction.
The following data will be extracted: study characteristics (design, sample size, duration of follow-up, number of participants randomized/included in the analysis); participant characteristics—demographics (age, sex), relevant medical conditions, and cause of ESKD; presence and extent of adjustment for co-variates (age, sex, diabetes mellitus); sub-modality of PD; and sub-modality of HD death from any-cause.
In case outcome data are missing, we will contact study authors and request the data. For prospective and retrospective studies, the most adjusted values for effect size will be extracted.

Risk of bias assessment

We will use the Cochrane tool to assess study risk of bias in randomized and quasi-randomized trials. For each assessment, we will provide support for judgment. For non-randomized studies, the Newcastle-Ottawa Scale will be used. Items will be rated as low, high, or unclear risk of bias. The following domains will be assessed: representativeness of exposed cohort, ascertainment of exposure, statistical methods, outcomes of interest defined a priori (outcomes reporting bias), assessment of outcomes, and follow-up times for outcomes and attrition [45]. Any disagreements will be resolved through discussion and consensus. If necessary, we will involve a third reviewer.

Data analysis

For prospective and retrospective cohort studies, we will summarize the adjusted risk ratios (relative risk, hazard ratio, odds ratio) for PD versus HD as reported by the studies or calculated for dichotomous outcomes using DerSimonian and Laird random effects meta-analysis. A summary risk estimate will be reported together with a 95% confidence interval. When individual studies report results separately for multiple subgroups of patients, we will extract results for each cohort to include in the meta-analysis. The results for each cohort within a study will be combined using fixed effect meta-analysis before being entered into the overall meta-analytical model. Results for observational studies and trials will be summarized separately.
Clinical and statistical heterogeneity between studies will be assessed by two reviewers. We will evaluate for heterogeneity using the I2 statistic and consider the I2 thresholds of < 25%, 25–49%, 50–75% and > 75% to represent low, moderate, high, and very high heterogeneity, respectively. Given the likelihood of clinical or statistical heterogeneity, we will apply a random-effect model. Analyses will be conducted using Stata IC 14/15 (Statacorp, College Station, TX).
Potential sources of statistical heterogeneity will be evaluated through subgroup analyses. If possible, we will undertake subgroup analyses according to age (children, adults), duration of follow-up (6 months, 1 year, 2 years), era of study (> 2000, 2000–2010, > 2010), and the type of country of study according to its economy and capital markets (advanced, developing [46]). Effect modification by age, gender, and diabetes will be ascertained by meta-regression of study-level summary data and, depending on those results, explored in subgroups according to cut points suggested by the visual inspections of fitted models. Where possible, we will conduct the following analyses to determine if results are sensitive to the influence of fixed-effect model versus random-effect model assumptions; the inclusion of studies at high risk of bias (the overall risk will be considered high if any of the domains of the Cochrane Risk of Bias tool are judged to be at high risk of bias for RCTs and if the comparability of cohorts is not enhanced by design or analyses that adjust, stratify, or match for age and diabetes); the inclusion of publications that include deaths up to 90 days (including the interim or short-term HD patients who have very high mortality due to elements unrelated to dialysis); and studies using an as-treated framework (“did the exposure that the patient actually receive affect mortality?”) (e.g., [4750]), as opposed to an intention-to-treat framework (“did exposure that the patient initially receive affect mortality, irrespective of subsequent changes that occurred along the way?”) [51].

Small study effects

If there are 10 or more studies included in the meta-analysis, we will investigate small study effects using funnel plots and Egger’s test.

Level of evidence

The confidence that may be placed in the summary estimates will be evaluated using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) tool [52]. The following domains will be considered: risk of bias/study limitations, directness of evidence (generalizability), consistency of prognostic estimates among studies, and precision (width of confidence interval and impact on clinical significance). The quality of the body of evidence will be assessed by two reviewers independently. The GRADE system specifies four levels of certainty, namely, high quality (where further research is very unlikely to change our confidence in the estimates of effect), moderate (where further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate), low quality (where further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate), and very low quality (where any estimate of effect is very uncertain) evidence.

Discussion

Our systematic review will update previous evidence summaries and provide a quantitative and standardized assessment of the contemporary literature comparing PD with HD including non-English studies from China, Taiwan, and Japan. This review will inform shared decision-making around initial dialysis modality choice and jurisdiction-level considerations of dialysis practice. Our review does not address the important outcome of quality of life. This would require a different technical scope, firstly due to the varying expressions for quality of life in the dialysis literature [12, 13] and secondly due to the different approaches to summarizing them [10, 11, 14]. As such, quality of life is beyond the scope of this review, although it is a high priority for future study with appropriate planning and resourcing.

Presenting and reporting the results

This protocol adheres to the Preferred Reporting Items for Systematic Review and Meta-Analysis-Protocols (PRISMA-P) [43].

Acknowledgements

not applicable.

Funding

SCP is the recipient of a Rutherford Discovery Fellowship from the Royal Society of New Zealand. MRM is the recipeint of a Jacquot Research Establishment Fellowship from the Royal Australasian College of Physicians.

Availability of data and materials

not applicable.
not applicable.
not applicable.

Competing interests

MRM is a full time employee of Baxter Healthcare (Asia) Pte Ltd. The other authors declare that they have no competing interests (financial and non-financial).

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Anhänge

Appendix

Table 1
Electronic search strategies
Database
Search terms
CENTRAL
MeSH descriptor Renal Replacement Therapy, this term only
MeSH descriptor Hemofiltration explode all trees
MeSH descriptor Hemodialysis, Home, this term only
MeSH descript Renal Dialysis, this term only
hemofiltrat* or haemofiltrat* or hemodial* or haemodial*:ti,ab,kw
hemodiafiltrat* or hemodiafiltrat*:ti,ab,kw
(HD or HDF or HF or AFB or RRT):ti,ab,kw
(#1 OR #2 OR #3 OR #4 OR #5 or #6)
“peritoneal dialysis”:ti.​ab.​kw
(CAPD or CCPD or APD or PD or IPD or NIPD or TPD or CFPD):ti.​ab.​kw
(#9 OR #10)
(#8 AND #11)
MEDLINE
Renal Replacement Therapy/
Renal Dialysis/
exp. Peritoneal Dialysis/
peritoneal dialysis.tw.
(PD or CAPD or CCAP or APD or IPD or NIPD or TPD or CFPD).tw.
Hemodialysis, Home/
(hemodialysis or haemodialysis).tw.
(HDF or HD or HF).tw.
(hemodial$ or hemodial$).tw.
Or/1-9
Cohort studies/
Incidence.tw.
Mortality/
Follow-Up Studies/
Pronos$.tw.
Predict$.tw.
Course.tw.
Survival Analysis/
Or/11-18
and/10,19
Embase
Peritoneal Dialysis/
Continuous Ambulatory Peritoneal Dialysis/
peritoneal dialysis.tw.
(PD or CAPD or CCPD or APD or IPD or NIPD or TPD or CFPD).tw.
exp. Renal replacement therapy/
hemodialysis/
home dialysis/
(hemodialysis or haemodialysis).tw.
Or/1-8
Cohort Analysis/
Incidence/
Mortality/
Follow Up/
Survival/
Prognosis/
Prediction/
Or/10-16
And/9,17
Literatur
1.
Zurück zum Zitat Liyanage T, Ninomiya T, Jha V, Neal B, Patrice HM, Okpechi I, Zhao MH, Lv J, Garg AX, Knight J, et al. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet. 2015;385(9981):1975–82.PubMedCrossRef Liyanage T, Ninomiya T, Jha V, Neal B, Patrice HM, Okpechi I, Zhao MH, Lv J, Garg AX, Knight J, et al. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet. 2015;385(9981):1975–82.PubMedCrossRef
2.
Zurück zum Zitat Merchant AA, Quinn RR, Perl J. Dialysis modality and survival: does the controversy live on? Curr Opin Nephrol Hypertens. 2015;24(3):276–83.PubMedCrossRef Merchant AA, Quinn RR, Perl J. Dialysis modality and survival: does the controversy live on? Curr Opin Nephrol Hypertens. 2015;24(3):276–83.PubMedCrossRef
3.
Zurück zum Zitat Teixeira JP, Combs SA, Teitelbaum I. Peritoneal dialysis: update on patient survival. Clin Nephrol. 2015;83:1):1–10.PubMed Teixeira JP, Combs SA, Teitelbaum I. Peritoneal dialysis: update on patient survival. Clin Nephrol. 2015;83:1):1–10.PubMed
4.
Zurück zum Zitat Trinh E, Chan CT, Perl J. Dialysis modality and survival: done to death. Semin Dial. 2018;31(4):315–24.PubMedCrossRef Trinh E, Chan CT, Perl J. Dialysis modality and survival: done to death. Semin Dial. 2018;31(4):315–24.PubMedCrossRef
5.
Zurück zum Zitat Wasserfallen JB, Moinat M, Halabi G, Saudan P, Perneger T, Feldman HI, Martin PY, Wauters JP. Satisfaction of patients on chronic haemodialysis and peritoneal dialysis. Swiss Med Wkly. 2006;136(13–14):210–7.PubMed Wasserfallen JB, Moinat M, Halabi G, Saudan P, Perneger T, Feldman HI, Martin PY, Wauters JP. Satisfaction of patients on chronic haemodialysis and peritoneal dialysis. Swiss Med Wkly. 2006;136(13–14):210–7.PubMed
6.
Zurück zum Zitat Rubin HR, Fink NE, Plantinga LC, Sadler JH, Kliger AS, Powe NR. Patient ratings of dialysis care with peritoneal dialysis vs hemodialysis. Jama. 2004;291(6):697–703.PubMedCrossRef Rubin HR, Fink NE, Plantinga LC, Sadler JH, Kliger AS, Powe NR. Patient ratings of dialysis care with peritoneal dialysis vs hemodialysis. Jama. 2004;291(6):697–703.PubMedCrossRef
7.
Zurück zum Zitat Juergensen E, Wuerth D, Finkelstein SH, Juergensen PH, Bekui A, Finkelstein FO. Hemodialysis and peritoneal dialysis: patients’ assessment of their satisfaction with therapy and the impact of the therapy on their lives. Clin J Am Soc Nephrol. 2006;1(6):1191–6.PubMedCrossRef Juergensen E, Wuerth D, Finkelstein SH, Juergensen PH, Bekui A, Finkelstein FO. Hemodialysis and peritoneal dialysis: patients’ assessment of their satisfaction with therapy and the impact of the therapy on their lives. Clin J Am Soc Nephrol. 2006;1(6):1191–6.PubMedCrossRef
8.
Zurück zum Zitat Tong A, Lesmana B, Johnson DW, Wong G, Campbell D, Craig JC. The perspectives of adults living with peritoneal dialysis: thematic synthesis of qualitative studies. Am J Kidney Dis. 2013;61(6):873–88.PubMedCrossRef Tong A, Lesmana B, Johnson DW, Wong G, Campbell D, Craig JC. The perspectives of adults living with peritoneal dialysis: thematic synthesis of qualitative studies. Am J Kidney Dis. 2013;61(6):873–88.PubMedCrossRef
9.
Zurück zum Zitat Brown EA, Johansson L, Farrington K, Gallagher H, Sensky T, Gordon F, Da Silva-Gane M, Beckett N, Hickson M. Broadening Options for Long-term Dialysis in the Elderly (BOLDE): differences in quality of life on peritoneal dialysis compared to haemodialysis for older patients. Nephrol Dial Transplant. 2010;25(11):3755–63.PubMedPubMedCentralCrossRef Brown EA, Johansson L, Farrington K, Gallagher H, Sensky T, Gordon F, Da Silva-Gane M, Beckett N, Hickson M. Broadening Options for Long-term Dialysis in the Elderly (BOLDE): differences in quality of life on peritoneal dialysis compared to haemodialysis for older patients. Nephrol Dial Transplant. 2010;25(11):3755–63.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Zazzeroni L, Pasquinelli G, Nanni E, Cremonini V, Rubbi I. Comparison of quality of life in patients undergoing hemodialysis and peritoneal dialysis: a systematic review and meta-analysis. Kidney Blood Pressure Res. 2017;42(4):717–27.CrossRef Zazzeroni L, Pasquinelli G, Nanni E, Cremonini V, Rubbi I. Comparison of quality of life in patients undergoing hemodialysis and peritoneal dialysis: a systematic review and meta-analysis. Kidney Blood Pressure Res. 2017;42(4):717–27.CrossRef
11.
Zurück zum Zitat Boateng EA, East L. The impact of dialysis modality on quality of life: a systematic review. J Renal Care. 2011;37(4):190–200.CrossRef Boateng EA, East L. The impact of dialysis modality on quality of life: a systematic review. J Renal Care. 2011;37(4):190–200.CrossRef
12.
Zurück zum Zitat Wyld M, Morton RL, Hayen A, Howard K, Webster AC. A systematic review and meta-analysis of utility-based quality of life in chronic kidney disease treatments. PLoS Med. 2012;9(9):e1001307.PubMedPubMedCentralCrossRef Wyld M, Morton RL, Hayen A, Howard K, Webster AC. A systematic review and meta-analysis of utility-based quality of life in chronic kidney disease treatments. PLoS Med. 2012;9(9):e1001307.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Dale PL, Hutton J, Elgazzar H. Utility of health states in chronic kidney disease: a structured review of the literature. Curr Med Res Opin. 2008;24(1):193–206.PubMedCrossRef Dale PL, Hutton J, Elgazzar H. Utility of health states in chronic kidney disease: a structured review of the literature. Curr Med Res Opin. 2008;24(1):193–206.PubMedCrossRef
14.
Zurück zum Zitat Liem YS, Bosch JL, Hunink MG. Preference-based quality of life of patients on renal replacement therapy: a systematic review and meta-analysis. Value Health. 2008;11(4):733–41.PubMedCrossRef Liem YS, Bosch JL, Hunink MG. Preference-based quality of life of patients on renal replacement therapy: a systematic review and meta-analysis. Value Health. 2008;11(4):733–41.PubMedCrossRef
15.
Zurück zum Zitat Kutner NG, Zhang R, Huang Y, Johansen KL. Depressed mood, usual activity level, and continued employment after starting dialysis. Clin J Am Soc Nephrol. 2010;5(11):2040–5.PubMedPubMedCentralCrossRef Kutner NG, Zhang R, Huang Y, Johansen KL. Depressed mood, usual activity level, and continued employment after starting dialysis. Clin J Am Soc Nephrol. 2010;5(11):2040–5.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Pike E, Hamidi V, Ringerike T, Wisloff T, Klemp M. More use of peritoneal dialysis gives significant savings: a systematic review and health economic decision model. J Clin Med Res. 2017;9(2):104–16.PubMedCrossRef Pike E, Hamidi V, Ringerike T, Wisloff T, Klemp M. More use of peritoneal dialysis gives significant savings: a systematic review and health economic decision model. J Clin Med Res. 2017;9(2):104–16.PubMedCrossRef
17.
Zurück zum Zitat Muehrer RJ, Schatell D, Witten B, Gangnon R, Becker BN, Hofmann RM. Factors affecting employment at initiation of dialysis. Clin J Am Soc Nephrol. 2011;6(3):489–96.PubMedPubMedCentralCrossRef Muehrer RJ, Schatell D, Witten B, Gangnon R, Becker BN, Hofmann RM. Factors affecting employment at initiation of dialysis. Clin J Am Soc Nephrol. 2011;6(3):489–96.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Julian Mauro JC, Molinuevo Tobalina JA, Sanchez Gonzalez JC. Employment in the patient with chronic kidney disease related to renal replacement therapy. Nefrologia. 2012;32(4):439–45.PubMed Julian Mauro JC, Molinuevo Tobalina JA, Sanchez Gonzalez JC. Employment in the patient with chronic kidney disease related to renal replacement therapy. Nefrologia. 2012;32(4):439–45.PubMed
19.
Zurück zum Zitat Helantera I, Haapio M, Koskinen P, Gronhagen-Riska C, Finne P. Employment of patients receiving maintenance dialysis and after kidney transplant: a cross-sectional study from Finland. Am J Kidney Dis. 2012;59(5):700–6.PubMedCrossRef Helantera I, Haapio M, Koskinen P, Gronhagen-Riska C, Finne P. Employment of patients receiving maintenance dialysis and after kidney transplant: a cross-sectional study from Finland. Am J Kidney Dis. 2012;59(5):700–6.PubMedCrossRef
20.
Zurück zum Zitat Nakayama M, Ishida M, Ogihara M, Hanaoka K, Tamura M, Kanai H, Tonozuka Y, Marshall MR. Social functioning and socioeconomic changes after introduction of regular dialysis treatment and impact of dialysis modality: a multi-centre survey of Japanese patients. Nephrology (Carlton). 2015;20(8):523–30.CrossRef Nakayama M, Ishida M, Ogihara M, Hanaoka K, Tamura M, Kanai H, Tonozuka Y, Marshall MR. Social functioning and socioeconomic changes after introduction of regular dialysis treatment and impact of dialysis modality: a multi-centre survey of Japanese patients. Nephrology (Carlton). 2015;20(8):523–30.CrossRef
21.
Zurück zum Zitat Walker RC, Marshall R, Howard K, Morton RL, Marshall MR. "Who matters most?": Clinician perspectives of influence and recommendation on home dialysis uptake. Nephrology (Carlton). 2017;22(12):977–84.CrossRef Walker RC, Marshall R, Howard K, Morton RL, Marshall MR. "Who matters most?": Clinician perspectives of influence and recommendation on home dialysis uptake. Nephrology (Carlton). 2017;22(12):977–84.CrossRef
22.
Zurück zum Zitat Machowska A, Rutherford P. Peritoneal dialysis use within the context of the population and healthcare systems of Europe - differences, trends and future challenges. Int J Artif Organs. 2016;39(5):211–9.PubMedCrossRef Machowska A, Rutherford P. Peritoneal dialysis use within the context of the population and healthcare systems of Europe - differences, trends and future challenges. Int J Artif Organs. 2016;39(5):211–9.PubMedCrossRef
23.
Zurück zum Zitat Furth SL, Hwang W, Yang C, Neu AM, Fivush BA, Powe NR. Relation between pediatric experience and treatment recommendations for children and adolescents with kidney failure. Jama. 2001;285(8):1027–33.PubMedCrossRef Furth SL, Hwang W, Yang C, Neu AM, Fivush BA, Powe NR. Relation between pediatric experience and treatment recommendations for children and adolescents with kidney failure. Jama. 2001;285(8):1027–33.PubMedCrossRef
24.
Zurück zum Zitat Bouvier N, Durand PY, Testa A, Albert C, Planquois V, Ryckelynck JP, Lobbedez T. Regional discrepancies in peritoneal dialysis utilization in France: the role of the nephrologist's opinion about peritoneal dialysis. Nephrol Dial Transplant. 2009;24(4):1293–7.PubMedCrossRef Bouvier N, Durand PY, Testa A, Albert C, Planquois V, Ryckelynck JP, Lobbedez T. Regional discrepancies in peritoneal dialysis utilization in France: the role of the nephrologist's opinion about peritoneal dialysis. Nephrol Dial Transplant. 2009;24(4):1293–7.PubMedCrossRef
25.
Zurück zum Zitat Manns B, Agar JWM, Biyani M, Blake PG, Cass A, Culleton B, Kleophas W, Komenda P, Lobbedez T, MacRae J, et al. Can economic incentives increase the use of home dialysis? Nephrol Dial Transplant. 2018. https://doi.org/10.1093/ndt/gfy223. [Epub ahead of print]. Manns B, Agar JWM, Biyani M, Blake PG, Cass A, Culleton B, Kleophas W, Komenda P, Lobbedez T, MacRae J, et al. Can economic incentives increase the use of home dialysis? Nephrol Dial Transplant. 2018. https://​doi.​org/​10.​1093/​ndt/​gfy223. [Epub ahead of print].
26.
Zurück zum Zitat Hirth RA, Turenne MN, Wheeler JR, Nahra TA, Sleeman KK, Zhang W, Messana JA. The initial impact of Medicare’s new prospective payment system for kidney dialysis. Am J Kidney Dis. 2013;62(4):662–9.PubMedCrossRef Hirth RA, Turenne MN, Wheeler JR, Nahra TA, Sleeman KK, Zhang W, Messana JA. The initial impact of Medicare’s new prospective payment system for kidney dialysis. Am J Kidney Dis. 2013;62(4):662–9.PubMedCrossRef
27.
Zurück zum Zitat Fortnum D, Ludlow M, Morton RL. Renal unit characteristics and patient education practices that predict a high prevalence of home-based dialysis in Australia. Nephrology (Carlton). 2014;19(9):587–93.CrossRef Fortnum D, Ludlow M, Morton RL. Renal unit characteristics and patient education practices that predict a high prevalence of home-based dialysis in Australia. Nephrology (Carlton). 2014;19(9):587–93.CrossRef
28.
Zurück zum Zitat Mann BS, Manns BJ, Barnieh L, Oliver MJ, Devoe D, Lorenzetti D, Pauly R, Quinn RR. Peritoneal dialysis: a scoping review of strategies to maximize PD utilization. Perit Dial Int. 2017;37(2):159–64.PubMedCrossRef Mann BS, Manns BJ, Barnieh L, Oliver MJ, Devoe D, Lorenzetti D, Pauly R, Quinn RR. Peritoneal dialysis: a scoping review of strategies to maximize PD utilization. Perit Dial Int. 2017;37(2):159–64.PubMedCrossRef
29.
Zurück zum Zitat Dahlan R, Qureshi M, Akeely F, Al Sayyari AA. Barriers to peritoneal dialysis in Saudi Arabia: nephrologists’ perspectives. Perit Dial Int. 2016;36(5):564–6.PubMedPubMedCentralCrossRef Dahlan R, Qureshi M, Akeely F, Al Sayyari AA. Barriers to peritoneal dialysis in Saudi Arabia: nephrologists’ perspectives. Perit Dial Int. 2016;36(5):564–6.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Ross S, Dong E, Gordon M, Connelly J, Kvasz M, Iyengar M, Mujais SK. Meta-analysis of outcome studies in end-stage renal disease. Kidney Int. 2000;57:S28–38.CrossRef Ross S, Dong E, Gordon M, Connelly J, Kvasz M, Iyengar M, Mujais SK. Meta-analysis of outcome studies in end-stage renal disease. Kidney Int. 2000;57:S28–38.CrossRef
31.
Zurück zum Zitat Gutman RA, Blumenkrantz MJ, Chan YK, Barbour GL, Gandhi VC, Shen FH, Tucker T, Murawski BJ, Coburn JW, Curtis FK. Controlled comparison of hemodialysis and peritoneal dialysis: Veterans Administration multicenter study. Kidney Int. 1984;26(4):459–70.PubMedCrossRef Gutman RA, Blumenkrantz MJ, Chan YK, Barbour GL, Gandhi VC, Shen FH, Tucker T, Murawski BJ, Coburn JW, Curtis FK. Controlled comparison of hemodialysis and peritoneal dialysis: Veterans Administration multicenter study. Kidney Int. 1984;26(4):459–70.PubMedCrossRef
32.
Zurück zum Zitat Marshall MR, Polkinghorne KR, Kerr PG, Agar JW, Hawley CM, McDonald SP. Temporal changes in mortality risk by dialysis modality in the Australian and New Zealand dialysis population. Am J Kidney Dis. 2015;66(3):489–98.PubMedCrossRef Marshall MR, Polkinghorne KR, Kerr PG, Agar JW, Hawley CM, McDonald SP. Temporal changes in mortality risk by dialysis modality in the Australian and New Zealand dialysis population. Am J Kidney Dis. 2015;66(3):489–98.PubMedCrossRef
33.
Zurück zum Zitat Perl J, Wald R, McFarlane P, Bargman JM, Vonesh E, Na Y, Jassal SV, Moist L. Hemodialysis vascular access modifies the association between dialysis modality and survival. J Am Soc Nephrol. 2011;22(6):1113–21.PubMedPubMedCentralCrossRef Perl J, Wald R, McFarlane P, Bargman JM, Vonesh E, Na Y, Jassal SV, Moist L. Hemodialysis vascular access modifies the association between dialysis modality and survival. J Am Soc Nephrol. 2011;22(6):1113–21.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Yeates K, Zhu N, Vonesh E, Trpeski L, Blake P, Fenton S. Hemodialysis and peritoneal dialysis are associated with similar outcomes for end-stage renal disease treatment in Canada. Nephrol Dial Transplant. 2012;27(9):3568–75.PubMedCrossRef Yeates K, Zhu N, Vonesh E, Trpeski L, Blake P, Fenton S. Hemodialysis and peritoneal dialysis are associated with similar outcomes for end-stage renal disease treatment in Canada. Nephrol Dial Transplant. 2012;27(9):3568–75.PubMedCrossRef
35.
Zurück zum Zitat Mehrotra R, Chiu YW, Kalantar-Zadeh K, Bargman J, Vonesh E. Similar outcomes with hemodialysis and peritoneal dialysis in patients with end-stage renal disease. Arch Intern Med. 2011;171(2):110–8.PubMedCrossRef Mehrotra R, Chiu YW, Kalantar-Zadeh K, Bargman J, Vonesh E. Similar outcomes with hemodialysis and peritoneal dialysis in patients with end-stage renal disease. Arch Intern Med. 2011;171(2):110–8.PubMedCrossRef
36.
Zurück zum Zitat Treamtrakanpon W, Katavetin P, Yimsangyad K, Keawsinark P, Sanganunttakan S, Pandon S, Buddeewong D, Prakot A, Khumsupo C, Thamsutee N, et al. From the “PD First” policy to the innovation in PD care. J Med Assoc Thai. 2011;94(Suppl 4):S13–8.PubMed Treamtrakanpon W, Katavetin P, Yimsangyad K, Keawsinark P, Sanganunttakan S, Pandon S, Buddeewong D, Prakot A, Khumsupo C, Thamsutee N, et al. From the “PD First” policy to the innovation in PD care. J Med Assoc Thai. 2011;94(Suppl 4):S13–8.PubMed
37.
Zurück zum Zitat Liem YS, Wong JB, Hunink MG, de Charro FT, Winkelmayer WC. Comparison of hemodialysis and peritoneal dialysis survival in The Netherlands. Kidney Int. 2007;71(2):153–8.PubMedCrossRef Liem YS, Wong JB, Hunink MG, de Charro FT, Winkelmayer WC. Comparison of hemodialysis and peritoneal dialysis survival in The Netherlands. Kidney Int. 2007;71(2):153–8.PubMedCrossRef
38.
Zurück zum Zitat Heaf JG, Wehberg S. Relative survival of peritoneal dialysis and haemodialysis patients: effect of cohort and mode of dialysis initiation. PLoS One. 2014;9(3):e90119.PubMedPubMedCentralCrossRef Heaf JG, Wehberg S. Relative survival of peritoneal dialysis and haemodialysis patients: effect of cohort and mode of dialysis initiation. PLoS One. 2014;9(3):e90119.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Chang YK, Hsu CC, Hwang SJ, Chen PC, Huang CC, Li TC, Sung FC. A comparative assessment of survival between propensity score-matched patients with peritoneal dialysis and hemodialysis in Taiwan. Medicine. 2012;91(3):144–51.PubMedCrossRef Chang YK, Hsu CC, Hwang SJ, Chen PC, Huang CC, Li TC, Sung FC. A comparative assessment of survival between propensity score-matched patients with peritoneal dialysis and hemodialysis in Taiwan. Medicine. 2012;91(3):144–51.PubMedCrossRef
40.
Zurück zum Zitat Ryu J-H, Kim H, Kim KH, Hann HJ, Ahn HS, Lee S, Kim S-J, Kang D-H, Choi KB, Ryu D-R. Improving survival rate of Korean patients initiating Dialysis. Yonsei Med J. 2015;56(3):666–75.PubMedPubMedCentralCrossRef Ryu J-H, Kim H, Kim KH, Hann HJ, Ahn HS, Lee S, Kim S-J, Kang D-H, Choi KB, Ryu D-R. Improving survival rate of Korean patients initiating Dialysis. Yonsei Med J. 2015;56(3):666–75.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Pike E, Hamidi V, Ringerike T, Wisloff T, Desser A, Harboe I, Klemp M. NIPH systematic reviews. In: Health technology assessment of the different dialysis modalities in Norway. Oslo: Knowledge Centre for the Health Services at The Norwegian Institute of Public Health (NIPH); 2013. Pike E, Hamidi V, Ringerike T, Wisloff T, Desser A, Harboe I, Klemp M. NIPH systematic reviews. In: Health technology assessment of the different dialysis modalities in Norway. Oslo: Knowledge Centre for the Health Services at The Norwegian Institute of Public Health (NIPH); 2013.
42.
Zurück zum Zitat Sinclair A, Cimon K, Loncar M, Sood M, Komenda P, Severn M, Klarenbach S, So H, Tsoi B, Quinn R, et al. Dialysis modalities for the treatment of end-stage kidney disease: a health technology assessment. In: CADTH Optimal Use Report. vol. 6. Ottawa: CADTH; 2018. Sinclair A, Cimon K, Loncar M, Sood M, Komenda P, Severn M, Klarenbach S, So H, Tsoi B, Quinn R, et al. Dialysis modalities for the treatment of end-stage kidney disease: a health technology assessment. In: CADTH Optimal Use Report. vol. 6. Ottawa: CADTH; 2018.
43.
Zurück zum Zitat Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1.PubMedPubMedCentralCrossRef Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1.PubMedPubMedCentralCrossRef
44.
45.
Zurück zum Zitat Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.PubMedCrossRef Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.PubMedCrossRef
46.
Zurück zum Zitat International Monetary Fund. World Economic Outlook: Challenges to Steady Growth. Washington, DC: International Monetary Fund, Publication Services; 2018. International Monetary Fund. World Economic Outlook: Challenges to Steady Growth. Washington, DC: International Monetary Fund, Publication Services; 2018.
47.
Zurück zum Zitat Marshall MR, Hawley CM, Kerr PG, Polkinghorne KR, Marshall RJ, Agar JW, McDonald SP. Home hemodialysis and mortality risk in Australian and New Zealand populations. Am J Kidney Dis. 2011;58(5):782–93.PubMedCrossRef Marshall MR, Hawley CM, Kerr PG, Polkinghorne KR, Marshall RJ, Agar JW, McDonald SP. Home hemodialysis and mortality risk in Australian and New Zealand populations. Am J Kidney Dis. 2011;58(5):782–93.PubMedCrossRef
48.
Zurück zum Zitat Marshall MR, Polkinghorne KR, Kerr PG, Hawley CM, Agar JW, McDonald SP. Intensive hemodialysis and mortality risk in Australian and New Zealand populations. Am J Kidney Dis. 2016;67(4):617–28.PubMedCrossRef Marshall MR, Polkinghorne KR, Kerr PG, Hawley CM, Agar JW, McDonald SP. Intensive hemodialysis and mortality risk in Australian and New Zealand populations. Am J Kidney Dis. 2016;67(4):617–28.PubMedCrossRef
49.
Zurück zum Zitat Marshall MR, van der Schrieck N, Lilley D, Supershad SK, Ng A, Walker RC, Dunlop JL. Independent community house hemodialysis as a novel dialysis setting: an observational cohort study. Am J Kidney Dis. 2013;61(4):598–607.PubMedCrossRef Marshall MR, van der Schrieck N, Lilley D, Supershad SK, Ng A, Walker RC, Dunlop JL. Independent community house hemodialysis as a novel dialysis setting: an observational cohort study. Am J Kidney Dis. 2013;61(4):598–607.PubMedCrossRef
51.
Zurück zum Zitat Vonesh EF, Schaubel DE, Hao W, Collins AJ. Statistical methods for comparing mortality among ESRD patients: examples of regional/international variations. Kidney Int. 2000;57:S19–27.CrossRef Vonesh EF, Schaubel DE, Hao W, Collins AJ. Statistical methods for comparing mortality among ESRD patients: examples of regional/international variations. Kidney Int. 2000;57:S19–27.CrossRef
52.
Zurück zum Zitat Balshem H, Helfand M, Schunemann HJ, Oxman AD, Kunz R, Brozek J, Vist GE, Falck-Ytter Y, Meerpohl J, Norris S, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol. 2011;64(4):401–6.PubMedCrossRef Balshem H, Helfand M, Schunemann HJ, Oxman AD, Kunz R, Brozek J, Vist GE, Falck-Ytter Y, Meerpohl J, Norris S, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol. 2011;64(4):401–6.PubMedCrossRef
Metadaten
Titel
Association of incident dialysis modality with mortality: a protocol for systematic review and meta-analysis of randomized controlled trials and cohort studies
verfasst von
Mark R. Marshall
Chun-Yuan Hsiao
Philip K. Li
Masaaki Nakayama
S. Rabindranath
Rachael C. Walker
Xueqing Yu
Suetonia C. Palmer
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Systematic Reviews / Ausgabe 1/2019
Elektronische ISSN: 2046-4053
DOI
https://doi.org/10.1186/s13643-019-0972-1

Weitere Artikel der Ausgabe 1/2019

Systematic Reviews 1/2019 Zur Ausgabe