Skip to main content
Erschienen in: Journal of Ovarian Research 1/2019

Open Access 01.12.2019 | Research

Association of the hypoxia-inducible factor-1α (HIF-1α) gene polymorphisms with prognosis in ovarian clear cell carcinoma

verfasst von: Hiroyuki Suzuki, Mitsutake Yano, Mariko Miyazawa, Masaki Miyazawa, Naoki Ogane, Kosei Hasegawa, Hitoshi Tsuda, Masayuki Yoshida, Ryugo Okagaki, Osamu Ishihara, Masanori Yasuda

Erschienen in: Journal of Ovarian Research | Ausgabe 1/2019

Abstract

Background

Ovarian clear cell carcinoma (OCCC) is the second most common ovarian cancer after serous carcinoma in Japan. OCCC has a more unfavorable clinical outcome due to a poor response to platinum-based chemotherapy, compared with serous carcinoma. Hypoxia inducible factor-1α (HIF-1α) is a key regulator of cellular response to hypoxia and plays an important role in tumor growth, and HIF-1α gene single-nucleotide polymorphisms (SNPs) adversely affect the outcome in some cancers. Herein, we investigated the association of the HIF-1α gene SPNs with clinical outcome in OCCCs. Eighty-nine patients with OCCC were recruited in whom pathological diagnosis was confirmed with surgically resected specimen.

Results

The SNPs of C1772T and G1790A in the HIF-1α gene occurred in 23.6 and 3.3% of the patients, respectively. In the univariate analysis, overall survival was associated with stage and surgical residual tumor but not with the SNPs C1772T, G1790A, C1772T and/or G1790A. In the multivariate survival analysis, a significant association was observed between outcome and FIGO stage and/or surgical residual tumor; however, no association was obtained between HIF-1α gene SNPs and these factors.

Conclusion

In conclusion, unlike the other cancers in which HIF-1α gene SNPs were demonstrated to be associated with the outcome, OCCC prognosis may not be affected by HIF-1α gene SNPs. Further studies need to be performed to clarify the association of HIF-1α expression with the unfavorable prognosis in OCCCs, in terms of transcriptional/translational activity, nuclear translocation of the protein, and protein degradation.
Abkürzungen
CI
Confidence interval
FIGO
The International Federation of Obstetrics and Gynecology
HDAC
Histone deacetylase
HIF-1α
Hypoxia inducible factor-1α
HR
Hazard ratio
IRB
Institutional review board
OCCC
Ovarian clear cell carcinoma
OS
Overall survival
PCR
Polymerase chain-reaction
PFS
Progression free survival
SNP
Single-nucleotide polymorphism

Background

Ovarian cancer is the leading cause of death among gynecological malignancies, as well as is the fourth most common malignancy in women in developed countries, following breast, lung, and colorectal cancer [1, 2]. Each of the ovarian cancers, represented by serous carcinoma, endometrioid carcinoma, clear cell carcinoma, and mucinous carcinoma, are known to have specific clinicopathological features and molecular or genetic characteristics. In Japan, ovarian clear cell carcinoma (OCCC) is the second most common ovarian cancer, following serous carcinoma [3, 4]. OCCC arises from endometriosis in 50–70% of the cases [5, 6] and has a more unfavorable prognosis due to a poor response to platinum-based chemotherapy, compared with serous carcinoma [3, 4].
HIF-1α is a key regulator of cellular response to hypoxia and plays an important role in tumor growth by trans-activating various genes that are related to regulation of angiogenesis, energy metabolism, survival, resistance to anti-tumor therapy, and cell survival, apoptosis, and proliferation [79]. In our previous studies of OCCC and other ovarian epithelial cancers, we found an increased nuclear expression of HIF-1α in OCCC and have identified the HIF-1α regulating factors [10, 11]. Genetic polymorphisms are responsible for inter-individual variation and diversity, and have been recently considered as the main genetic elements involved in the development and progression of cancer [12]. HIF-1α gene SNPs are more frequent in several cancers than in healthy groups [1329]. Furthermore, they are associated with a poor prognosis in some cancers, including non-small cell lung cancer [13, 14], breast cancer [15, 16], head and neck squamous cell carcinoma [17], prostate cancer [18], bladder cancer [19], and glioma [20]. A total of 35 SNPs have been located within the HIF-1α gene. Three of the 35 SNPs were located in coding regions, one in exon 2, and the others in exon 12 [30]. The two SNPs located within exon 12 (codon 582 and 588) were associated with transcriptional activity [9, 30]. The C to T transition at nucleotide 1772 leads to an amino acid change of proline to serine at codon 582 (C1772T/P582S/rs11549465), and the G to A nucleotide substitution at point 1790 gives rise to an alanine/threonine variation at codon 588 (G1790A/A588T/rs11549467).
This study was conducted to investigate the impact and susceptibility of HIF-1α gene SNPs (C1772T and G1790A) on the prognosis of OCCCs because there have been no reports to analyze the association of the SNPs with outcome. In particular, the two SNPs associated with transcriptional activity were the focus of the study because they were associated with transcriptional activity.

Results

The genotypes of the homozygous wild-type HIF-1α gene SNPs C1772T (CC) and G1790A (GG) as well as heterozygous/homozygous SNPs C1772T (CT + TT) and G1790A (GA + AA) were identified (Fig. 1). Among the 89 OCCC patients, 23.6 and 3.3% showed the presence of C1772T and G1790A SNPs in the HIF-1α gene, respectively. Results were compared with those for the Japanese healthy population group; prevalence of C1772T and G1790A SNPs was 9.1–11.0% and 8.2–8.7%, respectively [19, 3133]. All clinicopathological results (age, FIGO stage, surgical residual tumor, recurrence, and death) failed to show a significant relationship with the SNPs (Table 1).
Table 1
Associations of the HIF-1α polymorphisms with clinicopathological parameters of OCCC
  
C1772T
G1790A
C1772T and/or G1790A
Variable
N (%)
CC
CT + TT
p value
GG
GA + AA
p value
CC and GG
CC + TT and/or GA + AA
p value
Age
  ≥ 54
43 (48)
33
10
0.571
41
2
0.474
31
12
0.518
  < 54
46 (52)
35
11
 
45
1
 
34
12
 
FIGO stage
 I and II
70 (79)
55
15
0.262
68
2
0.518
53
17
0.209
 III and IV
19 (21)
13
6
 
18
1
 
12
7
 
Residual tumor
 Yes
11 (12)
9
2
0.493
10
1
0.330
8
3
0.616
 No
71 (88)
59
19
 
76
2
 
57
21
 
Recurrence
 Yes
23 (26)
19
4
0.306
22
1
0.597
18
5
0.358
 No
66 (74)
49
17
 
64
2
 
47
19
 
Death
 Yes
15 (17)
12
3
0.506
14
1
0.429
11
4
0.625
 No
74 (83)
56
18
 
72
2
 
54
20
 
CC 1772CC genotype, CT 1772CT genotype, TT 1772TT genotype, GG 1790GG genotype, GA 1790GA genotype, AA 1790AA genotype, FIGO the International Federation of Obstetrics and Gynecology
In Kaplan-Meier survival curves, C1772T SNPs (CT + TT genotype) had no significant adverse effect on OS (p = 0.673, Fig. 2a) and PFS (p = 0.318, Fig. 2b). G1790A SNPs (GA + AA genotype) also had no significant adverse effect on OS (p = 0.643, Fig. 2c) and PFS (p = 0.748, Fig. 2d). Additionally, C1772T and/or G1790A SNPs (CT + TT and/or GA + AA) had no significant adverse effect on OS (p = 0.845, Fig. 2e) and PFS (p = 0.400, Fig. 2f). However, FIGO stage and surgical residual tumor had a significant adverse effect on OS (p = < 0.001; p = < 0.001, respectively) and PFS (p = < 0.001; p = < 0.001, respectively).
In the univariate analysis using the Cox proportional hazard model, OS was associated with FIGO stage (hazard ratio (HR) = 15.62; 95% confidence interval (CI) = 4.949 to 49.31; p = < 0.001) and surgical residual tumor (HR = 16.13; 95% CI = 5.780 to 45.00; p = < 0.001), but not with C1772T (HR = 0.762; 95% CI, 0.215 to 2.701; p = 0.674), G1790A (HR = 1.609; 95% CI, 0.211 to 12.28; p = 0.647), C1772T and/or G1790A (HR = 0.892; 95% CI, 0.284 to 2.803; p = 0.845), and age (HR = 1.463; 95% CI, 0.529 to 4.049; p = 0.463) (Table 2). In the multivariate survival analysis, FIGO stage (HR = 7.527; 95% CI, 1.808 to 31.33; p = 0.006) and surgical residual tumor (HR = 4.030; 95% CI, 1.127 to 14.41; p = 0.032) were found to be the independent prognostic factors (Table 2).
Table 2
Univariable and multivariable analysis using the Cox proportional hazards model of overall survival for OCCCs (n = 89/15 events)
 
Univariate analysis
Multivariate analysis
 
Variable
HR
95% CI
p value
HR
95% CI
p value
C1772T
0.762
0.215–2.701
0.674
   
G1790A
1.609
0.211–12.28
0.647
   
C1772T and/or G1790A
0.892
0.284–2.803
0.845
   
Age (> 54 vs ≤54)
1.463
0.529–4.049
0.463
   
FIGO stage (III + IV vs I + II)
15.62
4.949–49.31
<  0.001
7.527
1.808–31.33
0.006
Residual tumor
16.13
5.780–45.00
<  0.001
4.030
1.127–14.41
0.032
HR Hazard ratio, CI confidence interval, FIGO the International Federation of Obstetrics and Gynecology

Discussion

HIF-1α expression represents an important biomarker in the evaluation of ovarian carcinoma prognosis [34]. In our study, OCCCs are characterized by a nuclear expression of HIF-1α compared to other histological types. It is believed that HIF-1α is one of the key factors closely associated with chemo-resistance or unfavorable OCCC prognosis [10, 11]. Overexpression of HIF-1α may be attributed to transcriptional and/or translational activity, nuclear transition of the protein, and its degradation.
This study was conducted to assess whether there is an association of the HIF-1α gene SNPs with the prognosis and clinicopathological characteristics of OCCCs. A significant association was observed between prognosis and clinicopathological factors such as FIGO stage and surgical residual tumor. However, any variations of the SNPs were proven not to be associated with the prognosis. The previous studies of variable cancers with a focus on the relationship between HIF-1α gene SNPs and patient prognosis are summarized in Table 3 [1329]. OCCC patients had more frequent C1772T SNPs than the healthy Japanese population [19, 3133] and many other carcinomas. OCCC prognosis as well as colorectal cancer [21, 22], thymic malignancy [27], and cervical cancer [28, 29] prognoses had no association with C1772T and G1790A SNPs. However, the T allele of C1772T and A allele of G1790A are a poor or good prognostic factor in several cancers [17, 23]. The effects of HIF-1α SNPs on the prognosis with cancers are not uniform.
Table 3
HIF-1α polymorphisms in various cancers
Type of cancer
(Reference No.)
Case
Frequency (%)
Prognosis
C1772T
G1790A
C1772T
G1790A
OCCC (present study)
89
23.6
3.3
No association
No association
Colorectal cancer (21)
336
20.6
2.7
No association
No association
Colorectal cancer (22)
445
7.9
7.0
No association
No association
NSCLC (13)
741
73.5
72.5
CC has longer survival than CT and TT
No association
NSCLC (14)
285
46.3
47.4
TT has shorter survival than CC and CT
AA has shorter survival than GG and GA
Breast cancer (15)
90
10.0
3.3
C1772T polymorphism is associated with HIF-1α
overexpression, found in patients with lymph node metastasis
No association
Breast cancer (16)
410
28.2
19.1
T allele increases risk for lymph nodes metastasis
No association
Prostate cancer (18)
754
21.9
NA
T allele increases risk for metastasis and resistance to ADT
NA
RCC (23)
160
90.0
55.5
TT is earlier stage than the CC and CT
No association
RCC (24)
620
7.7
7.3
No association
No association
HNSCC (17)
52
50.0
71.2
T allele is more frequently found in patients with metastasis
GA and GG have shorter survival than AA
OSCC (25)
305
7.5
7.9
No association
No association
OSCC (26)
74
18.6
37.5
No association
A allele has shorter survival
Thymic malignancy (27)
57
14.9
0
No association
NA
Bladder cancer (19)
219
10.0
6.8
C1772T and/or G1790A polymorphic variants have shorter survival
Cervical cancer (28)
162
14.2
6.8
No association
No association
Cervical cancer (29)
199
11.1
6.0
No association
No association
Glioma (20)
387
70.5
75.2
CC has longer survival than CT and TT
No association
OCCC ovarian clear cell carcinoma, NSCLC non-small cell lung cancer, CC 1772CC genotype, CT 1772CT genotype, TT 1772TT genotype, GG 1790GG genotype, GA 1790GA genotype, AA 1790AA genotype, NA not available, RCC renal cell carcinoma, HNSCC head and neck squamous cell carcinoma, OSCC oral squamous cell carcinoma
The C1772T SNP has been reported to increase HIF-1α protein expression in some cancers [13, 15]. Twenty specimens, which were randomly selected out of the 89 OCCCs examined in this study, were subjected to immunohistochemical staining for HIF-1α. The results failed to show the associated between HIF-1α staining and presence of SNPs (data not shown). In our previous studies, OCCCs showed the highest frequency of HIF-1α, histone deacetylase (HDAC) 6, and HDAC7 compared to other ovarian epithelial cancer [10, 11, 35]. HDAC6 and HDAC7 induced not only HIF-1α transcriptional activity, but also stabilized HIF-1α protein via interaction with von Hippel Lindau and ubiquitin-independent proteasomal degradation of HIF-1α [3638]. In OCCCs, post-translational modification may be more important for the HIF-1α expressions than upregulated transcription activity by HIF-1α gene SNPs.
Our study has several limitations. The sample size used in this study was small and the survival analysis was only performed with a few events. However, when considering the low incidence of OCCC, the present study included a relatively large number of patients. Secondly, normal controls were not recruited in the present study; instead, we compared the frequencies of HIF-1α SNPs using the normal Japanese population reported in the past studies [19, 3133].

Conclusion

In conclusion, HIF-1α gene SNPs were demonstrated to be less significant as a prognostic marker in OCCCs. The precise mechanism of the association between the SNPs and overexpression of protein level remains to be clarified.

Methods

Patient data and clinicopathological features (Table 4)

Patients’ electronic medical charts from the Saitama Medical University Hospital and Saitama Medical University International Medical Center during the period of 1994 to 2012 were reviewed under approval of the institutional review board (IRB) following the ethical standards of the responsible committee on human experimentation and with the revised Helsinki Declaration in 1983. A total of 89 patients with OCCC without preoperative chemotherapy, whose tumors were surgically resected and pathologically confirmed, were recruited for this study. Clinicopathological characteristics of these cases, such as age, the International Federation of Obstetrics and Gynecology (FIGO) stage, treatment methods, recurrence, death, progression free survival (PFS), and overall survival (OS) were reviewed.
Table 4
Clinicopathological characteristics of patients (n = 89)
Variable
N (%)
Age
Median (range)
54.4 (34–78)
 > 54
43 (48)
 ≤ 54
46 (52)
FIGO stage
 I
65 (73)
 II
5 (6)
 III
17 (19)
 IV
2 (2)
Treatment
 OP only
18 (20)
 OP+AC
71 (80)
Recurrence
 Yes
23 (26)
 No
66 (74)
Death
 Yes
15 (17)
 No
74 (83)
FIGO the International Federation of Obstetrics and Gynecology, OP operation (at least primary tumor resection), AC adjuvant chemotherapy

Genotyping of HIF-1α single-nucleotide polymorphism

Samples were recruited from the formalin-fixed, paraffin embedded surgical specimens of OCCCs. DNA was extracted using the Gentra Puregene Tissue Kit (Qiagen, Germantown, MD, USA) according to the manufacturer’s instructions. Polymerase chain-reaction (PCR) was performed using the following specific primers designed for exon 12: 5′-GCTCCCTATATCCCAATGGA-3′ (forward) and 5′-CAGTGGTGGCAGTGGTAGTG-3′ (reverse). The PCR conditions applied were: 1 cycle of 95 °C for 2 min, followed by 40 cycles of 94 °C for 30 s, 60 °C for 30 s, and 1 min at 72 °C with final extension at 72 °C for 10 min. For each assay, a negative control (without DNA template) was added to monitor PCR contaminations. After confirming the integrity of the amplicons, all PCR products were further purified using ExoSAP-IT PCR Product Clean-up (Affymetrix, Santa Clara, CA, USA) for commercial sequencing. The sequencing primer was the same as the forward primer used for the PCR reaction. Biosystems 3130 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) was used for reading sequences on the chromatograms.

Statistical analysis

Genetic polymorphisms and clinic pathological parameters were assessed using the Pearson chi-square test or the Fisher exact test. Univariable survival analysis was performed by the generation of Kaplan-Meier curves, and differences between the groups were assessed using the log rank statistic. Univariable and multivariable survival analyses were performed using the Cox proportional hazards model. SPSS v24.0 (SPSS Inc., Chicago, IL, USA) was applied for these all analyses. p values < 0.05 were considered significant.

Acknowledgements

We thank Kouichi Kamada and Tomomi Katoh of the Department of Pathology, Saitama Medical University International Medical Center, for their elaborate technical support. We would like to thank Editage (http://​www.​editage.​jp) for English language editing.

Funding

This study was funded by Hidaka Research Projects in the Saitama Medical University (Grant numbers: 30-D-1-3) and Grants-in-Aid from the Ministry of Education, Science, Sports and Culture of Japan (Research Project Numbers: 15 K08355 and 18 K06997).

Availability of data and materials

All data generated or analyzed during this study are included in this published article.
This study was approved by the institutional review board of Saitama Medical University International Medical Center (reference number, 16–257).
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Permuth-Wey J, Sellers TA. Epidemiology of ovarian cancer. Methods Mol Biol. 2009;472:413–37.CrossRef Permuth-Wey J, Sellers TA. Epidemiology of ovarian cancer. Methods Mol Biol. 2009;472:413–37.CrossRef
2.
Zurück zum Zitat Gayther SA, Pharoah PD. The inherited genetics of ovarian and endometrial cancer. Curr Opin Genet Dev. 2010;20:231–8.CrossRef Gayther SA, Pharoah PD. The inherited genetics of ovarian and endometrial cancer. Curr Opin Genet Dev. 2010;20:231–8.CrossRef
3.
Zurück zum Zitat Chan JK, Teoh D, Hu JM, Shin JY, Osann K, Kapp DS. Do clear cell ovarian carcinomas have poorer prognosis compared to other epithelial cell types? A study of 1411 clear cell ovarian cancers. Gynecol Oncol. 2008;109:370–6.CrossRef Chan JK, Teoh D, Hu JM, Shin JY, Osann K, Kapp DS. Do clear cell ovarian carcinomas have poorer prognosis compared to other epithelial cell types? A study of 1411 clear cell ovarian cancers. Gynecol Oncol. 2008;109:370–6.CrossRef
4.
Zurück zum Zitat Sugiyama T, Kamura T, Kigawa J, Terakawa N, Kikuchi Y, Kita T, et al. Clinical characteristics of clear cell carcinoma of the ovary: a distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy. Cancer. 2000;88:2584–9.CrossRef Sugiyama T, Kamura T, Kigawa J, Terakawa N, Kikuchi Y, Kita T, et al. Clinical characteristics of clear cell carcinoma of the ovary: a distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy. Cancer. 2000;88:2584–9.CrossRef
5.
Zurück zum Zitat Fukunaga M, Nomura K, Ishikawa E, Ushigome S. Ovarian atypical endometriosis: its close association with malignant epithelial tumours. Histopathology. 1997;30:249–55.CrossRef Fukunaga M, Nomura K, Ishikawa E, Ushigome S. Ovarian atypical endometriosis: its close association with malignant epithelial tumours. Histopathology. 1997;30:249–55.CrossRef
6.
Zurück zum Zitat Ogawa S, Kaku T, Amada S, Kobayashi H, Hirakawa T, Ariyoshi K, et al. Ovarian endometriosis associated with ovarian carcinoma: a clinicopathological and immunohistochemical study. Gynecol Oncol. 2000;77(2):298–304.CrossRef Ogawa S, Kaku T, Amada S, Kobayashi H, Hirakawa T, Ariyoshi K, et al. Ovarian endometriosis associated with ovarian carcinoma: a clinicopathological and immunohistochemical study. Gynecol Oncol. 2000;77(2):298–304.CrossRef
7.
Zurück zum Zitat Ryan HE, Poloni M, McNulty W, Elson D, Gassmann M, Arbeit JM, et al. Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth. Cancer Res. 2000;60(15):4010–5.PubMed Ryan HE, Poloni M, McNulty W, Elson D, Gassmann M, Arbeit JM, et al. Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth. Cancer Res. 2000;60(15):4010–5.PubMed
8.
Zurück zum Zitat Pouyssegur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 2006;441:437–43.CrossRef Pouyssegur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 2006;441:437–43.CrossRef
9.
Zurück zum Zitat Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.CrossRef Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.CrossRef
10.
Zurück zum Zitat Miyazawa M, Yasuda M, Fujita M, Hirasawa T, Kajiwara H, Hirabayashi K, et al. Association of hypoxia-inducible factor-1 expression with histology in epithelial ovarian tumors: a quantitative analysis of HIF-1. Arch Gynecol Obstet. 2009;279:789–96.CrossRef Miyazawa M, Yasuda M, Fujita M, Hirasawa T, Kajiwara H, Hirabayashi K, et al. Association of hypoxia-inducible factor-1 expression with histology in epithelial ovarian tumors: a quantitative analysis of HIF-1. Arch Gynecol Obstet. 2009;279:789–96.CrossRef
11.
Zurück zum Zitat Yasuda M, Miyazawa M, Fujita M, Kajiwara H, Iida T, Hirasawa T, et al. Expression of hypoxia inducible factor-1alpha (HIF-1alpha) and glucose transporter-1 (GLUT-1) in ovarian adenocarcinomas: difference in hypoxic status depending on histological character. Oncol Rep. 2008;19(1):111–6.PubMed Yasuda M, Miyazawa M, Fujita M, Kajiwara H, Iida T, Hirasawa T, et al. Expression of hypoxia inducible factor-1alpha (HIF-1alpha) and glucose transporter-1 (GLUT-1) in ovarian adenocarcinomas: difference in hypoxic status depending on histological character. Oncol Rep. 2008;19(1):111–6.PubMed
12.
Zurück zum Zitat Rannala B. Finding genes influencing susceptibility to complex diseases in the post-genome era. Am J Pharmacogenomics. 2001;1(3):203–21.CrossRef Rannala B. Finding genes influencing susceptibility to complex diseases in the post-genome era. Am J Pharmacogenomics. 2001;1(3):203–21.CrossRef
13.
Zurück zum Zitat Wu F, Zhang J, Liu Y, Zheng Y, Hu N. HIF1 alpha genetic variants and protein expressions determine the response to platinum based chemotherapy and clinical outcome in patients with advanced NSCLC. Cell Physiol Biochem. 2013;32:1566–76.CrossRef Wu F, Zhang J, Liu Y, Zheng Y, Hu N. HIF1 alpha genetic variants and protein expressions determine the response to platinum based chemotherapy and clinical outcome in patients with advanced NSCLC. Cell Physiol Biochem. 2013;32:1566–76.CrossRef
14.
Zurück zum Zitat Kuo WH, Shih CM, Lin CW, Cheng WE, Chen SC, Chen W, et al. Association of hypoxia inducible factor-1alpha polymorphisms with susceptibility to non-small-cell lung cancer. Transl Res. 2012;159:42–50.CrossRef Kuo WH, Shih CM, Lin CW, Cheng WE, Chen SC, Chen W, et al. Association of hypoxia inducible factor-1alpha polymorphisms with susceptibility to non-small-cell lung cancer. Transl Res. 2012;159:42–50.CrossRef
15.
Zurück zum Zitat Kim HO, Jo YH, Lee J, Lee SS, Yoon KS. The C1772T genetic polymorphism in human HIF-1alpha gene associates with expression of HIF-1alpha protein in breast cancer. Oncol Rep. 2008;20:1181–7.PubMed Kim HO, Jo YH, Lee J, Lee SS, Yoon KS. The C1772T genetic polymorphism in human HIF-1alpha gene associates with expression of HIF-1alpha protein in breast cancer. Oncol Rep. 2008;20:1181–7.PubMed
16.
Zurück zum Zitat Naidu R, Har YC, Taib NA. Associations between hypoxia-inducible factor-1alpha (HIF-1alpha) gene polymorphisms and risk of developing breast cancer. Neoplasma. 2009;56:441–7.CrossRef Naidu R, Har YC, Taib NA. Associations between hypoxia-inducible factor-1alpha (HIF-1alpha) gene polymorphisms and risk of developing breast cancer. Neoplasma. 2009;56:441–7.CrossRef
17.
Zurück zum Zitat Fraga CA, de Oliveira MV, de Oliveira ES, Barros LO, Santos FB, Gomez RS, et al. A high HIF-1alpha expression genotype is associated with poor prognosis of upper aerodigestive tract carcinoma patients. Oral Oncol. 2012;48:130–5.CrossRef Fraga CA, de Oliveira MV, de Oliveira ES, Barros LO, Santos FB, Gomez RS, et al. A high HIF-1alpha expression genotype is associated with poor prognosis of upper aerodigestive tract carcinoma patients. Oral Oncol. 2012;48:130–5.CrossRef
18.
Zurück zum Zitat Fraga A, Ribeiro R, Principe P, Lobato C, Pina F, Mauricio J, et al. The HIF1A functional genetic polymorphism at locus +1772 associates with progression to metastatic prostate cancer and refractoriness to hormonal castration. Eur J Cancer. 2014;50:359–65.CrossRef Fraga A, Ribeiro R, Principe P, Lobato C, Pina F, Mauricio J, et al. The HIF1A functional genetic polymorphism at locus +1772 associates with progression to metastatic prostate cancer and refractoriness to hormonal castration. Eur J Cancer. 2014;50:359–65.CrossRef
19.
Zurück zum Zitat Nadaoka J, Horikawa Y, Saito M, Kumazawa T, Inoue T, Narita S, et al. Prognostic significance of HIF-1 alpha polymorphisms in transitional cell carcinoma of the bladder. Int J Cancer. 2008;122:1297–302.CrossRef Nadaoka J, Horikawa Y, Saito M, Kumazawa T, Inoue T, Narita S, et al. Prognostic significance of HIF-1 alpha polymorphisms in transitional cell carcinoma of the bladder. Int J Cancer. 2008;122:1297–302.CrossRef
20.
Zurück zum Zitat Yi L, Hou X, Zhou J, Xu L, Ouyang Q, Liang H, et al. HIF-1alpha genetic variants and protein expression confer the susceptibility and prognosis of gliomas. NeuroMolecular Med. 2014;16:578–86.CrossRef Yi L, Hou X, Zhou J, Xu L, Ouyang Q, Liang H, et al. HIF-1alpha genetic variants and protein expression confer the susceptibility and prognosis of gliomas. NeuroMolecular Med. 2014;16:578–86.CrossRef
21.
Zurück zum Zitat Szkandera J, Knechtel G, Stotz M, Hofmann G, Langsenlehner U, Krippl P, et al. Association of hypoxia-inducible factor 1-alpha gene polymorphisms and colorectal cancer prognosis. Anticancer Res. 2010;30:2393–7.PubMed Szkandera J, Knechtel G, Stotz M, Hofmann G, Langsenlehner U, Krippl P, et al. Association of hypoxia-inducible factor 1-alpha gene polymorphisms and colorectal cancer prognosis. Anticancer Res. 2010;30:2393–7.PubMed
22.
Zurück zum Zitat Lee SJ, Kim JG, Sohn SK, Chae YS, Moon JH, Kang BW, et al. No association of the hypoxia-inducible factor-1alpha gene polymorphisms with survival in patients with colorectal cancer. Med Oncol. 2011;28:1032–7.CrossRef Lee SJ, Kim JG, Sohn SK, Chae YS, Moon JH, Kang BW, et al. No association of the hypoxia-inducible factor-1alpha gene polymorphisms with survival in patients with colorectal cancer. Med Oncol. 2011;28:1032–7.CrossRef
23.
Zurück zum Zitat Ollerenshaw M, Page T, Hammonds J, Demaine A. Polymorphisms in the hypoxia inducible factor-1alpha gene (HIF1A) are associated with the renal cell carcinoma phenotype. Cancer Genet Cytogenet. 2004;153:122–6.CrossRef Ollerenshaw M, Page T, Hammonds J, Demaine A. Polymorphisms in the hypoxia inducible factor-1alpha gene (HIF1A) are associated with the renal cell carcinoma phenotype. Cancer Genet Cytogenet. 2004;153:122–6.CrossRef
24.
Zurück zum Zitat Qin C, Cao Q, Ju X, Wang M, Meng X, Zhu J, et al. The polymorphisms in the VHL and HIF1A genes are associated with the prognosis but not the development of renal cell carcinoma. Ann Oncol. 2012;23:981–9.CrossRef Qin C, Cao Q, Ju X, Wang M, Meng X, Zhu J, et al. The polymorphisms in the VHL and HIF1A genes are associated with the prognosis but not the development of renal cell carcinoma. Ann Oncol. 2012;23:981–9.CrossRef
25.
Zurück zum Zitat Shieh TM, Chang KW, Tu HF, Shih YH, Ko SY, Chen YC, et al. Association between the polymorphisms in exon 12 of hypoxia-inducible factor-1alpha and the clinicopathological features of oral squamous cell carcinoma. Oral Oncol. 2010;46:e47–53.CrossRef Shieh TM, Chang KW, Tu HF, Shih YH, Ko SY, Chen YC, et al. Association between the polymorphisms in exon 12 of hypoxia-inducible factor-1alpha and the clinicopathological features of oral squamous cell carcinoma. Oral Oncol. 2010;46:e47–53.CrossRef
26.
Zurück zum Zitat Munoz-Guerra MF, Fernandez-Contreras ME, Moreno AL, Martin ID, Herraez B, Gamallo C. Polymorphisms in the hypoxia inducible factor 1-alpha and the impact on the prognosis of early stages of oral cancer. Ann Surg Oncol. 2009;16:2351–8.CrossRef Munoz-Guerra MF, Fernandez-Contreras ME, Moreno AL, Martin ID, Herraez B, Gamallo C. Polymorphisms in the hypoxia inducible factor 1-alpha and the impact on the prognosis of early stages of oral cancer. Ann Surg Oncol. 2009;16:2351–8.CrossRef
27.
Zurück zum Zitat Berardi R, Brunelli A, Pagliaretta S, Paolucci V, Conti A, Goteri G, et al. Impact of VEGF, VEGFR, PDGFR, HIF and ERCC1 gene polymorphisms on thymic malignancies outcome after thymectomy. Oncotarget. 2015;6:19305–15.CrossRef Berardi R, Brunelli A, Pagliaretta S, Paolucci V, Conti A, Goteri G, et al. Impact of VEGF, VEGFR, PDGFR, HIF and ERCC1 gene polymorphisms on thymic malignancies outcome after thymectomy. Oncotarget. 2015;6:19305–15.CrossRef
28.
Zurück zum Zitat Chen Q, Tian WJ, Huang ML, Liu CH, Yao TT, Guan MM. Association between HIF-1 alpha gene polymorphisms and response in patients undergoing neoadjuvant chemotherapy for locally advanced cervical cancer. Med Sci Monit. 2016;22:3140–6.CrossRef Chen Q, Tian WJ, Huang ML, Liu CH, Yao TT, Guan MM. Association between HIF-1 alpha gene polymorphisms and response in patients undergoing neoadjuvant chemotherapy for locally advanced cervical cancer. Med Sci Monit. 2016;22:3140–6.CrossRef
29.
Zurück zum Zitat Kim YH, Park IA, Park WY, Kim JW, Kim SC, Park NH, et al. Hypoxia-inducible factor 1alpha polymorphisms and early-stage cervical cancer. Int J Gynecol Cancer. 2011;21:2–7.CrossRef Kim YH, Park IA, Park WY, Kim JW, Kim SC, Park NH, et al. Hypoxia-inducible factor 1alpha polymorphisms and early-stage cervical cancer. Int J Gynecol Cancer. 2011;21:2–7.CrossRef
30.
Zurück zum Zitat Yamada N, Horikawa Y, Oda N, Iizuka K, Shihara N, Kishi S, et al. Genetic variation in the hypoxia-inducible factor-1alpha gene is associated with type 2 diabetes in Japanese. J Clin Endocrinol Metab. 2005;90:5841–7.CrossRef Yamada N, Horikawa Y, Oda N, Iizuka K, Shihara N, Kishi S, et al. Genetic variation in the hypoxia-inducible factor-1alpha gene is associated with type 2 diabetes in Japanese. J Clin Endocrinol Metab. 2005;90:5841–7.CrossRef
31.
Zurück zum Zitat Tanimoto K, Yoshiga K, Eguchi H, Kaneyasu M, Ukon K, Kumazaki T, et al. Hypoxia-inducible factor-1alpha polymorphisms associated with enhanced transactivation capacity, implying clinical significance. Carcinogenesis. 2003;24:1779–83.CrossRef Tanimoto K, Yoshiga K, Eguchi H, Kaneyasu M, Ukon K, Kumazaki T, et al. Hypoxia-inducible factor-1alpha polymorphisms associated with enhanced transactivation capacity, implying clinical significance. Carcinogenesis. 2003;24:1779–83.CrossRef
32.
Zurück zum Zitat Putra AC, Tanimoto K, Arifin M, Hiyama K. Hypoxia-inducible factor-1alpha polymorphisms are associated with genetic aberrations in lung cancer. Respirology. 2011;16:796–802.CrossRef Putra AC, Tanimoto K, Arifin M, Hiyama K. Hypoxia-inducible factor-1alpha polymorphisms are associated with genetic aberrations in lung cancer. Respirology. 2011;16:796–802.CrossRef
33.
Zurück zum Zitat Kuwai T, Kitadai Y, Tanaka S, Kuroda T, Ochiumi T, Matsumura S, et al. Single nucleotide polymorphism in the hypoxia-inducible factor-1alpha gene in colorectal carcinoma. Oncol Rep. 2004;12:1033–7.PubMed Kuwai T, Kitadai Y, Tanaka S, Kuroda T, Ochiumi T, Matsumura S, et al. Single nucleotide polymorphism in the hypoxia-inducible factor-1alpha gene in colorectal carcinoma. Oncol Rep. 2004;12:1033–7.PubMed
34.
Zurück zum Zitat Osada R, Horiuchi A, Kikuchi N, Yoshida J, Hayashi A, Ota M, et al. Expression of hypoxia-inducible factor 1alpha, hypoxia-inducible factor 2alpha, and von Hippel-Lindau protein in epithelial ovarian neoplasms and allelic loss of von Hippel-Lindau gene: nuclear expression of hypoxia-inducible factor 1alpha is an independent prognostic factor in ovarian carcinoma. Human Pathol. 2007;38:1310–20.CrossRef Osada R, Horiuchi A, Kikuchi N, Yoshida J, Hayashi A, Ota M, et al. Expression of hypoxia-inducible factor 1alpha, hypoxia-inducible factor 2alpha, and von Hippel-Lindau protein in epithelial ovarian neoplasms and allelic loss of von Hippel-Lindau gene: nuclear expression of hypoxia-inducible factor 1alpha is an independent prognostic factor in ovarian carcinoma. Human Pathol. 2007;38:1310–20.CrossRef
35.
Zurück zum Zitat Yano M, Yasuda M, Sakaki M, Nagata K, Fujino T, Arai E, et al. Association of histone deacetylase expression with histology and prognosis of ovarian cancer. Oncol Lett. 2018;15:3524–31.PubMedPubMedCentral Yano M, Yasuda M, Sakaki M, Nagata K, Fujino T, Arai E, et al. Association of histone deacetylase expression with histology and prognosis of ovarian cancer. Oncol Lett. 2018;15:3524–31.PubMedPubMedCentral
36.
Zurück zum Zitat Qian DZ, Kachhap SK, Collis SJ, Verheul HM, Carducci MA, Atadja P, et al. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha. Cancer Res. 2006;66:8814–21.CrossRef Qian DZ, Kachhap SK, Collis SJ, Verheul HM, Carducci MA, Atadja P, et al. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha. Cancer Res. 2006;66:8814–21.CrossRef
37.
Zurück zum Zitat Kong X, Lin Z, Liang D, Fath D, Sang N, Caro J. Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1alpha. Mol Cell Biol. 2006;26:2019–28.CrossRef Kong X, Lin Z, Liang D, Fath D, Sang N, Caro J. Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1alpha. Mol Cell Biol. 2006;26:2019–28.CrossRef
38.
Zurück zum Zitat Kato H, Tamamizu-Kato S, Shibasaki F. Histone deacetylase 7 associates with hypoxia-inducible factor 1alpha and increases transcriptional activity. J Biol Chem. 2004;279:41966–74.CrossRef Kato H, Tamamizu-Kato S, Shibasaki F. Histone deacetylase 7 associates with hypoxia-inducible factor 1alpha and increases transcriptional activity. J Biol Chem. 2004;279:41966–74.CrossRef
Metadaten
Titel
Association of the hypoxia-inducible factor-1α (HIF-1α) gene polymorphisms with prognosis in ovarian clear cell carcinoma
verfasst von
Hiroyuki Suzuki
Mitsutake Yano
Mariko Miyazawa
Masaki Miyazawa
Naoki Ogane
Kosei Hasegawa
Hitoshi Tsuda
Masayuki Yoshida
Ryugo Okagaki
Osamu Ishihara
Masanori Yasuda
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Journal of Ovarian Research / Ausgabe 1/2019
Elektronische ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-019-0481-9

Weitere Artikel der Ausgabe 1/2019

Journal of Ovarian Research 1/2019 Zur Ausgabe

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.