Skip to main content
Erschienen in: Dermatology and Therapy 5/2022

Open Access 17.04.2022 | Review

Atopic Dermatitis and Skin Cancer Risk: A Systematic Review

verfasst von: Yun Zhu, Hongmei Wang, Juan He, Luhui Yang, Xiaoyan Zhou, Zhe Li, Huiling Zhou, Huadi Zhao, Yuye Li

Erschienen in: Dermatology and Therapy | Ausgabe 5/2022

Abstract

Introduction

Atopic dermatitis (AD) is one of the most common skin diseases, and it may be associated with skin cancer risk. However, there is a controversy pertaining to whether it implies a greater or decreased risk of skin cancers. We aimed to study the relationship between AD and skin cancer risk.

Methods

PubMed and Embase databases from their inception to 4 August 2021 were systematically searched.

Results

We evaluated 16 studies involving a total of 9,638,093 participants examining the contribution of AD to skin cancers. Random-effects model was applied to estimate the overall effect sizes. The pooled analysis of 16 studies indicated that AD was significantly associated with an overall increased risk of skin cancer. Subgroup pooled analyses showed that AD was statistically associated with an increased risk of basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). With regard to cohort study, AD was statistically associated with an increased risk of nonmelanoma skin cancer (NMSC), BCC, and SCC, but not melanoma risk. Sensitivity analysis revealed that excluding each study in turn did not alter the overall combined results. No publication bias existed among the studies.

Conclusion

It can be concluded that AD is associated with risk of skin cancers; however, this association still needs to be verified in well-designed, worldwide trials (especially prospective, non-Western studies). The mechanism of AD leading to skin cancer is not clear, and further research is needed to explore the possibility of a potential pathogenesis.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1007/​s13555-022-00720-2.
Key Summary Points
Why carry out this study?
Atopic dermatitis is a common skin disease. To detect and prevent skin cancer earlier, we analyzed whether atopic dermatitis is a risk factor for skin cancer.
What was the hypothesis of the study?
Atopic dermatitis is a risk factor for skin cancer.
What was learned from the study?
Atopic dermatitis has the potential to predict increased risk of basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and nonmelanoma skin cancer (NMSC).
How might this affect research and/or treatment in the future?
Although the impact of atopic dermatitis on skin cancer needs to be supported by further research, this study points to a new possibility for clinical application and future research.

Introduction

Skin cancer and atopic dermatitis (AD) are among the major public health problems globally. Melanoma is an aggressive and deadly skin cancer. Nonmelanoma skin cancer (NMSC), such as squamous cell carcinoma (SCC) and basal cell carcinoma (BCC), are also very common forms of skin cancer. AD or eczema is a chronic recurrent inflammatory skin disease associated with epithelial, immune, and environmental factors [1, 2]. It is characterized by intense itching, breakdown of the skin barrier, and activation of the type-2-mediated immune response in the skin [3, 4]. Population-based studies showed that the prevalence rate of eczema is approximately 10.7% among children and 7.2% among adults [5]. AD not only causes serious financial burden but also seriously affects the quality of patients’ lives. For example, AD may be associated with skin cancer risk. Jensen et al. found an inverse association between AD and melanoma, and also found that patients with AD are at increased risk of BCC and SCC [6]. Hagströmer et al. found a nonsignificant risk elevation for nonmelanoma skin cancer [7].
Although many studies have focused on the association of AD with skin cancers [818], whether AD implies a greater or decreased risk of skin cancers is still controversial. Therefore, the aim of this study was to investigate the relationship between AD and the risk of skin cancers.

Methods

The study was conducted following the Meta-analysis of Observational Studies in Epidemiology guidelines along with the Preferred Reporting Items for Systematic Reviews and Meta-analyses standards [19]. The research is registered with INPLASY202090029. This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors.

Search Strategy and Selection Criteria

We systematically searched PubMed and Embase databases on 4 August 2021, for studies performed on the relationship between AD and skin cancers. Animal studies, case reports, reviews, and meta-analyses were excluded. Our core search keywords were “Atopic dermatitis,” “Eczema,” “Cohort, and Case–Control Studies.” The inclusion criteria were as follows: cohort and case–control studies assessing the relationship between AD and skin cancers that comprised two comparator groups, where one group had AD and the other (control) did not. Two authors (ZY and WHM) independently reviewed the titles and abstracts of the retrieved studies on the basis of the inclusion criteria. The reference lists of eligible studies or related meta-analyses were also screened to find additional pertinent studies. The quality of the studies and risk of bias were assessed according to the Newcastle–Ottawa Scale (NOS) [20]. All disagreements were resolved by discussion with the corresponding authors.

Data Analysis

Two authors (ZY and WHM) extracted all data. When one study included more than one cohort, we pooled each cohort as an independent study. For each independent study, we recorded the following variables: first author’s last name, publication year, region in which the study was performed, type of study design, type of cancer, participants’ sex and age, sample size, and outcome measurements related to risk estimates with 95% confidence intervals (CIs) and adjustment factors.
A pooled analysis was conducted to explore the association between eczema and different cancers. The Cochrane Q and I2 statistics were used to evaluate heterogeneity [21]. When either the P-value was < 0.1 or the I2 value was > 50%, the data were considered to be heterogeneous, and a random-effects model [22] was applied to estimate the overall effect sizes. Otherwise, a fixed-effects model was used [23]. To further explore the origin of heterogeneity, we performed subgroup analyses by region, type of study design, and type of cancer. To assess the stability of our results, sensitivity analyses were conducted by excluding each study in turn to estimate the influence of each individual study on the pooled results. Beggar’s test [24] and Egger’s test [25] were used to assess potential publication bias. STATA software v12.0 (College Station, TX, USA) was used to analyze the data.

Results

Search Results and Study Characteristics

A total of 493 studies were retrieved from the PubMed and the Embase databases, and after removing 51 duplicates and further excluding 405 studies after title and abstract screening and 27 on the basis of the full article, 10 studies remained. However, six additional eligible studies were identified after screening the references of relevant studies. As a result, 16 studies [618, 2628], involving a total of 9,638,093 participants, that examined the contribution of AD to skin cancers eventually fulfilled the established criteria (Fig. 1). Details on the characteristics of the studies are summarized in Table 1, and assessments of the studies are summarized in Table S1 in the Supplementary Material. Eight population-based cohort studies [6, 7, 9, 13, 18, 2628], and eight case–control studies were included in this analysis [8, 1012, 1417]. Of these, one is from Finland [9], two from Sweden [7, 27], three from Denmark [6, 18, 26], four from USA [8, 10, 13, 15, 17], one from Belgium [16], one from Canada [11], one from Montenegro [12], one from Netherlands [14], and two from UK [18, 28].
Table 1
Characteristics of included studies
Studies
OR
Study period
Region
Study design
Age (years)
Sex
Participants
Cancer
Statistical analysis
Adjustments
NOS score
Milán et al. [9]
1.1
1976–1999
Finland
Cohort study
 ≥ 18
Male and female
666
BCC
Conditional logistic regression analysis
NA
8
Ming et al. [10]
0.85
1998–2001
USA
Case–control study
66.4 versus 60.1*
Male: 51.3% versus 39.9%
4591
NMSC
Multivariable logistic regression
Age, sex, topical steroid use, and ethnicity
7
Hagströmer et al. [7]
1.5
1965–1999
Sweden
Cohort study
15.7*
Male and female
15,666
NMSC, melanoma
χ2 test
NA
7
Olesen et al. [26]
2.4
1977–1996
Denmark
Cohort study
NA
Male and female
6275
NMSC
Poisson regression methods
NA
7
Synnerstad et al. [27]
0.49
1986–2004
Sweden
Cohort study
2.6 (5.5) to 39.3 (10.9)*
Male and female
6280
Melanoma
Poisson regression analysis
Age group, sex, and year
8
Arana et al. [28]
1.74
1992–2006
UK
Retrospective cohort study
All ages
Male and female
4,518,131
Melanoma, NMSC
Mantel–Haenszel
Age and sex
7
El-Zein et al. [11]
0.64
1979–1985
Canadian
Case–control study
35–70
Males
3809
Melanoma
Logistic regression
Age, income, respondent status, ancestry, and sports and/or outdoor activities
6
Janković et al. [12]
4.17
2006–2007
Montenegro
Case–control study
NA
Female
200
BCC
Multivariate logistic regression analysis
Age, sex, and marital status
7
Dyer et al. [13]
1.54
NA
USA
Cohort study
Median age 72
Female 34 (3%) versus male 1097 (97%)
1131
BCC
Multiple logistic regression
Sex, age, education, basal cell carcinomas in prior 5 years, squamous cell carcinomas in prior 5 years, actinic keratoses at baseline, family history of skin cancer, current or former smoker
8
Jensen et al. [6]
0.59
1977–2006
Denmark
Cohort study
NA
Male and female
31,330
Melanoma, BCC, SCC
Byar’s approximation
NA
8
Hajdarbegovic et al. [14]
1.05
2000–2010
Netherlands
Case–control study
57 ± 14 versus 56 ± 14*
Male and female
353
Melanoma
Logistic multiple regression analysis
Unadjusted OR
7
Cheng et al. [15]
1.83
NA
USA
Case–control study
25–74
Female
1312
SCC
Multiple logistic regression
Age, gender, and skin reaction to the first hour of sunlight during summer (blister, painful sunburn followed by peeling, mild sunburn followed by tanning, tanning with no sunburn)
8
 
1.52
NA
USA
Case–control study
25–74
Female
NA
BCC
Multiple logistic regression
Age, gender, and skin reaction to the first hour of sunlight during summer (blister, painful sunburn followed by peeling, mild sunburn followed by tanning, tanning with no sunburn)
8
Marasigan et al. [16]
0.46
NA
Belgium
Case–control study
57.4* for controls, 52.2* for cases
Male and female
232
Melanoma
Conditional logistic regression
Age, sex, sunburn sensitivity, hair color, number of moles, sunburn as juvenile, ever sunbed use, familial melanoma
8
Cho et al. [8]
1.75
1996–2010
USA
Case–control study
69.6 (13.5) versus 69.5 (13.5)*
Female
1179
SCC
Logistic regression analysis
Race, smoking history, ionizing radiation exposure, corticosteroid and cyclosporine use, non-SCC skin cancers, odds ratio for SCC development
9
D'Arcy et al. [17]
1.07
1992–2013
USA
Case–control study
66–99
Female
1,844,575
Melanoma
Logistic regression analysis
Sex, age, race, calendar year of selection, and measures of socioeconomic status and healthcare utilization
7
Mansfield et al. [31]
0.96
1998–2016
UK
Cohort study
41.1 [24.9–60.7] versus 39.8 [25.9–58.4]#
Female
2,711,745
Melanoma
Cox proportional hazards regression model
Sex, primary care practice, date, and age
8
 
1.1
1998–2016
UK
Cohort study
41.1 [24.9–60.7] versus 39.8 [25.9–58.4]#
Female
NA
NMSC
Cox proportional hazards regression model
Sex, primary care practice, date, and age
8
 
0.64
1982–2016
Denmark
Cohort study
13.7 [1.7–21.1] versus 13.5 [1.7–20.8]#
Female
490,618
Melanoma
Cox proportional hazards regression model
Sex, date, and age
8
 
1.17
1982–2016
Denmark
Cohort study
13.7 [1.7–21.1] versus 13.5 [1.7–20.8]#
Female
NA
NMSC
Cox proportional hazards regression model
Sex, date, and age
8
*Mean (SD); #median [IQR]

Qualitative Analysis

Firstly, the pooled analysis of 16 studies [618, 2628] indicated that AD was significantly associated with an increased risk of overall skin cancer (OR 1.18, 95% CI 1.06–1.32); moreover, substantial heterogeneity was observed (Pheterogeneity = 0.000, I2 = 73.4%) (Fig. 2a). Subgroup pooled analyses were performed according to cancer type, study design, and region, and we found that AD was significantly associated with an increased risk of overall skin cancer in the following subgroups: NMSC subgroup: OR 1.39, 95% CI 1.20–1.61 (Fig. 2b), cohort study subgroup: OR 1.19, 95% CI 1.04–1.37 (Fig. 2c), American subgroup: OR 1.32, 95% CI 1.02–1.71 (Fig. 2d), and Europe subgroup: OR, 1.15; 95% CI, 1.01–1.32 (Fig. 2d), but not melanoma subgroup: OR 0.89, 95% CI 0.73–1.09 (Fig. 2b).
Secondly, according to Fig. 2b, the pooled analysis indicated that AD was significantly associated with an increased risk of NMSC (OR 1.39, 95% CI 1.20–1.61, Pheterogeneity = 0.000, I2 = 72.7%). Further subgroup analyses with regard to specific NMSC type were performed to further explore the origin of heterogeneity; we found that AD was significantly increased with an increased risk of BCC (OR 1.51, 95% CI 1.24–1.84, Pheterogeneity = 0.426, I2 = 0.0%) and SCC (OR 1.90, 95% CI 1.33–2.72, Pheterogeneity = 0.770, I2 = 0.0%) (Fig. 3a). With regard to study design, AD was significantly increased with an increased risk of NMSC in cohort study subgroup (OR 1.39, 95% CI 1.19–1.63, Pheterogeneity = 0.000, I2 = 73.2%) (Fig. 3b).
Thirdly, according to Fig. 2c, AD was significantly associated with an increased risk of overall skin cancer in cohort subgroups (OR 1.19, 95% CI 1.04–1.37). Further subgroup analyses were performed by specific cancer type, and the pooled analysis of cohort studies indicated that AD was significantly associated with an increased risk of BCC (OR 1.45, 95% CI 1.17–1.78) and SCC (OR 2.48, 95% CI 1.10–5.61), but not melanoma (Fig. 3c). According to region, the pooled analysis of cohort studies indicated that AD was statistically associated with an increased risk of skin cancer in Europe (OR 1.17, 95% CI 1.02–1.35) and America (OR 1.54, 95% CI 1.03–2.31) (Fig. 3d).
Lastly, to assess the stability of our results, sensitivity analysis was conducted, and revealed that excluding each study in turn did not alter the overall combined results (Fig. 4). Publication bias was evaluated following Beggar’s rank correlation and Egger’s linear regression tests, which indicated that no publication bias existed among the studies (Beggar’s: P > |z|= 0.981; Egger’s: P = 0.746, 95% CI −0.564 to 1.408) (Fig. 5).

Discussion

We reviewed the epidemiological evidence on the association between atopic dermatitis and skin cancer risk, and pooled this analysis. The study showed that AD was significantly associated with an increased risk of overall skin cancer. Moreover, sensitivity analysis by excluding each study in turn demonstrated stable consequence, and no publication bias existed among the included studies. Therefore, the outcome was robust and reliable, and regular skin cancer screenings are recommended for patients with AD.
Furthermore, we performed subgroup analyses to assess the association between AD and skin cancer, and to explore the origin of heterogeneity. According to cancer type, AD was associated with a significantly elevated risk of NMSC, but with a nonsignificant decreased risk of melanoma. However, the review by Karim et al. showed that allergic diseases appeared to reduce the risk for developing melanoma and NMSC [29]. Our outcomes were more credible. Possible reasons may be that our pooled analysis included some more eligible studies on the association between skin cancers and AD.
According to study design, only the pooled analyses of cohort studies demonstrated AD increasing skin cancer risk. This was more credible, because the design of cohort studies is from cause to effect, with strong ability to demonstrate causality, high quality of evidence, and better confirmation of the etiological hypothesis. According to region, AD was significantly associated with an increased risk of skin cancer in both Europe and America. The above results suggest that different study designs and regions might affect the stability of the association between AD and skin cancer risk. Unfortunately, we did not discover the origin of heterogeneity. Therefore, the results should be interpreted with caution.
Further analyses found that AD was statistically associated with an increased risk of basal cell carcinoma and squamous cell carcinoma. This conclusion was similar to that of Jensen et al. [6]. However, this result was not consistently supported by Cheng et al.’s study [15].
Unfortunately, it is unclear why skin cancer risk would be increased in patients affected by AD. One reason might be that patients with AD often receive phototherapy, and phototherapy has been linked with various skin cancers [30]. Additionally, patients with AD often require more skin-related tests associated with an increased risk of skin cancer [31]. Atopic dermatitis and other inflammatory skin diseases were often accompanied by dysregulation of human microflora involved in the regulation of skin cancer progression [32].
This study has several limitations. First, substantial heterogeneity was inevitable. Second, adjustment factors varied among different studies, and this may have contributed to some uncertainty regarding the estimates. Third, all included studies were from Europe and America, and non-Western studies are required to provide more convincing evidence.

Conclusions

In conclusion, this study demonstrated that AD was significantly associated with an increased risk of skin cancer, basal cell carcinoma, and squamous cell carcinoma. Further studies, including well-designed, worldwide trials (especially prospective, non-Western studies), are required to provide more convincing evidence. At the same time, the mechanism of AD leading to skin cancer is not clear, and further research is needed to explore the possibility of a potential link or a common pathogenesis.

Acknowledgements

Funding

This project was funded by the National Natural Science Foundation of China (no. 81760136, 81860553); the Ten-thousand Talents Program of Yunnan Province (no. YNWR-MY-2018-039); the Medical Leadership Foundation of Health and Family Planning Commission of Yunnan Province, China (no. L-201613); the Yunnan Province Clinical Research Center for Skin Immune Diseases (no. 2019ZF012); and the Yunnan Province Clinical Center for Skin Immune Diseases (no. ZX2019-03-02). The journal’s Rapid Service Fee was funded by the authors.

Authorship

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.

Author Contributions

Dr. Yuye Li had full access to all the data in the study and takes responsibility for their integrity along with the accuracy of the analyses. Conception and design: Yun Zhu and Yuye Li. Acquisition, analysis, or interpretation of data: all named authors (Yun Zhu, Hongmei Wang, Juan He, Luhui Yang, Xiaoyan Zhou, Zhe Li, Huiling Zhou, Huadi Zhao, and Yuye Li). Drafting of the manuscript: Yun Zhu. Critical revision of the manuscript for important intellectual content: Yun Zhu and Yuye Li. Statistical analysis: Yun Zhu.

Disclosures

Yun Zhu, Hongmei Wang, Juan He, Luhui Yang, Xiaoyan Zhou, Zhe Li, Huiling Zhou, Huadi Zhao, and Yuye Li have nothing to disclose.

Compliance with Ethics Guidelines

This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors.

Data Availability Statement

All data generated or analyzed during this study are included in this published article/as supplementary material.
Open AccessThis article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by-nc/​4.​0/​.
Anhänge

Supplementary Information

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Berke R, Singh A, Guralnick M. Atopic dermatitis: an overview. Am Fam Physician. 2012;86(1):35–42.PubMed Berke R, Singh A, Guralnick M. Atopic dermatitis: an overview. Am Fam Physician. 2012;86(1):35–42.PubMed
2.
3.
Zurück zum Zitat Wang L, Bierbrier R, Drucker AM, et al. Noncutaneous and cutaneous cancer risk in patients with atopic dermatitis: a systematic review and meta-analysis. JAMA Dermatol. 2020;156(2):158–71.CrossRef Wang L, Bierbrier R, Drucker AM, et al. Noncutaneous and cutaneous cancer risk in patients with atopic dermatitis: a systematic review and meta-analysis. JAMA Dermatol. 2020;156(2):158–71.CrossRef
4.
Zurück zum Zitat Vineis P, Crosignani P, Sacerdote C, et al. Haematopoietic cancer and medical history: a multicentre case control study. J Epidemiol Commun Health. 2000;54(6):431–6.CrossRef Vineis P, Crosignani P, Sacerdote C, et al. Haematopoietic cancer and medical history: a multicentre case control study. J Epidemiol Commun Health. 2000;54(6):431–6.CrossRef
5.
Zurück zum Zitat Silverberg JI, Garg NK, Paller AS, et al. Sleep disturbances in adults with eczema are associated with impaired overall health: a US population-based study. J Invest Dermatol. 2015;135(1):56–66.CrossRef Silverberg JI, Garg NK, Paller AS, et al. Sleep disturbances in adults with eczema are associated with impaired overall health: a US population-based study. J Invest Dermatol. 2015;135(1):56–66.CrossRef
6.
Zurück zum Zitat Jensen AO, Svaerke C, Körmendiné Farkas D, et al. Atopic dermatitis and risk of skin cancer: a Danish nationwide cohort study (1977–2006). Am J Clin Dermatol. 2012;13(1):29–36.CrossRef Jensen AO, Svaerke C, Körmendiné Farkas D, et al. Atopic dermatitis and risk of skin cancer: a Danish nationwide cohort study (1977–2006). Am J Clin Dermatol. 2012;13(1):29–36.CrossRef
7.
Zurück zum Zitat Hagströmer L, Ye W, Nyrén O, et al. Incidence of cancer among patients with atopic dermatitis. Arch Dermatol. 2005;141(9):1123–7.CrossRef Hagströmer L, Ye W, Nyrén O, et al. Incidence of cancer among patients with atopic dermatitis. Arch Dermatol. 2005;141(9):1123–7.CrossRef
8.
Zurück zum Zitat Cho JM, Davis DMR, Wetter DA, et al. Association between atopic dermatitis and squamous cell carcinoma: a case–control study. Int J Dermatol. 2018;57(3):313–6.CrossRef Cho JM, Davis DMR, Wetter DA, et al. Association between atopic dermatitis and squamous cell carcinoma: a case–control study. Int J Dermatol. 2018;57(3):313–6.CrossRef
9.
Zurück zum Zitat Milán T, Verkasalo PK, Kaprio J, et al. Lifestyle differences in twin pairs discordant for basal cell carcinoma of the skin. Br J Dermatol. 2003;149(1):115–23.CrossRef Milán T, Verkasalo PK, Kaprio J, et al. Lifestyle differences in twin pairs discordant for basal cell carcinoma of the skin. Br J Dermatol. 2003;149(1):115–23.CrossRef
10.
Zurück zum Zitat Ming ME, Levy R, Hoffstad O, et al. The lack of a relationship between atopic dermatitis and nonmelanoma skin cancers. J Am Acad Dermatol. 2004;50(3):357–62.CrossRef Ming ME, Levy R, Hoffstad O, et al. The lack of a relationship between atopic dermatitis and nonmelanoma skin cancers. J Am Acad Dermatol. 2004;50(3):357–62.CrossRef
11.
Zurück zum Zitat El-Zein M, Parent ME, Kâ K, et al. History of asthma or eczema and cancer risk among men: a population-based case-control study in Montreal, Quebec, Canada. Ann Allergy Asthma Immunol. 2010;104(5):378–84.CrossRef El-Zein M, Parent ME, Kâ K, et al. History of asthma or eczema and cancer risk among men: a population-based case-control study in Montreal, Quebec, Canada. Ann Allergy Asthma Immunol. 2010;104(5):378–84.CrossRef
12.
Zurück zum Zitat Janković S, Maksimović N, Janković J, et al. Risk factors for basal cell carcinoma: results from the case–control study. Central Eur J Med. 2010;5(6):666–73. Janković S, Maksimović N, Janković J, et al. Risk factors for basal cell carcinoma: results from the case–control study. Central Eur J Med. 2010;5(6):666–73.
13.
Zurück zum Zitat Dyer RK, Weinstock MA, Cohen TS, et al. Predictors of basal cell carcinoma in high-risk patients in the VATTC (VA Topical Tretinoin Chemoprevention) trial. J Invest Dermatol. 2012;132(11):2544–51.CrossRef Dyer RK, Weinstock MA, Cohen TS, et al. Predictors of basal cell carcinoma in high-risk patients in the VATTC (VA Topical Tretinoin Chemoprevention) trial. J Invest Dermatol. 2012;132(11):2544–51.CrossRef
14.
Zurück zum Zitat Hajdarbegovic E, Atiq N, van der Leest R, et al. Atopic dermatitis is not a protective factor for melanoma but asthma may be. Int J Clin Oncol. 2014;19(4):708–11.PubMed Hajdarbegovic E, Atiq N, van der Leest R, et al. Atopic dermatitis is not a protective factor for melanoma but asthma may be. Int J Clin Oncol. 2014;19(4):708–11.PubMed
15.
Zurück zum Zitat Cheng J, Zens MS, Duell E, et al. History of allergy and atopic dermatitis in relation to squamous cell and basal cell carcinoma of the skin. Cancer Epidemiol Biomarkers Prev. 2015;24(4):749–54.CrossRef Cheng J, Zens MS, Duell E, et al. History of allergy and atopic dermatitis in relation to squamous cell and basal cell carcinoma of the skin. Cancer Epidemiol Biomarkers Prev. 2015;24(4):749–54.CrossRef
16.
Zurück zum Zitat Marasigan V, Morren MA, Lambert J, et al. Inverse association between atopy and melanoma: a case–control study. Acta Derm Venereol. 2017;97(1):54–7.CrossRef Marasigan V, Morren MA, Lambert J, et al. Inverse association between atopy and melanoma: a case–control study. Acta Derm Venereol. 2017;97(1):54–7.CrossRef
17.
Zurück zum Zitat D’Arcy M, Rivera DR, Grothen A, et al. Allergies and the subsequent risk of cancer among elderly adults in the United States. Cancer Epidemiol Biomarkers Prev. 2019;28(4):741–50.CrossRef D’Arcy M, Rivera DR, Grothen A, et al. Allergies and the subsequent risk of cancer among elderly adults in the United States. Cancer Epidemiol Biomarkers Prev. 2019;28(4):741–50.CrossRef
18.
Zurück zum Zitat Mansfield KE, Schmidt SAJ, Darvalics B, et al. The association between atopic eczema and cancer in England and Denmark: two cohort studies. Pharmacoepidemiol Drug Saf. 2019;28:11. Mansfield KE, Schmidt SAJ, Darvalics B, et al. The association between atopic eczema and cancer in England and Denmark: two cohort studies. Pharmacoepidemiol Drug Saf. 2019;28:11.
19.
Zurück zum Zitat Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.CrossRef Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.CrossRef
20.
Zurück zum Zitat Stang A. Critical evaluation of the Newcastle–Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.CrossRef Stang A. Critical evaluation of the Newcastle–Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.CrossRef
21.
Zurück zum Zitat Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.CrossRef Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.CrossRef
22.
Zurück zum Zitat DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.CrossRef DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.CrossRef
23.
Zurück zum Zitat Woolf B. On estimating the relation between blood group and disease. Ann Hum Genet. 1955;19(4):251–3.CrossRef Woolf B. On estimating the relation between blood group and disease. Ann Hum Genet. 1955;19(4):251–3.CrossRef
24.
Zurück zum Zitat Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.CrossRef Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.CrossRef
25.
Zurück zum Zitat Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.CrossRef Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.CrossRef
26.
Zurück zum Zitat Olesen AB, Engholm G, Storm HH, et al. The risk of cancer among patients previously hospitalized for atopic dermatitis. J Invest Dermatol. 2005;125(3):445–9.CrossRef Olesen AB, Engholm G, Storm HH, et al. The risk of cancer among patients previously hospitalized for atopic dermatitis. J Invest Dermatol. 2005;125(3):445–9.CrossRef
27.
Zurück zum Zitat Synnerstad I, Fredrikson M, Ternesten-Bratel A, et al. Low risk of melanoma in patients with atopic dermatitis. J Eur Acad Dermatol Venereol. 2008;22(12):1423–8.CrossRef Synnerstad I, Fredrikson M, Ternesten-Bratel A, et al. Low risk of melanoma in patients with atopic dermatitis. J Eur Acad Dermatol Venereol. 2008;22(12):1423–8.CrossRef
28.
Zurück zum Zitat Arana A, Wentworth CE, Fernández-Vidaurre C, et al. Incidence of cancer in the general population and in patients with or without atopic dermatitis in the UK. Br J Dermatol. 2010;163(5):1036–43.CrossRef Arana A, Wentworth CE, Fernández-Vidaurre C, et al. Incidence of cancer in the general population and in patients with or without atopic dermatitis in the UK. Br J Dermatol. 2010;163(5):1036–43.CrossRef
29.
Zurück zum Zitat Karim AF, Westenberg LEH, Eurelings LEM, et al. The association between allergic diseases and cancer: a systematic review of the literature. Neth J Med. 2019;77(2):42–66.PubMed Karim AF, Westenberg LEH, Eurelings LEM, et al. The association between allergic diseases and cancer: a systematic review of the literature. Neth J Med. 2019;77(2):42–66.PubMed
30.
Zurück zum Zitat Lam M, Zhu JW, Tadrous M, et al. Association between topical calcineurin inhibitor use and risk of cancer, including lymphoma, keratinocyte carcinoma, and melanoma: a systematic review and meta-analysis. JAMA Dermatol. 2021;157(5):549–58.CrossRef Lam M, Zhu JW, Tadrous M, et al. Association between topical calcineurin inhibitor use and risk of cancer, including lymphoma, keratinocyte carcinoma, and melanoma: a systematic review and meta-analysis. JAMA Dermatol. 2021;157(5):549–58.CrossRef
31.
Zurück zum Zitat Mansfield KE, Schmidt SAJ, Darvalics B, et al. Association between atopic eczema and cancer in England and Denmark. JAMA Dermatol. 2020;156(10):1086–97.CrossRef Mansfield KE, Schmidt SAJ, Darvalics B, et al. Association between atopic eczema and cancer in England and Denmark. JAMA Dermatol. 2020;156(10):1086–97.CrossRef
32.
Zurück zum Zitat Woo YR, Cho SH, Lee JD et al. The human microbiota and skin cancer. Int J Mol Sci 2022; 23(3). Woo YR, Cho SH, Lee JD et al. The human microbiota and skin cancer. Int J Mol Sci 2022; 23(3).
Metadaten
Titel
Atopic Dermatitis and Skin Cancer Risk: A Systematic Review
verfasst von
Yun Zhu
Hongmei Wang
Juan He
Luhui Yang
Xiaoyan Zhou
Zhe Li
Huiling Zhou
Huadi Zhao
Yuye Li
Publikationsdatum
17.04.2022
Verlag
Springer Healthcare
Erschienen in
Dermatology and Therapy / Ausgabe 5/2022
Print ISSN: 2193-8210
Elektronische ISSN: 2190-9172
DOI
https://doi.org/10.1007/s13555-022-00720-2

Weitere Artikel der Ausgabe 5/2022

Dermatology and Therapy 5/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.