Skip to main content
Erschienen in: Annals of Nuclear Medicine 11/2022

28.09.2022 | Short Communication

Attenuation correction for phantom tests: an alternative to maximum-likelihood attenuation correction factor-based correction for clinical studies in time-of-flight PET

verfasst von: Tetsuro Mizuta, Yoshiyuki Yamakawa, Suzuka Minagawa, Tetsuya Kobayashi, Atsushi Ohtani, Shiho Takenouchi, Kohei Hanaoka, Shota Watanabe, Daisuke Morimoto-Ishikawa, Takahiro Yamada, Hayato Kaida, Kazunari Ishii

Erschienen in: Annals of Nuclear Medicine | Ausgabe 11/2022

Einloggen, um Zugang zu erhalten

Abstract

Objectives

This study evaluates the phantom attenuation correction (PAC) method as an alternative to maximum-likelihood attenuation correction factor (ML-ACF) correction in time-of-flight (TOF) brain positron emission tomography (PET) studies.

Methods

In the PAC algorithm, a template emission image \({\lambda }_{Ref}\) and a template attenuation coefficient image \({\mu }_{Ref}\) are prepared as a data set based on phantom geometry. Position-aligned attenuation coefficient image \({\mu }_{Acq}\) is derived by aligning \({\mu }_{Ref}\) using parameters that match the template emission image \({\lambda }_{Ref}\) to measured emission image \({\lambda }_{Acq}\). Then, attenuation coefficient image \({\mu }_{Acq}\) combined with a headrest image is used for scatter and attenuation correction in the image reconstruction. To evaluate the PAC algorithm as an alternative to ML-ACF, Hoffman 3D brain and cylindrical phantoms were measured to obtain the image quality indexes of contrast and uniformity. These phantoms were also wrapped with a radioactive sheet to obtain attenuation coefficient images using ML-ACF. Emission images were reconstructed with attenuation correction by PAC and ML-ACF, and the results were compared using contrast and uniformity as well as visual assessment. CT attenuation correction (CT-AC) was also applied as a reference.

Results

The contrast obtained by ML-ACF was slightly overestimated due to its unique experimental condition for applying ML-ACF in Hoffman 3D brain phantom but the uniformity was almost equivalent among ML-ACF, CT-AC, and PAC. PAC showed reasonable result without overestimation compared to ML-ACF and CT-AC.

Conclusions

PAC is an attenuation correction method that can ensure the performance in phantom test, and is considered to be a reasonable alternative to clinically used ML-ACF-based attenuation correction.
Literatur
3.
Zurück zum Zitat Ikari Y, Akamatsu G, Nishio T, et al. Phantom criteria for qualification of brain FDG and amyloid PET across different cameras. EJNMMI Phys. 2016;3(23):2. Ikari Y, Akamatsu G, Nishio T, et al. Phantom criteria for qualification of brain FDG and amyloid PET across different cameras. EJNMMI Phys. 2016;3(23):2.
5.
Zurück zum Zitat Rezaei A, Defrise M, Nuyts J. ML-reconstruction for TOF-PET with simultaneous estimation of the Attenuation Factors. IEEE Trans Med Imag. 2014;33(7):1563–72.CrossRef Rezaei A, Defrise M, Nuyts J. ML-reconstruction for TOF-PET with simultaneous estimation of the Attenuation Factors. IEEE Trans Med Imag. 2014;33(7):1563–72.CrossRef
6.
Zurück zum Zitat Mizuta T, Kobayashi T, Yamakawa Y, et al. Initial evaluation of a new maximum-likelihood attenuation correction factor-based attenuation correction for time-of-flight brain PET. Ann Nucl Med. 2022;36(4):420–6.CrossRef Mizuta T, Kobayashi T, Yamakawa Y, et al. Initial evaluation of a new maximum-likelihood attenuation correction factor-based attenuation correction for time-of-flight brain PET. Ann Nucl Med. 2022;36(4):420–6.CrossRef
8.
Zurück zum Zitat Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13(4):601–9.CrossRef Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13(4):601–9.CrossRef
9.
Zurück zum Zitat Nakayama T, Kudo H, Derivation and implementation of ordered-subsets algorithms for list-mode PET data. IEEE NSS&MIC Conf. Rec 2005 Nakayama T, Kudo H, Derivation and implementation of ordered-subsets algorithms for list-mode PET data. IEEE NSS&MIC Conf. Rec 2005
10.
Zurück zum Zitat Rapisarda E, Bettinardi V, Thielemans K, et al. Image-based point spread function implementation in a fully 3D OSEM reconstruction algorithm for PET. Phys Med Biol. 2010;55(14):4131–51.CrossRef Rapisarda E, Bettinardi V, Thielemans K, et al. Image-based point spread function implementation in a fully 3D OSEM reconstruction algorithm for PET. Phys Med Biol. 2010;55(14):4131–51.CrossRef
11.
Zurück zum Zitat Hoffman EJ, Culer PD, Digby WM, et al. 3-D phantom to simulate cerebral blood flow and metabolic images for PET. IEEE Trans Nucl Sci. 1990;37(2):616–20.CrossRef Hoffman EJ, Culer PD, Digby WM, et al. 3-D phantom to simulate cerebral blood flow and metabolic images for PET. IEEE Trans Nucl Sci. 1990;37(2):616–20.CrossRef
12.
Zurück zum Zitat Matsumoto K, Endo K. Development of analysis software package for the two kinds of Japanese Fluoro-D-glucose-positron emission tomography guideline. Japanese J Radiol Technol. 2013;69:648–54.CrossRef Matsumoto K, Endo K. Development of analysis software package for the two kinds of Japanese Fluoro-D-glucose-positron emission tomography guideline. Japanese J Radiol Technol. 2013;69:648–54.CrossRef
Metadaten
Titel
Attenuation correction for phantom tests: an alternative to maximum-likelihood attenuation correction factor-based correction for clinical studies in time-of-flight PET
verfasst von
Tetsuro Mizuta
Yoshiyuki Yamakawa
Suzuka Minagawa
Tetsuya Kobayashi
Atsushi Ohtani
Shiho Takenouchi
Kohei Hanaoka
Shota Watanabe
Daisuke Morimoto-Ishikawa
Takahiro Yamada
Hayato Kaida
Kazunari Ishii
Publikationsdatum
28.09.2022
Verlag
Springer Nature Singapore
Erschienen in
Annals of Nuclear Medicine / Ausgabe 11/2022
Print ISSN: 0914-7187
Elektronische ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-022-01788-8

Weitere Artikel der Ausgabe 11/2022

Annals of Nuclear Medicine 11/2022 Zur Ausgabe