Skip to main content
Erschienen in: Inflammation 3/2019

08.02.2019 | ORIGINAL ARTICLE

Attenuation of Sepsis-Induced Cardiomyopathy by Regulation of MicroRNA-23b Is Mediated Through Targeting of MyD88-Mediated NF-κB Activation

verfasst von: Chao Cao, Yan Zhang, Yanfen Chai, Lijun Wang, Chengfen Yin, Songtao Shou, Heng Jin

Erschienen in: Inflammation | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Myocardial cell injury or cardiomyopathy is associated with excessive inflammatory response and apoptosis of cardiac myocytes during sepsis. MicroRNA-23b (miR-23b) is a multifunctional miRNA that is considered to regulate immunosuppression in sepsis. The aim of this study was to examine the effect of miR-23b on cardiomyopathy induced by sepsis and to explore the potential mechanism involved. Sprague-Dawley rats were subjected to cecal ligation and puncture (CLP), and the level of miR-23b at different time points was measured by quantitative real-time polymerase chain reaction (qPCR). Then, we overexpressed miR-23b in vivo and in vitro. The rats were subjected to CLP 7 days after transfection. Cardiac function, inflammatory response, and heart tissues were examined 3 days thereafter. In an in vitro experiment, H9C2 cardiomyoblasts were stimulated with lipopolysaccharide (LPS) after transfection of miR-23b, following which apoptosis and the level of NF-κB were analyzed. The expression of miR-23b was upregulated during polymicrobial sepsis, and transfection of miR-23b lentivirus improved the outcome of sepsis-induced cardiomyopathy by attenuating inflammatory responses and protecting against histopathological damage. In in vitro experiments, elevated miR-23b inhibited excessive apoptosis of cardiomyocytes, which may be because activation of the NF-κB signaling pathway was inhibited by the decreased levels of TRAF6 and IKKβ. Therefore, miR-23b improved sepsis-induced cardiomyopathy by attenuating the inflammatory response, suppressing apoptosis, and preventing NF-κB activation via targeted inhibition of TRAF6 and IκκB. These results indicated that miR-23b may represent a novel therapeutic approach for clinical treatment of sepsis-induced cardiomyopathy.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The third international consensus definitions for sepsis and septic shock (sepsis-3). Journal of the American Medical Association 315: 801–810.PubMed Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The third international consensus definitions for sepsis and septic shock (sepsis-3). Journal of the American Medical Association 315: 801–810.PubMed
2.
Zurück zum Zitat Gomez, E., M. Vercauteren, B. Kurtz, A. Ouvrard-Pascaud, P. Mulder, J.P. Henry, M. Besnier, A. Waget, R. Hooft Van Huijsduijnen, M.L. Tremblay, et al. 2012. Reduction of heart failure by pharmacological inhibition or gene deletion of protein tyrosine phosphatase 1B. Journal of Molecular and Cellular. 52 (6): 1257–1264. Gomez, E., M. Vercauteren, B. Kurtz, A. Ouvrard-Pascaud, P. Mulder, J.P. Henry, M. Besnier, A. Waget, R. Hooft Van Huijsduijnen, M.L. Tremblay, et al. 2012. Reduction of heart failure by pharmacological inhibition or gene deletion of protein tyrosine phosphatase 1B. Journal of Molecular and Cellular. 52 (6): 1257–1264.
3.
Zurück zum Zitat Charpentier, J., C.E. Luyt, Y. Fulla, C. Vinsonneau, A. Cariou, S. Grabar, J.F. Dhainaut, J.P. Mira, and J.D. Chiche. 2004. Brain natriuretic peptide: a marker of myocardial dysfunction and prognosis during severe sepsis. Critical Care Medicine 32 (3): 660–665.PubMed Charpentier, J., C.E. Luyt, Y. Fulla, C. Vinsonneau, A. Cariou, S. Grabar, J.F. Dhainaut, J.P. Mira, and J.D. Chiche. 2004. Brain natriuretic peptide: a marker of myocardial dysfunction and prognosis during severe sepsis. Critical Care Medicine 32 (3): 660–665.PubMed
4.
Zurück zum Zitat Gille-Johnson, P., C. Smedman, L. Gudmundsdotter, A. Somell, K. Nihlmark, S. Paulie, J. Andersson, and B. Gårdlund. 2012. Circulating monocytes are not the major source of plasma cytokines in patients with sepsis. Shock 38 (6): 577–583.PubMed Gille-Johnson, P., C. Smedman, L. Gudmundsdotter, A. Somell, K. Nihlmark, S. Paulie, J. Andersson, and B. Gårdlund. 2012. Circulating monocytes are not the major source of plasma cytokines in patients with sepsis. Shock 38 (6): 577–583.PubMed
5.
Zurück zum Zitat Vieillard-Baron, A., V. Caille, C. Charron, G. Belliard, B. Page, and F. Jardin. 2008. Actual incidence of global left ventricular hypokinesia in adult septic shock. Critical Care Medicine 36 (6): 1701–1706.PubMed Vieillard-Baron, A., V. Caille, C. Charron, G. Belliard, B. Page, and F. Jardin. 2008. Actual incidence of global left ventricular hypokinesia in adult septic shock. Critical Care Medicine 36 (6): 1701–1706.PubMed
6.
Zurück zum Zitat Fleischmann, C., A. Scherag, N.K. Adhikari, C.S. Hartog, T. Tsaganos, P. Schlattmann, D.C. Angus, and K. Reinhart. 2016. International Forum of Acute Care Trialists: Assessment of global incidence and mortality of hospital-treated Sepsis. Current estimates and limitations. American Journal of Respiratory and Critical Care Medicine 193 (3): 259–272.PubMed Fleischmann, C., A. Scherag, N.K. Adhikari, C.S. Hartog, T. Tsaganos, P. Schlattmann, D.C. Angus, and K. Reinhart. 2016. International Forum of Acute Care Trialists: Assessment of global incidence and mortality of hospital-treated Sepsis. Current estimates and limitations. American Journal of Respiratory and Critical Care Medicine 193 (3): 259–272.PubMed
7.
Zurück zum Zitat Micek, S.T., C. McEvoy, M. McKenzie, N. Hampton, J.A. Doherty, and M.H. Kollef. 2013. Fluid balance and cardiac function in septic shock as predictors of hospital mortality. Critical Care 17 (5): R246.PubMedPubMedCentral Micek, S.T., C. McEvoy, M. McKenzie, N. Hampton, J.A. Doherty, and M.H. Kollef. 2013. Fluid balance and cardiac function in septic shock as predictors of hospital mortality. Critical Care 17 (5): R246.PubMedPubMedCentral
8.
Zurück zum Zitat Antonucci, E., E. Fiaccadori, K. Donadello, F.S. Taccone, F. Franchi, and S. Scolletta. 2014. Myocardial depression in sepsis: from pathogenesis to clinical manifestations and treatment. Journal of Critical Care 29 (4): 500–511.PubMed Antonucci, E., E. Fiaccadori, K. Donadello, F.S. Taccone, F. Franchi, and S. Scolletta. 2014. Myocardial depression in sepsis: from pathogenesis to clinical manifestations and treatment. Journal of Critical Care 29 (4): 500–511.PubMed
9.
Zurück zum Zitat Liu, Y.C., M.M. Yu, S.T. Shou, and Y.F. Chai. 2017. Sepsis-induced cardiomyopathy: mechanisms and treatments. Frontiers in Immunology 8 (1021). Liu, Y.C., M.M. Yu, S.T. Shou, and Y.F. Chai. 2017. Sepsis-induced cardiomyopathy: mechanisms and treatments. Frontiers in Immunology 8 (1021).
10.
Zurück zum Zitat Tsolaki, V., D. Makris, K. Mantzarlis, and E. Zakynthinos. 2017. Sepsis-induced cardiomyopathy: oxidative implications in the initiation and resolution of the damage. Oxidative Medicine and Cellular Longevity 2017: 7393525.PubMedPubMedCentral Tsolaki, V., D. Makris, K. Mantzarlis, and E. Zakynthinos. 2017. Sepsis-induced cardiomyopathy: oxidative implications in the initiation and resolution of the damage. Oxidative Medicine and Cellular Longevity 2017: 7393525.PubMedPubMedCentral
11.
Zurück zum Zitat Suffredini, A.F., R.E. Fromm, M.M. Parker, M. Brenner, J.A. Kovacs, R.A. Wesley, and J.E. Parrillo. 1989. The cardiovascular response of normal humans to the administration of endotoxin. The New England Journal of Medicine 321 (5): 280–287.PubMed Suffredini, A.F., R.E. Fromm, M.M. Parker, M. Brenner, J.A. Kovacs, R.A. Wesley, and J.E. Parrillo. 1989. The cardiovascular response of normal humans to the administration of endotoxin. The New England Journal of Medicine 321 (5): 280–287.PubMed
12.
Zurück zum Zitat Mann, M., A. Mehta, J.L. Zhao, K. Lee, G.K. Marinov, Y. Garcia-Flores, and D. Baltimore. 2017. An NF-κB-microRNA regulatory network tunes macrophage inflammatory responses. Nature Communications 8 (1): 851.PubMedPubMedCentral Mann, M., A. Mehta, J.L. Zhao, K. Lee, G.K. Marinov, Y. Garcia-Flores, and D. Baltimore. 2017. An NF-κB-microRNA regulatory network tunes macrophage inflammatory responses. Nature Communications 8 (1): 851.PubMedPubMedCentral
13.
Zurück zum Zitat Cao, C., C. Yin, S. Shou, J. Wang, L. Yu, X. Li, and Y. Chai. 2018. Ulinastatin protects against LPS-induced acute lung injury by attenuating TLR4/NF-κB pathway activation and reducing inflammatory mediators. Shock 50 (5): 595–605.PubMed Cao, C., C. Yin, S. Shou, J. Wang, L. Yu, X. Li, and Y. Chai. 2018. Ulinastatin protects against LPS-induced acute lung injury by attenuating TLR4/NF-κB pathway activation and reducing inflammatory mediators. Shock 50 (5): 595–605.PubMed
14.
Zurück zum Zitat Zou, L., Y. Feng, Y.J. Chen, R. Si, S. Shen, Q. Zhou, F. Ichinose, M. Scherrer-Crosbie, and W. Chao. 2010. Toll-like receptor 2 plays a critical role in cardiac dysfunction during polymicrobial sepsis. Critical Care Medicine 38 (5): 1335–1342.PubMedPubMedCentral Zou, L., Y. Feng, Y.J. Chen, R. Si, S. Shen, Q. Zhou, F. Ichinose, M. Scherrer-Crosbie, and W. Chao. 2010. Toll-like receptor 2 plays a critical role in cardiac dysfunction during polymicrobial sepsis. Critical Care Medicine 38 (5): 1335–1342.PubMedPubMedCentral
15.
Zurück zum Zitat Gao, M., T. Ha, X. Zhang, L. Liu, X. Wang, J. Kelley, K. Singh, R. Kao, X. Gao, D. Williams, et al. 2010. Toll-like receptor 3 plays a central role in cardiac dysfunction during polymicrobial sepsis. Critical Care Medicine 40 (8): 2390–2399. Gao, M., T. Ha, X. Zhang, L. Liu, X. Wang, J. Kelley, K. Singh, R. Kao, X. Gao, D. Williams, et al. 2010. Toll-like receptor 3 plays a central role in cardiac dysfunction during polymicrobial sepsis. Critical Care Medicine 40 (8): 2390–2399.
16.
Zurück zum Zitat Gao, M., T. Ha, X. Zhang, X. Wang, L. Liu, J. Kalbfleisch, K. Singh, D. Williams, and C. Li. 2013. The Toll-like receptor 9 ligand, CpG oligodeoxynucleotide, attenuates cardiac dysfunction in polymicrobial sepsis, involving activation of both phosphoinositide 3 kinase/Akt and extracellular-signal-related kinase signaling. The Journal of Infectious Diseases 207 (9): 1471–1479.PubMedPubMedCentral Gao, M., T. Ha, X. Zhang, X. Wang, L. Liu, J. Kalbfleisch, K. Singh, D. Williams, and C. Li. 2013. The Toll-like receptor 9 ligand, CpG oligodeoxynucleotide, attenuates cardiac dysfunction in polymicrobial sepsis, involving activation of both phosphoinositide 3 kinase/Akt and extracellular-signal-related kinase signaling. The Journal of Infectious Diseases 207 (9): 1471–1479.PubMedPubMedCentral
17.
Zurück zum Zitat Melton, C., R.L. Judson, and R. Blelloch. 2010. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463 (7281): 621–626.PubMedPubMedCentral Melton, C., R.L. Judson, and R. Blelloch. 2010. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463 (7281): 621–626.PubMedPubMedCentral
18.
Zurück zum Zitat Dvinge, H., A. Git, S. Gräf, M. Salmon-Divon, C. Curtis, A. Sottoriva, Y. Zhao, M. Hirst, J. Armisen, E.A. Miska, S.F. Chin, E. Provenzano, G. Turashvili, A. Green, I. Ellis, S. Aparicio, and C. Caldas. 2013. The shaping and functional consequences of the microRNA landscape in breast cancer. Nature 497 (7449): 378–382.PubMed Dvinge, H., A. Git, S. Gräf, M. Salmon-Divon, C. Curtis, A. Sottoriva, Y. Zhao, M. Hirst, J. Armisen, E.A. Miska, S.F. Chin, E. Provenzano, G. Turashvili, A. Green, I. Ellis, S. Aparicio, and C. Caldas. 2013. The shaping and functional consequences of the microRNA landscape in breast cancer. Nature 497 (7449): 378–382.PubMed
19.
Zurück zum Zitat Amaral, A.E.D., M.P. Rode, J. Cisilotto, T.E.D. Silva, J. Fischer, C. Matiollo, E.C. Morais Rateke, J.L. Narciso-Schiavon, L.L. Schiavon, and T.B. Creczynski-Pasa. 2018. MicroRNA profiles in serum samples from patients with stable cirrhosis and miRNA-21 as a predictor of transplant-free survival. Pharmacological Research 134: 179–192.PubMed Amaral, A.E.D., M.P. Rode, J. Cisilotto, T.E.D. Silva, J. Fischer, C. Matiollo, E.C. Morais Rateke, J.L. Narciso-Schiavon, L.L. Schiavon, and T.B. Creczynski-Pasa. 2018. MicroRNA profiles in serum samples from patients with stable cirrhosis and miRNA-21 as a predictor of transplant-free survival. Pharmacological Research 134: 179–192.PubMed
20.
Zurück zum Zitat Tacke, F., C. Roderburg, F. Benz, D.V. Cardenas, M. Luedde, H.J. Hippe, N. Frey, M. Vucur, J. Gautheron, A. Koch, C. Trautwein, and T. Luedde. 2014. Levels of circulating miR-133a are elevated in sepsis and predict mortality in critically ill patients. Critical Care Medicine 42 (5): 1096–1104.PubMed Tacke, F., C. Roderburg, F. Benz, D.V. Cardenas, M. Luedde, H.J. Hippe, N. Frey, M. Vucur, J. Gautheron, A. Koch, C. Trautwein, and T. Luedde. 2014. Levels of circulating miR-133a are elevated in sepsis and predict mortality in critically ill patients. Critical Care Medicine 42 (5): 1096–1104.PubMed
21.
Zurück zum Zitat Ge, C., J. Liu, and S. Dong. 2018. miRNA-214 protects sepsis-induced myocardial injury. Shock 50 (1): 112–118.PubMed Ge, C., J. Liu, and S. Dong. 2018. miRNA-214 protects sepsis-induced myocardial injury. Shock 50 (1): 112–118.PubMed
22.
Zurück zum Zitat Ma, H., X. Wang, T. Ha, M. Gao, L. Liu, R. Wang, K. Yu, J.H. Kalbfleisch, R.L. Kao, D.L. Williams, and C. Li. 2016. MicroRNA-125b prevents cardiac dysfunction in polymicrobial sepsis by targeting TRAF6-mediated nuclear factor κB activation and p53-mediated apoptotic signaling. The Journal of Infectious Diseases 214 (11): 1773–1783.PubMedPubMedCentral Ma, H., X. Wang, T. Ha, M. Gao, L. Liu, R. Wang, K. Yu, J.H. Kalbfleisch, R.L. Kao, D.L. Williams, and C. Li. 2016. MicroRNA-125b prevents cardiac dysfunction in polymicrobial sepsis by targeting TRAF6-mediated nuclear factor κB activation and p53-mediated apoptotic signaling. The Journal of Infectious Diseases 214 (11): 1773–1783.PubMedPubMedCentral
23.
Zurück zum Zitat Wang, H., Y. Bei, S. Shen, P. Huang, J. Shi, J. Zhang, Q. Sun, Y. Chen, Y. Yang, T. Xu, X. Kong, and J. Xiao. 2016. miR-21-3p controls sepsis-associated cardiac dysfunction via regulating SORBS2. Journal of Molecular and Cellular Cardiology 94: 43–53.PubMed Wang, H., Y. Bei, S. Shen, P. Huang, J. Shi, J. Zhang, Q. Sun, Y. Chen, Y. Yang, T. Xu, X. Kong, and J. Xiao. 2016. miR-21-3p controls sepsis-associated cardiac dysfunction via regulating SORBS2. Journal of Molecular and Cellular Cardiology 94: 43–53.PubMed
24.
Zurück zum Zitat Grieco, F.A., G. Sebastiani, J. Juan-Mateu, O. Villate, L. Marroqui, L. Ladrière, K. Tugay, R. Regazzi, M. Bugliani, P. Marchetti, F. Dotta, and D.L. Eizirik. 2017. MicroRNAs miR-23a-3p, miR-23b-3p, and miR-149-5p regulate the expression of proapoptotic BH3-only proteins DP5 and PUMA in human pancreatic β-cells. Diabetes 66 (1): 100–112.PubMed Grieco, F.A., G. Sebastiani, J. Juan-Mateu, O. Villate, L. Marroqui, L. Ladrière, K. Tugay, R. Regazzi, M. Bugliani, P. Marchetti, F. Dotta, and D.L. Eizirik. 2017. MicroRNAs miR-23a-3p, miR-23b-3p, and miR-149-5p regulate the expression of proapoptotic BH3-only proteins DP5 and PUMA in human pancreatic β-cells. Diabetes 66 (1): 100–112.PubMed
25.
Zurück zum Zitat Hu, R., and R.M. O’Connell. 2012. MiR-23b is a safeguard against autoimmunity. Nature Medicine 18 (7): 1009–1010, 2017.PubMed Hu, R., and R.M. O’Connell. 2012. MiR-23b is a safeguard against autoimmunity. Nature Medicine 18 (7): 1009–1010, 2017.PubMed
26.
Zurück zum Zitat Zheng, J., H.Y. Jiang, J. Li, H.C. Tang, X.M. Zhang, X.R. Wang, J.T. Du, H.B. Li, and G. Xu. 2012. MicroRNA-23b promotes tolerogenic properties of dendritic cells in vitro through inhibiting Notch1/NF-κB signalling pathways. Allergy 67 (3): 362–370.PubMed Zheng, J., H.Y. Jiang, J. Li, H.C. Tang, X.M. Zhang, X.R. Wang, J.T. Du, H.B. Li, and G. Xu. 2012. MicroRNA-23b promotes tolerogenic properties of dendritic cells in vitro through inhibiting Notch1/NF-κB signalling pathways. Allergy 67 (3): 362–370.PubMed
27.
Zurück zum Zitat Zhu, S., W. Pan, X. Song, Y. Liu, X. Shao, Y. Tang, D. Liang, D. He, H. Wang, W. Liu, Y. Shi, J.B. Harley, N. Shen, and Y. Qian. 2012. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-alpha. Nature Medicine 18 (7): 1077–1086.PubMed Zhu, S., W. Pan, X. Song, Y. Liu, X. Shao, Y. Tang, D. Liang, D. He, H. Wang, W. Liu, Y. Shi, J.B. Harley, N. Shen, and Y. Qian. 2012. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-alpha. Nature Medicine 18 (7): 1077–1086.PubMed
28.
Zurück zum Zitat Wu, M., J.T. Gu, B. Yi, Z.Z. Tang, and G.C. Tao. 2015. microRNA-23b regulates the expression of inflammatory factors in vascular endothelial cells during sepsis. Experimental and Therapeutic Medicine 9 (4): 1125–1132.PubMedPubMedCentral Wu, M., J.T. Gu, B. Yi, Z.Z. Tang, and G.C. Tao. 2015. microRNA-23b regulates the expression of inflammatory factors in vascular endothelial cells during sepsis. Experimental and Therapeutic Medicine 9 (4): 1125–1132.PubMedPubMedCentral
29.
Zurück zum Zitat Hoyt, C.C., S.M. Richardson-Burns, R.J. Goody, B.A. Robinson, R.L. Debiasi, and K.L. Tyler. 2005. Nonstructural protein sigma1s is a determinant of reovirus virulence and influences the kinetics and severity of apoptosis induction in the heart and central nervous system. Journal of Virology 79 (5): 2743–2753.PubMedPubMedCentral Hoyt, C.C., S.M. Richardson-Burns, R.J. Goody, B.A. Robinson, R.L. Debiasi, and K.L. Tyler. 2005. Nonstructural protein sigma1s is a determinant of reovirus virulence and influences the kinetics and severity of apoptosis induction in the heart and central nervous system. Journal of Virology 79 (5): 2743–2753.PubMedPubMedCentral
30.
Zurück zum Zitat Cao, C., C. Yin, Y. Chai, H. Jin, L. Wang, and S. Shou. 2018. Ulinastatin mediates suppression of regulatory T cells through TLR4/NF-κB signaling pathway in murine sepsis. International Immunopharmacology 64: 411–423.PubMed Cao, C., C. Yin, Y. Chai, H. Jin, L. Wang, and S. Shou. 2018. Ulinastatin mediates suppression of regulatory T cells through TLR4/NF-κB signaling pathway in murine sepsis. International Immunopharmacology 64: 411–423.PubMed
31.
Zurück zum Zitat Hobai, I.A., J. Edgecomb, K. LaBarge, and W.S. Colucci. 2015. Dysregulation of intracellular calcium transporters in animal models of sepsis-induced cardiomyopathy. Shock 43 (1): 3–15.PubMedPubMedCentral Hobai, I.A., J. Edgecomb, K. LaBarge, and W.S. Colucci. 2015. Dysregulation of intracellular calcium transporters in animal models of sepsis-induced cardiomyopathy. Shock 43 (1): 3–15.PubMedPubMedCentral
32.
Zurück zum Zitat Zhang, H., H.Y. Wang, R. Bassel-Duby, D.L. Maass, W.E. Johnston, J.W. Horton, and W. Tao. 2007. Role of interleukin-6 in cardiac inflammation and dysfunction after burn complicated by sepsis. American Journal of Physiology. Heart and Circulatory Physiology 292 (5): H2408–H2416.PubMed Zhang, H., H.Y. Wang, R. Bassel-Duby, D.L. Maass, W.E. Johnston, J.W. Horton, and W. Tao. 2007. Role of interleukin-6 in cardiac inflammation and dysfunction after burn complicated by sepsis. American Journal of Physiology. Heart and Circulatory Physiology 292 (5): H2408–H2416.PubMed
33.
Zurück zum Zitat Zhang, G., and S. Ghosh. 2001. Toll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity. The Journal of Clinical Investigation 107 (1): 13–19.PubMedPubMedCentral Zhang, G., and S. Ghosh. 2001. Toll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity. The Journal of Clinical Investigation 107 (1): 13–19.PubMedPubMedCentral
34.
Zurück zum Zitat Sheehan, M., H.R. Wong, P.W. Hake, and B. Zingarelli. 2003. Parthenolide improves systemic hemodynamics and decreases tissue leukosequestration in rats with polymicrobial sepsis. Critical Care Medicine 31 (9): 2263–2270.PubMed Sheehan, M., H.R. Wong, P.W. Hake, and B. Zingarelli. 2003. Parthenolide improves systemic hemodynamics and decreases tissue leukosequestration in rats with polymicrobial sepsis. Critical Care Medicine 31 (9): 2263–2270.PubMed
35.
Zurück zum Zitat Zheng, Z., H. Ma, X. Zhang, F. Tu, X. Wang, T. Ha, M. Fan, L. Liu, J. Xu, K. Yu, R. Wang, J. Kalbfleisch, R. Kao, D. Williams, and C. Li. 2017. Enhanced glycolytic metabolism contributes to cardiac dysfunction in polymicrobial sepsis. The Journal of Infectious Diseases 215 (9): 1396–1406.PubMedPubMedCentral Zheng, Z., H. Ma, X. Zhang, F. Tu, X. Wang, T. Ha, M. Fan, L. Liu, J. Xu, K. Yu, R. Wang, J. Kalbfleisch, R. Kao, D. Williams, and C. Li. 2017. Enhanced glycolytic metabolism contributes to cardiac dysfunction in polymicrobial sepsis. The Journal of Infectious Diseases 215 (9): 1396–1406.PubMedPubMedCentral
36.
Zurück zum Zitat Brudecki, L., D.A. Ferguson, D. Yin, G.D. Lesage, C.E. McCall, and M. El Gazzar. 2012. Hematopoietic stem-progenitor cells restore immunoreactivity and improve survival in late sepsis. Infection and Immunity 80 (2): 602–611.PubMedPubMedCentral Brudecki, L., D.A. Ferguson, D. Yin, G.D. Lesage, C.E. McCall, and M. El Gazzar. 2012. Hematopoietic stem-progenitor cells restore immunoreactivity and improve survival in late sepsis. Infection and Immunity 80 (2): 602–611.PubMedPubMedCentral
37.
Zurück zum Zitat Yoon, S.J., S.J. Kim, and S.M. Lee. 2017. Overexpression of HO-1 contributes to sepsis-induced immunosuppression by modulating the Th1/Th2 balance and regulatory T-cell function. The Journal of Infectious Diseases 215 (10): 1608–1618.PubMed Yoon, S.J., S.J. Kim, and S.M. Lee. 2017. Overexpression of HO-1 contributes to sepsis-induced immunosuppression by modulating the Th1/Th2 balance and regulatory T-cell function. The Journal of Infectious Diseases 215 (10): 1608–1618.PubMed
38.
Zurück zum Zitat Zhang, H., Y. Caudle, A. Shaikh, B. Yao, and D. Yin. 2018. Inhibition of microRNA-23b prevents polymicrobial sepsis-induced cardiac dysfunction by modulating TGIF1 and PTEN. Biomedicine & Pharmacotherapy 103: 869–878. Zhang, H., Y. Caudle, A. Shaikh, B. Yao, and D. Yin. 2018. Inhibition of microRNA-23b prevents polymicrobial sepsis-induced cardiac dysfunction by modulating TGIF1 and PTEN. Biomedicine & Pharmacotherapy 103: 869–878.
39.
Zurück zum Zitat Court, O., A. Kumar, J.E. Parrillo, and A. Kumar. 2002. Clinical review: Myocardial depression in sepsis and septic shock. Critical Care 6 (6): 500–508.PubMedPubMedCentral Court, O., A. Kumar, J.E. Parrillo, and A. Kumar. 2002. Clinical review: Myocardial depression in sepsis and septic shock. Critical Care 6 (6): 500–508.PubMedPubMedCentral
40.
Zurück zum Zitat Chagnon, F., C.N. Metz, R. Bucala, and O. Lesur. 2005. Endotoxin-induced myocardial dysfunction: effects of macrophage migration inhibitory factor neutralization. Circulation Research 96 (10): 1095–1102.PubMed Chagnon, F., C.N. Metz, R. Bucala, and O. Lesur. 2005. Endotoxin-induced myocardial dysfunction: effects of macrophage migration inhibitory factor neutralization. Circulation Research 96 (10): 1095–1102.PubMed
41.
Zurück zum Zitat Alves-Filho, J.C., A. de Freitas, F. Spiller, F.O. Souto, and C.Q. Cunha. 2008. The role of neutrophils in severe sepsis. Shock 30: 3–9.PubMed Alves-Filho, J.C., A. de Freitas, F. Spiller, F.O. Souto, and C.Q. Cunha. 2008. The role of neutrophils in severe sepsis. Shock 30: 3–9.PubMed
42.
Zurück zum Zitat Cavaillon, J.M., and M. Adib-Conquy. 2005. Monocytes/macrophages and sepsis. Critical Care Medicine 33: S506–S509.PubMed Cavaillon, J.M., and M. Adib-Conquy. 2005. Monocytes/macrophages and sepsis. Critical Care Medicine 33: S506–S509.PubMed
43.
Zurück zum Zitat O’Neill, L.A., F.J. Sheedy, and C.E. McCoy. 2011. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nature Reviews. Immunology 11 (3): 163–175.PubMed O’Neill, L.A., F.J. Sheedy, and C.E. McCoy. 2011. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nature Reviews. Immunology 11 (3): 163–175.PubMed
44.
Zurück zum Zitat Williams, D.L., T. Ha, C. Li, J.H. Kalbfleisch, J. Schweitzer, W. Vogt, and I.W. Browder. 2003. Modulation of tissue Toll-like receptor 2 and 4 during the early phases of polymicrobial sepsis correlates with mortality. Critical Care Medicine 31 (6): 1808–1818.PubMed Williams, D.L., T. Ha, C. Li, J.H. Kalbfleisch, J. Schweitzer, W. Vogt, and I.W. Browder. 2003. Modulation of tissue Toll-like receptor 2 and 4 during the early phases of polymicrobial sepsis correlates with mortality. Critical Care Medicine 31 (6): 1808–1818.PubMed
45.
Zurück zum Zitat Gao, M., X. Wang, X. Zhang, T. Ha, H. Ma, L. Liu, J.H. Kalbfleisch, X. Gao, R.L. Kao, D.L. Williams, and C. Li. 2015. Attenuation of cardiac dysfunction in polymicrobial sepsis by microRNA-146a is mediated via targeting of IRAK1 and TRAF6 expression. Journal of Immunology 195 (2): 672–682. Gao, M., X. Wang, X. Zhang, T. Ha, H. Ma, L. Liu, J.H. Kalbfleisch, X. Gao, R.L. Kao, D.L. Williams, and C. Li. 2015. Attenuation of cardiac dysfunction in polymicrobial sepsis by microRNA-146a is mediated via targeting of IRAK1 and TRAF6 expression. Journal of Immunology 195 (2): 672–682.
46.
Zurück zum Zitat Ha, T., C. Lu, L. Liu, F. Hua, Y. Hu, J. Kelley, K. Singh, R.L. Kao, J. Kalbfleisch, D.L. Williams, X. Gao, and C. Li. 2010. TLR2 ligands attenuate cardiac dysfunction in polymicrobial sepsis via a phosphoinositide 3-kinase-dependent mechanism. American Journal of Physiology. Heart and Circulatory Physiology 298 (3): H984–H991.PubMedPubMedCentral Ha, T., C. Lu, L. Liu, F. Hua, Y. Hu, J. Kelley, K. Singh, R.L. Kao, J. Kalbfleisch, D.L. Williams, X. Gao, and C. Li. 2010. TLR2 ligands attenuate cardiac dysfunction in polymicrobial sepsis via a phosphoinositide 3-kinase-dependent mechanism. American Journal of Physiology. Heart and Circulatory Physiology 298 (3): H984–H991.PubMedPubMedCentral
47.
Zurück zum Zitat Medzhitov, R., P. Preston-Hurlburt, and C.A.J. Janeway. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388 (6640): 394–397.PubMed Medzhitov, R., P. Preston-Hurlburt, and C.A.J. Janeway. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388 (6640): 394–397.PubMed
48.
Zurück zum Zitat Nevière, R., H. Fauvel, C. Chopin, P. Formstecher, and P. Marchetti. 2001. Caspase inhibition prevents cardiac dysfunction and heart apoptosis in a rat model of sepsis. American Journal of Respiratory and Critical Care Medicine 163 (1): 218–225.PubMed Nevière, R., H. Fauvel, C. Chopin, P. Formstecher, and P. Marchetti. 2001. Caspase inhibition prevents cardiac dysfunction and heart apoptosis in a rat model of sepsis. American Journal of Respiratory and Critical Care Medicine 163 (1): 218–225.PubMed
Metadaten
Titel
Attenuation of Sepsis-Induced Cardiomyopathy by Regulation of MicroRNA-23b Is Mediated Through Targeting of MyD88-Mediated NF-κB Activation
verfasst von
Chao Cao
Yan Zhang
Yanfen Chai
Lijun Wang
Chengfen Yin
Songtao Shou
Heng Jin
Publikationsdatum
08.02.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-00958-7

Weitere Artikel der Ausgabe 3/2019

Inflammation 3/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.