Skip to main content
Erschienen in: Lasers in Medical Science 7/2020

17.02.2020 | Original Article

Attenuation of the inflammatory response and polarization of macrophages by photobiomodulation

verfasst von: Kun Li, Zhuowen Liang, Jiawei Zhang, Xiaoshuang Zuo, Jiakai Sun, Qiao Zheng, Jiwei Song, Tan Ding, Xueyu Hu, Zhe Wang

Erschienen in: Lasers in Medical Science | Ausgabe 7/2020

Einloggen, um Zugang zu erhalten

Abstract

In spinal cord injury (SCI), inflammation is a major mediator of damage and loss of function and is regulated primarily by the bone marrow-derived macrophages (BMDMs). Photobiomodulation (PBM) or low-level light stimulation is known to have anti-inflammatory effects and has previously been used in the treatment of SCI, although its precise cellular mechanisms remain unclear. In the present study, the effect of PBM at 810 nm on classically activated BMDMs was evaluated to investigate the mechanisms underlying its anti-inflammatory effects. BMDMs were cultured and irradiated (810 nm, 2 mW/cm2) following stimulation with lipopolysaccharide and interferon-γ. CCK-8 assay, 2′,7′-dichlorofluorescein diacetate assay, and ELISA and western blot analysis were performed to measure cell viability, reactive oxygen species production, and inflammatory marker production, respectively. PBM irradiation of classically activated macrophages significantly increased the cell viability and inhibited reactive oxygen species generation. PBM suppressed the expression of a marker of classically activated macrophages, inducible nitric oxide synthase; decreased the mRNA expression and secretion of pro-inflammatory cytokines, tumor necrosis factor alpha, and interleukin-1 beta; and increased the secretion of monocyte chemotactic protein 1. Exposure to PBM likewise significantly reduced the expression and phosphorylation of NF-κB p65 in classically activated BMDMs. Taken together, these results suggest that PBM can successfully modulate inflammation and polarization in classically activated BMDMs. The present study provides a theoretical basis to support wider clinical application of PBM in the treatment of SCI.
Literatur
1.
Zurück zum Zitat Oyinbo CA (2011) Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp 71(2):281–299 Oyinbo CA (2011) Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp 71(2):281–299
2.
Zurück zum Zitat Faden AI, Wu J, Stoica BA et al (2016) Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord injury. Br J Pharmacol 173(4):681–691PubMed Faden AI, Wu J, Stoica BA et al (2016) Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord injury. Br J Pharmacol 173(4):681–691PubMed
3.
Zurück zum Zitat Horn KP, Busch SA, Hawthorne AL et al (2008) Another barrier to regeneration in the CNS: activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions. J Neurosci 28(38):9330–9341PubMedPubMedCentral Horn KP, Busch SA, Hawthorne AL et al (2008) Another barrier to regeneration in the CNS: activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions. J Neurosci 28(38):9330–9341PubMedPubMedCentral
4.
Zurück zum Zitat Busch SA, Horn KP, Silver DJ et al (2009) Overcoming macrophage-mediated axonal dieback following CNS injury. J Neurosci 29(32):9967–9976PubMedPubMedCentral Busch SA, Horn KP, Silver DJ et al (2009) Overcoming macrophage-mediated axonal dieback following CNS injury. J Neurosci 29(32):9967–9976PubMedPubMedCentral
5.
Zurück zum Zitat Busch SA, Hamilton J, Horn KP et al (2011) Multipotent adult progenitor cells prevent macrophage-mediated axonal dieback and promote regrowth after spinal cord injury. J Neurosci 31(3):944–953PubMedPubMedCentral Busch SA, Hamilton J, Horn KP et al (2011) Multipotent adult progenitor cells prevent macrophage-mediated axonal dieback and promote regrowth after spinal cord injury. J Neurosci 31(3):944–953PubMedPubMedCentral
6.
Zurück zum Zitat Nordendiana M, Fawtimothy D, Mckimdaniel B et al (2018) Bone marrow-derived monocytes drive the inflammatory microenvironment in local and remote regions after thoracic spinal cord injury. J Neurotrauma 2019,36(6):1–37 Nordendiana M, Fawtimothy D, Mckimdaniel B et al (2018) Bone marrow-derived monocytes drive the inflammatory microenvironment in local and remote regions after thoracic spinal cord injury. J Neurotrauma 2019,36(6):1–37
7.
Zurück zum Zitat Greenhalgh AD, David S (2014) Differences in the phagocytic response of microglia and peripheral macrophages after spinal cord injury and its effects on cell death. J Neurosci 34(18):6316–6322PubMedPubMedCentral Greenhalgh AD, David S (2014) Differences in the phagocytic response of microglia and peripheral macrophages after spinal cord injury and its effects on cell death. J Neurosci 34(18):6316–6322PubMedPubMedCentral
8.
Zurück zum Zitat Evans TA, Barkauskas DS, Myers JT et al (2014) High-resolution intravital imaging reveals that blood-derived macrophages but not resident microglia facilitate secondary axonal dieback in traumatic spinal cord injury. Exp Neurol 254(4):109–120PubMedPubMedCentral Evans TA, Barkauskas DS, Myers JT et al (2014) High-resolution intravital imaging reveals that blood-derived macrophages but not resident microglia facilitate secondary axonal dieback in traumatic spinal cord injury. Exp Neurol 254(4):109–120PubMedPubMedCentral
9.
Zurück zum Zitat Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969PubMedPubMedCentral Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969PubMedPubMedCentral
10.
Zurück zum Zitat Kigerl KA, Gensel JC, Ankeny DP et al (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–13444PubMedPubMedCentral Kigerl KA, Gensel JC, Ankeny DP et al (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–13444PubMedPubMedCentral
11.
Zurück zum Zitat Ren Y, Young W (2013) Managing inflammation after spinal cord injury through manipulation of macrophage function. Neural Plast 2013:945034PubMedPubMedCentral Ren Y, Young W (2013) Managing inflammation after spinal cord injury through manipulation of macrophage function. Neural Plast 2013:945034PubMedPubMedCentral
12.
Zurück zum Zitat Samuel D, Antje K (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12(7):388–399 Samuel D, Antje K (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12(7):388–399
13.
Zurück zum Zitat Guerrero AR, Uchida K, Nakajima H et al (2012) Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. J Neuroinflammation 9(1):40PubMedPubMedCentral Guerrero AR, Uchida K, Nakajima H et al (2012) Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. J Neuroinflammation 9(1):40PubMedPubMedCentral
14.
Zurück zum Zitat Li F, Cheng B, Cheng J et al (2015) CCR5 blockade promotes M2 macrophage activation and improves locomotor recovery after spinal cord injury in mice. Inflammation 38(1):126–133PubMed Li F, Cheng B, Cheng J et al (2015) CCR5 blockade promotes M2 macrophage activation and improves locomotor recovery after spinal cord injury in mice. Inflammation 38(1):126–133PubMed
15.
Zurück zum Zitat Ji XC, Dang YY, Gao HY et al (2015) Local injection of Lenti–BDNF at the lesion site promotes M2 macrophage polarization and inhibits inflammatory response after spinal cord injury in mice. Cell Mol Neurobiol 35(6):881–890PubMed Ji XC, Dang YY, Gao HY et al (2015) Local injection of Lenti–BDNF at the lesion site promotes M2 macrophage polarization and inhibits inflammatory response after spinal cord injury in mice. Cell Mol Neurobiol 35(6):881–890PubMed
16.
Zurück zum Zitat Zhang Q, Bian G, Chen P et al (2014) Aldose reductase regulates microglia/macrophages polarization through the cAMP response element-binding protein after spinal cord injury in mice. Mol Neurobiol 53(1):662–676PubMed Zhang Q, Bian G, Chen P et al (2014) Aldose reductase regulates microglia/macrophages polarization through the cAMP response element-binding protein after spinal cord injury in mice. Mol Neurobiol 53(1):662–676PubMed
17.
Zurück zum Zitat T D, SK S, YY H et al (2012) The nuts and bolts of low-level laser (light) therapy.%A Chung H. Ann Biomed Eng 40(2):516–533 T D, SK S, YY H et al (2012) The nuts and bolts of low-level laser (light) therapy.%A Chung H. Ann Biomed Eng 40(2):516–533
18.
Zurück zum Zitat Manstein D, Laubach H, Watanabe K et al (2008) Selective cryolysis: a novel method of non-invasive fat removal. Lasers Surg Med 40(9):595–604PubMed Manstein D, Laubach H, Watanabe K et al (2008) Selective cryolysis: a novel method of non-invasive fat removal. Lasers Surg Med 40(9):595–604PubMed
19.
Zurück zum Zitat Jori G, Fabris C, Soncin M et al (2010) Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg Med 38(5):468–481 Jori G, Fabris C, Soncin M et al (2010) Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg Med 38(5):468–481
20.
Zurück zum Zitat Jimenez JJ, Wikramanayake TC, Bergfeld W et al (2014) Efficacy and safety of a low-level laser device in the treatment of male and female pattern hair loss: a multicenter, randomized, sham device-controlled, double-blind study. Am J Clin Dermatol 15(2):115–127PubMedPubMedCentral Jimenez JJ, Wikramanayake TC, Bergfeld W et al (2014) Efficacy and safety of a low-level laser device in the treatment of male and female pattern hair loss: a multicenter, randomized, sham device-controlled, double-blind study. Am J Clin Dermatol 15(2):115–127PubMedPubMedCentral
21.
Zurück zum Zitat Lívia A, Moretti AIS, Abrah OTB et al (2012) Low-level laser therapy (808 nm) reduces inflammatory response and oxidative stress in rat tibialis anterior muscle after cryolesion. Lasers Surg Med 44(9):726–735 Lívia A, Moretti AIS, Abrah OTB et al (2012) Low-level laser therapy (808 nm) reduces inflammatory response and oxidative stress in rat tibialis anterior muscle after cryolesion. Lasers Surg Med 44(9):726–735
22.
Zurück zum Zitat Byrnes KR, Waynant RW, Ilev IK et al (2005) Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 36(3):171–185PubMed Byrnes KR, Waynant RW, Ilev IK et al (2005) Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 36(3):171–185PubMed
23.
Zurück zum Zitat Wu X, Dmitriev AE, Cardoso MJ et al (2009) 810 nm wavelength light: an effective therapy for transected or contused rat spinal cord. Lasers Surg Med 41(1):36–41PubMed Wu X, Dmitriev AE, Cardoso MJ et al (2009) 810 nm wavelength light: an effective therapy for transected or contused rat spinal cord. Lasers Surg Med 41(1):36–41PubMed
24.
Zurück zum Zitat Hu D, Zhu S, Potas JR (2016) Red LED photobiomodulation reduces pain hypersensitivity and improves sensorimotor function following mild T10 hemicontusion spinal cord injury. J Neuroinflammation 13(1):200PubMedPubMedCentral Hu D, Zhu S, Potas JR (2016) Red LED photobiomodulation reduces pain hypersensitivity and improves sensorimotor function following mild T10 hemicontusion spinal cord injury. J Neuroinflammation 13(1):200PubMedPubMedCentral
25.
Zurück zum Zitat Hu D, Zhu S, Potas JR (2016) Red LED photobiomodulation reduces pain hypersensitivity and improves sensorimotor function following mild T10 hemicontusion spinal cord injury. J Neuroinflammation 13(1):200PubMedPubMedCentral Hu D, Zhu S, Potas JR (2016) Red LED photobiomodulation reduces pain hypersensitivity and improves sensorimotor function following mild T10 hemicontusion spinal cord injury. J Neuroinflammation 13(1):200PubMedPubMedCentral
26.
Zurück zum Zitat Song JW, Li K, Liang ZW et al (2017) Low-level laser facilitates alternatively activated macrophage/microglia polarization and promotes functional recovery after crush spinal cord injury in rats. Sci Rep 7(1):620PubMedPubMedCentral Song JW, Li K, Liang ZW et al (2017) Low-level laser facilitates alternatively activated macrophage/microglia polarization and promotes functional recovery after crush spinal cord injury in rats. Sci Rep 7(1):620PubMedPubMedCentral
27.
Zurück zum Zitat Gavish L, Perez LS, Reissman P et al (2008) Irradiation with 780 nm diode laser attenuates inflammatory cytokines while upregulating nitric oxide in LPS-stimulated macrophages: implications for the prevention of aneurysm progression. Lasers Surg Med 40(5):371–378PubMed Gavish L, Perez LS, Reissman P et al (2008) Irradiation with 780 nm diode laser attenuates inflammatory cytokines while upregulating nitric oxide in LPS-stimulated macrophages: implications for the prevention of aneurysm progression. Lasers Surg Med 40(5):371–378PubMed
28.
Zurück zum Zitat Souza NHC, Marcondes PT, Albertini R et al (2014) Low-level laser therapy suppresses the oxidative stress-induced glucocorticoids resistance in U937 cells: relevance to cytokine secretion and histone deacetylase in alveolar macrophages. J Photochem Photobiol B Biol 130(1):327–336 Souza NHC, Marcondes PT, Albertini R et al (2014) Low-level laser therapy suppresses the oxidative stress-induced glucocorticoids resistance in U937 cells: relevance to cytokine secretion and histone deacetylase in alveolar macrophages. J Photochem Photobiol B Biol 130(1):327–336
29.
Zurück zum Zitat Ki Bum A, Seok-Seong K, Ok-Jin P et al (2014) Irradiation by gallium-aluminum-arsenate diode laser enhances the induction of nitric oxide by Porphyromonas gingivalis in RAW 264.7 cells. J Periodontol 85(9):1259–1265 Ki Bum A, Seok-Seong K, Ok-Jin P et al (2014) Irradiation by gallium-aluminum-arsenate diode laser enhances the induction of nitric oxide by Porphyromonas gingivalis in RAW 264.7 cells. J Periodontol 85(9):1259–1265
30.
Zurück zum Zitat Fernandes KPS, Souza NHC, Mesquita-Ferrari RA et al (2015) Photobiomodulation with 660-nm and 780-nm laser on activated J774 macrophage-like cells: effect on M1 inflammatory markers. J Photochem Photobiol B Biol 153:344–351 Fernandes KPS, Souza NHC, Mesquita-Ferrari RA et al (2015) Photobiomodulation with 660-nm and 780-nm laser on activated J774 macrophage-like cells: effect on M1 inflammatory markers. J Photochem Photobiol B Biol 153:344–351
31.
Zurück zum Zitat Leden REV, Cooney SJ, Ferrara TM et al (2013) 808?nm wavelength light induces a dose-dependent alteration in microglial polarization and resultant microglial induced neurite growth. Lasers Surg Med 45(4):253–263 Leden REV, Cooney SJ, Ferrara TM et al (2013) 808?nm wavelength light induces a dose-dependent alteration in microglial polarization and resultant microglial induced neurite growth. Lasers Surg Med 45(4):253–263
32.
Zurück zum Zitat Meerpohl HG, Lohmann-Matthes ML, Fischer H (2010) Studies on the activation of mouse bone marrow-derived macrophages by the macrophage cytotoxicity factor (MCF). Eur J Immunol 6(3):213–217 Meerpohl HG, Lohmann-Matthes ML, Fischer H (2010) Studies on the activation of mouse bone marrow-derived macrophages by the macrophage cytotoxicity factor (MCF). Eur J Immunol 6(3):213–217
33.
Zurück zum Zitat Kigerl KA, Gensel JC, Ankeny DP et al (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–13444PubMedPubMedCentral Kigerl KA, Gensel JC, Ankeny DP et al (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–13444PubMedPubMedCentral
34.
Zurück zum Zitat Hamblin MR, Huang YY, Heiskanen V (2019) Non-mammalian hosts and photobiomodulation: do all life-forms respond to light? 95(1):126–Photochem Photobiol, 139 Hamblin MR, Huang YY, Heiskanen V (2019) Non-mammalian hosts and photobiomodulation: do all life-forms respond to light? 95(1):126–Photochem Photobiol, 139
35.
Zurück zum Zitat Leung MCP, Lo SCL, Siu FKW et al (2010) Treatment of experimentally induced transient cerebral ischemia with low energy laser inhibits nitric oxide synthase activity and up-regulates the expression of transforming growth factor-beta 1. Lasers Surg Med 31(4):283–288 Leung MCP, Lo SCL, Siu FKW et al (2010) Treatment of experimentally induced transient cerebral ischemia with low energy laser inhibits nitric oxide synthase activity and up-regulates the expression of transforming growth factor-beta 1. Lasers Surg Med 31(4):283–288
36.
Zurück zum Zitat Silva IHM, Andrade SCD, Fonsêca DDD et al (2016) Increase in the nitric oxide release without changes in cell viability of macrophages after laser therapy with 660 and 808 nm lasers. Lasers Med Sci 31(9):1855–1862PubMed Silva IHM, Andrade SCD, Fonsêca DDD et al (2016) Increase in the nitric oxide release without changes in cell viability of macrophages after laser therapy with 660 and 808 nm lasers. Lasers Med Sci 31(9):1855–1862PubMed
37.
Zurück zum Zitat Elena SF, Concha N, Angeles DS et al (2014) CCL2 shapes macrophage polarization by GM-CSF and M-CSF: identification of CCL2/CCR2-dependent gene expression profile. J Immunol 192(8):3858–3867 Elena SF, Concha N, Angeles DS et al (2014) CCL2 shapes macrophage polarization by GM-CSF and M-CSF: identification of CCL2/CCR2-dependent gene expression profile. J Immunol 192(8):3858–3867
38.
Zurück zum Zitat Jung KM, Hae Young S, Yuexian C et al (2015) CCL2 mediates neuron-macrophage interactions to drive proregenerative macrophage activation following preconditioning injury. J Neurosci 35(48):15934–15947 Jung KM, Hae Young S, Yuexian C et al (2015) CCL2 mediates neuron-macrophage interactions to drive proregenerative macrophage activation following preconditioning injury. J Neurosci 35(48):15934–15947
39.
Zurück zum Zitat Alexandratou E, Yova D, Handris P et al (2002) Human fibroblast alterations induced by low power laser irradiation at the single cell level using confocal microscopy. Photochem Photobiol Sci 1(8):547–552PubMed Alexandratou E, Yova D, Handris P et al (2002) Human fibroblast alterations induced by low power laser irradiation at the single cell level using confocal microscopy. Photochem Photobiol Sci 1(8):547–552PubMed
40.
Zurück zum Zitat Hume DA (2015) The many alternative faces of macrophage activation. Front Immunol 6:1–10 Hume DA (2015) The many alternative faces of macrophage activation. Front Immunol 6:1–10
41.
Zurück zum Zitat Yu XJ, Zhang DM, Jia LL et al (2015) Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress. Toxicol Appl Pharmacol 284(3):315–322PubMed Yu XJ, Zhang DM, Jia LL et al (2015) Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress. Toxicol Appl Pharmacol 284(3):315–322PubMed
42.
Zurück zum Zitat Jurk D, Wilson CL, Passos JF et al (2014) Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun 5(1):4172 Jurk D, Wilson CL, Passos JF et al (2014) Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun 5(1):4172
43.
Zurück zum Zitat Chung IS, Kim JA, Kim JA et al (2013) Reactive oxygen species by isoflurane mediates inhibition of nuclear factor κB activation in lipopolysaccharide-induced acute inflammation of the lung. Anesth Analg 116(2):327–335PubMed Chung IS, Kim JA, Kim JA et al (2013) Reactive oxygen species by isoflurane mediates inhibition of nuclear factor κB activation in lipopolysaccharide-induced acute inflammation of the lung. Anesth Analg 116(2):327–335PubMed
Metadaten
Titel
Attenuation of the inflammatory response and polarization of macrophages by photobiomodulation
verfasst von
Kun Li
Zhuowen Liang
Jiawei Zhang
Xiaoshuang Zuo
Jiakai Sun
Qiao Zheng
Jiwei Song
Tan Ding
Xueyu Hu
Zhe Wang
Publikationsdatum
17.02.2020
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 7/2020
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-019-02941-y

Weitere Artikel der Ausgabe 7/2020

Lasers in Medical Science 7/2020 Zur Ausgabe