Skip to main content
Erschienen in: Der Nervenarzt 6/2015

01.06.2015 | Leitthema

Auf dem Weg zu mehr Präzision in der Hirntumortherapie

Möglichkeiten und Grenzen der MR-Bildgebung

verfasst von: Dr. A. Radbruch, E. Hattingen

Erschienen in: Der Nervenarzt | Ausgabe 6/2015

Einloggen, um Zugang zu erhalten

Zusammenfassung

Durch die Einführung funktioneller Magnetresonanz(MR)-Sequenzen hat sich der Stellenwert der MR-Bildgebung in der Neuroonkologie in den letzten Jahren massiv erhöht. Beschränkte sich die MR-Bildgebung bei Hirntumoren früher zumeist auf die kontrastmittelverstärkte T1-gewichteten MR-Sequenzen, so können heute mithilfe der funktionellen Sequenzen unmittelbar pathophysiologische Aspekte des Tumorwachstums visualisiert und untersucht werden. In dem Artikel werden die für die neuroonkologische Bildgebung relevanten MR-Sequenzen, pathophysiologische Hintergründe sowie potenzielle Anwendungen in der Klinik vorgestellt. Zuletzt wagen wir einen Ausblick auf künftige Entwicklungen mit den Möglichkeiten der Ultrahochfeld-MRT.
Literatur
1.
Zurück zum Zitat Ellingson BM et al (2014) Pros and cons of current brain tumor imaging. Neuro Oncol 16(Suppl 7):vii2–vii11 PubMedCrossRef Ellingson BM et al (2014) Pros and cons of current brain tumor imaging. Neuro Oncol 16(Suppl 7):vii2–vii11 PubMedCrossRef
2.
Zurück zum Zitat Niendorf HP et al (1987) Dose administration of gadolinium-DTPA in MR imaging of intracranial tumors. AJNR Am J Neuroradiol 8(5):803–815 PubMed Niendorf HP et al (1987) Dose administration of gadolinium-DTPA in MR imaging of intracranial tumors. AJNR Am J Neuroradiol 8(5):803–815 PubMed
3.
Zurück zum Zitat Nowosielski M et al (2014) Progression types after antiangiogenic therapy are related to outcome in recurrent glioblastoma. Neurology 82(19):1684–1692 PubMedCrossRef Nowosielski M et al (2014) Progression types after antiangiogenic therapy are related to outcome in recurrent glioblastoma. Neurology 82(19):1684–1692 PubMedCrossRef
4.
Zurück zum Zitat Bahr O et al (2014) Sustained focal antitumor activity of bevacizumab in recurrent glioblastoma. Neurology 83(3):227–234 PubMedCrossRef Bahr O et al (2014) Sustained focal antitumor activity of bevacizumab in recurrent glioblastoma. Neurology 83(3):227–234 PubMedCrossRef
5.
Zurück zum Zitat Bahr O et al (2011) Bevacizumab-induced tumor calcifications as a surrogate marker of outcome in patients with glioblastoma. Neuro Oncol 13(9):1020–1029 PubMedCentralPubMedCrossRef Bahr O et al (2011) Bevacizumab-induced tumor calcifications as a surrogate marker of outcome in patients with glioblastoma. Neuro Oncol 13(9):1020–1029 PubMedCentralPubMedCrossRef
6.
Zurück zum Zitat Wen PY et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28(11):1963–1972 PubMedCrossRef Wen PY et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28(11):1963–1972 PubMedCrossRef
7.
Zurück zum Zitat Macdonald DR et al (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8(7):1277–1280 PubMed Macdonald DR et al (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8(7):1277–1280 PubMed
8.
Zurück zum Zitat Radbruch A et al (2012) Relevance of T2 signal changes in the assessment of progression of glioblastoma according to the Response Assessment in Neurooncology criteria. Neuro Oncol 14(2):222–229 PubMedCentralPubMedCrossRef Radbruch A et al (2012) Relevance of T2 signal changes in the assessment of progression of glioblastoma according to the Response Assessment in Neurooncology criteria. Neuro Oncol 14(2):222–229 PubMedCentralPubMedCrossRef
9.
Zurück zum Zitat Gupta RK et al (2000) Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. J Neurooncol 50(3):215–226 PubMedCrossRef Gupta RK et al (2000) Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. J Neurooncol 50(3):215–226 PubMedCrossRef
10.
Zurück zum Zitat Herminghaus S et al (2002) Increased choline levels coincide with enhanced proliferative activity of human neuroepithelial brain tumors. NMR Biomed 15(6):385–392 PubMedCrossRef Herminghaus S et al (2002) Increased choline levels coincide with enhanced proliferative activity of human neuroepithelial brain tumors. NMR Biomed 15(6):385–392 PubMedCrossRef
11.
Zurück zum Zitat Kinoshita Y, Yokota A (1997) Absolute concentrations of metabolites in human brain tumors using in vitro proton magnetic resonance spectroscopy. NMR Biomed 10(1):2–12 PubMedCrossRef Kinoshita Y, Yokota A (1997) Absolute concentrations of metabolites in human brain tumors using in vitro proton magnetic resonance spectroscopy. NMR Biomed 10(1):2–12 PubMedCrossRef
12.
Zurück zum Zitat Kovanlikaya A et al (2005) Untreated pediatric primitive neuroectodermal tumor in vivo: quantitation of taurine with MR spectroscopy. Radiology 236(3):1020–1025 PubMedCrossRef Kovanlikaya A et al (2005) Untreated pediatric primitive neuroectodermal tumor in vivo: quantitation of taurine with MR spectroscopy. Radiology 236(3):1020–1025 PubMedCrossRef
13.
Zurück zum Zitat Senft C et al (2009) Diagnostic value of proton magnetic resonance spectroscopy in the noninvasive grading of solid gliomas: comparison of maximum and mean choline values. Neurosurgery 65(5):908–913 (discussion 913) PubMedCrossRef Senft C et al (2009) Diagnostic value of proton magnetic resonance spectroscopy in the noninvasive grading of solid gliomas: comparison of maximum and mean choline values. Neurosurgery 65(5):908–913 (discussion 913) PubMedCrossRef
14.
Zurück zum Zitat Moller-Hartmann W et al (2002) Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 44(5):371–381 PubMedCrossRef Moller-Hartmann W et al (2002) Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 44(5):371–381 PubMedCrossRef
15.
Zurück zum Zitat Graves EE et al (2001) Serial proton MR spectroscopic imaging of recurrent malignant gliomas after gamma knife radiosurgery. AJNR Am J Neuroradiol 22(4):613–624 PubMed Graves EE et al (2001) Serial proton MR spectroscopic imaging of recurrent malignant gliomas after gamma knife radiosurgery. AJNR Am J Neuroradiol 22(4):613–624 PubMed
16.
Zurück zum Zitat Hattingen E et al (2008) Prognostic value of choline and creatine in WHO grade II gliomas. Neuroradiology 50(9):759–767 PubMedCrossRef Hattingen E et al (2008) Prognostic value of choline and creatine in WHO grade II gliomas. Neuroradiology 50(9):759–767 PubMedCrossRef
17.
Zurück zum Zitat Hattingen E et al (2009) 1H MR spectroscopic imaging with short and long echo time to discriminate glycine in glial tumours. MAGMA 22(1):33–41 PubMedCrossRef Hattingen E et al (2009) 1H MR spectroscopic imaging with short and long echo time to discriminate glycine in glial tumours. MAGMA 22(1):33–41 PubMedCrossRef
18.
Zurück zum Zitat Choi C et al (2012) 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med 18(4):624–629 PubMedCentralPubMedCrossRef Choi C et al (2012) 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med 18(4):624–629 PubMedCentralPubMedCrossRef
19.
Zurück zum Zitat Schumacher T et al (2014) A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512(7514):324–327 PubMedCrossRef Schumacher T et al (2014) A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512(7514):324–327 PubMedCrossRef
20.
Zurück zum Zitat Hattingen E et al (2013) Phospholipid metabolites in recurrent glioblastoma: in vivo markers detect different tumor phenotypes before and under antiangiogenic therapy. PLoS One 8(3):e56439 PubMedCentralPubMedCrossRef Hattingen E et al (2013) Phospholipid metabolites in recurrent glioblastoma: in vivo markers detect different tumor phenotypes before and under antiangiogenic therapy. PLoS One 8(3):e56439 PubMedCentralPubMedCrossRef
21.
Zurück zum Zitat Esmaeili M et al (2014) IDH1 R132H mutation generates a distinct phospholipid metabolite profile in glioma. Cancer Res 74(17):4898–4907 PubMedCrossRef Esmaeili M et al (2014) IDH1 R132H mutation generates a distinct phospholipid metabolite profile in glioma. Cancer Res 74(17):4898–4907 PubMedCrossRef
22.
Zurück zum Zitat Law M et al (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 25(5):746–755 PubMed Law M et al (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 25(5):746–755 PubMed
23.
Zurück zum Zitat Law M et al (2008) Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247(2):490–498 PubMedCentralPubMedCrossRef Law M et al (2008) Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247(2):490–498 PubMedCentralPubMedCrossRef
24.
Zurück zum Zitat Lev MH et al (2004) Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas [corrected]. AJNR Am J Neuroradiol 25(2):214–221 PubMed Lev MH et al (2004) Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas [corrected]. AJNR Am J Neuroradiol 25(2):214–221 PubMed
25.
Zurück zum Zitat Saito T et al (2012) Role of perfusion-weighted imaging at 3T in the histopathological differentiation between astrocytic and oligodendroglial tumors. Eur J Radiol 81(8):1863–1869 PubMedCrossRef Saito T et al (2012) Role of perfusion-weighted imaging at 3T in the histopathological differentiation between astrocytic and oligodendroglial tumors. Eur J Radiol 81(8):1863–1869 PubMedCrossRef
26.
Zurück zum Zitat Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 27(4):859–867 PubMed Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 27(4):859–867 PubMed
27.
Zurück zum Zitat Law M et al (2006) Comparing perfusion metrics obtained from a single compartment versus pharmacokinetic modeling methods using dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 27(9):1975–1982 PubMed Law M et al (2006) Comparing perfusion metrics obtained from a single compartment versus pharmacokinetic modeling methods using dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 27(9):1975–1982 PubMed
28.
Zurück zum Zitat Vidiri A et al (2012) Early perfusion changes in patients with recurrent high-grade brain tumor treated with Bevacizumab: preliminary results by a quantitative evaluation. J Exp Clin Cancer Res 31:33 PubMedCentralPubMedCrossRef Vidiri A et al (2012) Early perfusion changes in patients with recurrent high-grade brain tumor treated with Bevacizumab: preliminary results by a quantitative evaluation. J Exp Clin Cancer Res 31:33 PubMedCentralPubMedCrossRef
29.
Zurück zum Zitat Kickingereder P et al (2014) Primary central nervous system lymphoma and atypical glioblastoma: multiparametric differentiation by using diffusion-, perfusion-, and susceptibility-weighted MR imaging. Radiology 272(3):843–850 PubMedCrossRef Kickingereder P et al (2014) Primary central nervous system lymphoma and atypical glioblastoma: multiparametric differentiation by using diffusion-, perfusion-, and susceptibility-weighted MR imaging. Radiology 272(3):843–850 PubMedCrossRef
30.
Zurück zum Zitat Blasel S et al (2010) Elevated peritumoural rCBV values as a mean to differentiate metastases from high-grade gliomas. Acta Neurochir (Wien) 152(11):1893–1899 Blasel S et al (2010) Elevated peritumoural rCBV values as a mean to differentiate metastases from high-grade gliomas. Acta Neurochir (Wien) 152(11):1893–1899
31.
Zurück zum Zitat Stecco A et al (2011) DTI and PWI analysis of peri-enhancing tumoral brain tissue in patients treated for glioblastoma. J Neurooncol 102(2):261–271 PubMedCrossRef Stecco A et al (2011) DTI and PWI analysis of peri-enhancing tumoral brain tissue in patients treated for glioblastoma. J Neurooncol 102(2):261–271 PubMedCrossRef
32.
Zurück zum Zitat Hakyemez B et al (2010) Solitary metastases and high-grade gliomas: radiological differentiation by morphometric analysis and perfusion-weighted MRI. Clin Radiol 65(1):15–20 PubMedCrossRef Hakyemez B et al (2010) Solitary metastases and high-grade gliomas: radiological differentiation by morphometric analysis and perfusion-weighted MRI. Clin Radiol 65(1):15–20 PubMedCrossRef
33.
Zurück zum Zitat Zulfiqar M, Yousem DM, Lai H (2013) ADC values and prognosis of malignant astrocytomas: does lower ADC predict a worse prognosis independent of grade of tumor? – a meta-analysis. AJR Am J Roentgenol 200(3):624–629 PubMedCrossRef Zulfiqar M, Yousem DM, Lai H (2013) ADC values and prognosis of malignant astrocytomas: does lower ADC predict a worse prognosis independent of grade of tumor? – a meta-analysis. AJR Am J Roentgenol 200(3):624–629 PubMedCrossRef
34.
Zurück zum Zitat Pope WB et al (2009) Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology 252(1):182–189 PubMedCrossRef Pope WB et al (2009) Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology 252(1):182–189 PubMedCrossRef
35.
Zurück zum Zitat Pope WB et al (2011) Apparent diffusion coefficient histogram analysis stratifies progression-free survival in newly diagnosed bevacizumab-treated glioblastoma. AJNR Am J Neuroradiol 32(5):882–889 PubMedCrossRef Pope WB et al (2011) Apparent diffusion coefficient histogram analysis stratifies progression-free survival in newly diagnosed bevacizumab-treated glioblastoma. AJNR Am J Neuroradiol 32(5):882–889 PubMedCrossRef
36.
Zurück zum Zitat Provenzale JM et al (2004) Peritumoral brain regions in gliomas and meningiomas: investigation with isotropic diffusion-weighted MR imaging and diffusion-tensor MR imaging. Radiology 232(2):451–460 PubMedCrossRef Provenzale JM et al (2004) Peritumoral brain regions in gliomas and meningiomas: investigation with isotropic diffusion-weighted MR imaging and diffusion-tensor MR imaging. Radiology 232(2):451–460 PubMedCrossRef
37.
Zurück zum Zitat Deng Z et al (2010) Quantitative analysis of glioma cell invasion by diffusion tensor imaging. J Clin Neurosci 17(12):1530–1536 PubMedCrossRef Deng Z et al (2010) Quantitative analysis of glioma cell invasion by diffusion tensor imaging. J Clin Neurosci 17(12):1530–1536 PubMedCrossRef
38.
Zurück zum Zitat Rieger J et al (2010) Bevacizumab-induced diffusion-restricted lesions in malignant glioma patients. J Neurooncol 99(1):49–56 PubMedCrossRef Rieger J et al (2010) Bevacizumab-induced diffusion-restricted lesions in malignant glioma patients. J Neurooncol 99(1):49–56 PubMedCrossRef
39.
Zurück zum Zitat Mong S et al (2012) Persistent diffusion-restricted lesions in bevacizumab-treated malignant gliomas are associated with improved survival compared with matched controls. AJNR Am J Neuroradiol 33(9):1763–1770 PubMedCrossRef Mong S et al (2012) Persistent diffusion-restricted lesions in bevacizumab-treated malignant gliomas are associated with improved survival compared with matched controls. AJNR Am J Neuroradiol 33(9):1763–1770 PubMedCrossRef
40.
Zurück zum Zitat Raab P et al (2010) Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. Radiology 254(3):876–881 PubMedCrossRef Raab P et al (2010) Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. Radiology 254(3):876–881 PubMedCrossRef
41.
Zurück zum Zitat Van Cauter S et al (2012) Gliomas: diffusion kurtosis MR imaging in grading. Radiology 263(2):492–501 CrossRef Van Cauter S et al (2012) Gliomas: diffusion kurtosis MR imaging in grading. Radiology 263(2):492–501 CrossRef
42.
Zurück zum Zitat Reichenbach JR, Haacke EM (2001) High-resolution BOLD venographic imaging: a window into brain function. NMR Biomed 14(7–8):453–567 Reichenbach JR, Haacke EM (2001) High-resolution BOLD venographic imaging: a window into brain function. NMR Biomed 14(7–8):453–567
43.
Zurück zum Zitat Reichenbach JR et al (1997) Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 204(1):272–277 PubMedCrossRef Reichenbach JR et al (1997) Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 204(1):272–277 PubMedCrossRef
44.
Zurück zum Zitat Kim HS et al (2009) Added value and diagnostic performance of intratumoral susceptibility signals in the differential diagnosis of solitary enhancing brain lesions: preliminary study. AJNR Am J Neuroradiol 30(8):1574–1579 PubMedCrossRef Kim HS et al (2009) Added value and diagnostic performance of intratumoral susceptibility signals in the differential diagnosis of solitary enhancing brain lesions: preliminary study. AJNR Am J Neuroradiol 30(8):1574–1579 PubMedCrossRef
45.
Zurück zum Zitat Park MJ et al (2009) Semiquantitative assessment of intratumoral susceptibility signals using non-contrast-enhanced high-field high-resolution susceptibility-weighted imaging in patients with gliomas: comparison with MR perfusion imaging. AJNR Am J Neuroradiol 30(7):1402–1408 PubMedCrossRef Park MJ et al (2009) Semiquantitative assessment of intratumoral susceptibility signals using non-contrast-enhanced high-field high-resolution susceptibility-weighted imaging in patients with gliomas: comparison with MR perfusion imaging. AJNR Am J Neuroradiol 30(7):1402–1408 PubMedCrossRef
46.
Zurück zum Zitat Deistung A et al (2013) Quantitative susceptibility mapping differentiates between blood depositions and calcifications in patients with glioblastoma. PLoS One 8(3):e57924 PubMedCentralPubMedCrossRef Deistung A et al (2013) Quantitative susceptibility mapping differentiates between blood depositions and calcifications in patients with glioblastoma. PLoS One 8(3):e57924 PubMedCentralPubMedCrossRef
47.
Zurück zum Zitat Radbruch A et al (2012) Differentiation of brain metastases by percentagewise quantification of intratumoral-susceptibility-signals at 3 Tesla. Eur J Radiol 81(12):4064–4068 PubMedCrossRef Radbruch A et al (2012) Differentiation of brain metastases by percentagewise quantification of intratumoral-susceptibility-signals at 3 Tesla. Eur J Radiol 81(12):4064–4068 PubMedCrossRef
48.
Zurück zum Zitat Lupo JM et al (2013) Using susceptibility-weighted imaging to determine response to combined anti-angiogenic, cytotoxic, and radiation therapy in patients with glioblastoma multiforme. Neuro Oncol 15(4):480–489 PubMedCentralPubMedCrossRef Lupo JM et al (2013) Using susceptibility-weighted imaging to determine response to combined anti-angiogenic, cytotoxic, and radiation therapy in patients with glioblastoma multiforme. Neuro Oncol 15(4):480–489 PubMedCentralPubMedCrossRef
49.
Zurück zum Zitat Schweser F et al (2010) Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. Med Phys 37(10):5165–5178 PubMedCrossRef Schweser F et al (2010) Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. Med Phys 37(10):5165–5178 PubMedCrossRef
50.
Zurück zum Zitat Radbruch A, Schlemmer HP (2013) Application of ultrahigh-field MRI in neuro-oncology. Radiologe 53(5):411–414 PubMedCrossRef Radbruch A, Schlemmer HP (2013) Application of ultrahigh-field MRI in neuro-oncology. Radiologe 53(5):411–414 PubMedCrossRef
51.
Zurück zum Zitat Balchandani P, Naidich TP (2014) Ultra-high-field MR neuroimaging. AJNR Am J Neuroradiol [Epub ahead of print] Balchandani P, Naidich TP (2014) Ultra-high-field MR neuroimaging. AJNR Am J Neuroradiol [Epub ahead of print]
52.
Zurück zum Zitat Radbruch A, EidelO, Wiestler B et al (2015) Quantification of tumor vessels in glioblastoma patients using time-of-flight angiography at 7 Tesla: a feasibility study. Plos One 9(11):e110727 CrossRef Radbruch A, EidelO, Wiestler B et al (2015) Quantification of tumor vessels in glioblastoma patients using time-of-flight angiography at 7 Tesla: a feasibility study. Plos One 9(11):e110727 CrossRef
53.
Zurück zum Zitat Nagel AM et al (2011) The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors. Invest Radiol 46(9):539–547 PubMedCrossRef Nagel AM et al (2011) The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors. Invest Radiol 46(9):539–547 PubMedCrossRef
54.
Zurück zum Zitat Nagel AM et al (2014) In vivo 35Cl MR imaging in humans: a feasibility study. Radiology 271(2):585–595 PubMedCrossRef Nagel AM et al (2014) In vivo 35Cl MR imaging in humans: a feasibility study. Radiology 271(2):585–595 PubMedCrossRef
55.
Zurück zum Zitat Hoffmann SH et al (2014) Direct (17)O MRI with partial volume correction: first experiences in a glioblastoma patient. MAGMA 27(6):579–587 PubMedCrossRef Hoffmann SH et al (2014) Direct (17)O MRI with partial volume correction: first experiences in a glioblastoma patient. MAGMA 27(6):579–587 PubMedCrossRef
56.
Zurück zum Zitat Paech D et al (2014) Nuclear overhauser enhancement mediated chemical exchange saturation transfer imaging at 7 Tesla in glioblastoma patients. PLoS One 9(8):e104181 PubMedCentralPubMedCrossRef Paech D et al (2014) Nuclear overhauser enhancement mediated chemical exchange saturation transfer imaging at 7 Tesla in glioblastoma patients. PLoS One 9(8):e104181 PubMedCentralPubMedCrossRef
57.
Zurück zum Zitat Zaiss M et al (2013) MR imaging of protein folding in vitro employing nuclear-Overhauser-mediated saturation transfer. NMR Biomed 26(12):1815–1822 PubMedCrossRef Zaiss M et al (2013) MR imaging of protein folding in vitro employing nuclear-Overhauser-mediated saturation transfer. NMR Biomed 26(12):1815–1822 PubMedCrossRef
Metadaten
Titel
Auf dem Weg zu mehr Präzision in der Hirntumortherapie
Möglichkeiten und Grenzen der MR-Bildgebung
verfasst von
Dr. A. Radbruch
E. Hattingen
Publikationsdatum
01.06.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Der Nervenarzt / Ausgabe 6/2015
Print ISSN: 0028-2804
Elektronische ISSN: 1433-0407
DOI
https://doi.org/10.1007/s00115-015-4313-x

Weitere Artikel der Ausgabe 6/2015

Der Nervenarzt 6/2015 Zur Ausgabe

Mitteilungen der DGN

Mitteilungen der DGN 6/2015

Übersichten

Morbus Huntington