Skip to main content
main-content
Erschienen in: wissen kompakt 2/2020

24.03.2020 | Augmentation | CME Zahnärztliche Fortbildung

Autologes „platelet-rich fibrin“ zur Unterstützung von Hart- und Weichgewebsheilung

verfasst von: Prof. Dr. mult. S. Ghanaati, S. Al-Maawi

Erschienen in: wissen kompakt | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Zusammenfassung

Blutkonzentrate, insbesondere das plättchenreiche Fibrin, („platelet-rich fibrin“, PRF), gewinnen zunehmend an Bedeutung in der regenerativen Medizin und Zahnmedizin. Mittlerweile sind unterschiedliche Blutkonzentratsysteme für die klinische Anwendung verfügbar. Deshalb besteht Bedarf an einem vertieften Verständnis dieser Systeme und der Möglichkeit ihrer Anwendung in unterschiedlichen klinischen Indikationen. Mit dem „low-speed centrifugation concept“ (LSCC) wurden erstmalig standardisierte und definierte Zentrifugationsprotokolle vorgestellt, um den klinischen Erfolg reproduzieren zu können. Dabei war es möglich, durch die Reduzierung der angewendeten Zentrifugalkraft eine signifikante Anreicherung der Blutkonzentrate mit Thrombozyten, Leukozyten und ihren Wachstumsfaktoren zu erreichen. Der vorliegende Beitrag beschäftigt sich mit der Zusammensetzung und Bioaktivität unterschiedlicher Blutkonzentrate und geht auf ihre Herstellung und den klinischen Einsatz ausführlich ein.

Literatur
  1. Bunyaratavej P, Wang HL (2001) Collagen membranes: a review. J Periodontol 72(2):215–229View Article
  2. Bottino MC et al (2012) Recent advances in the development of GTR/GBR membranes for periodontal regeneration—a materials perspective. Dent Mater 28(7):703–721View Article
  3. Ghanaati S et al (2010) Fine-tuning scaffolds for tissue regeneration: effects of formic acid processing on tissue reaction to silk fibroin. J Tissue Eng Regen Med 4(6):464–472PubMed
  4. Atwood DA (1971) Reduction of residual ridges: a major oral disease entity. J Prosthet Dent 26(3):266–279View Article
  5. Sakkas A, Wilde F, Heufelder M, Winter K, Schramm A (2017) Autogenous bone grafts in oral implantology-is it still a “gold standard”? A consecutive review of 279 patients with 456 clinical procedures. Int J Implant Dent 3(1):23View Article
  6. Damien CJ, Parsons JR (1991) Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 2(3):187–208View Article
  7. Younger EM, Chapman MW (1989) Morbidity at bone graft donor sites. J Orthop Trauma 3(3):192–195View Article
  8. McAllister BS, Haghighat K (2007) Bone augmentation techniques. J Periodontol 78(3):377–396View Article
  9. Kao ST, Scott DD (2007) A review of bone substitutes. Oral Maxillofac Surg Clin North Am 19(4):513–521View Article
  10. Ghanaati S, Barbeck M, Booms P, Lorenz J, Kirkpatrick CJ, Sader RA (2014) Potential lack of ‘standardized’ processing techniques for production of allogeneic and xenogeneic bone blocks for application in humans. Acta Biomater 10(8):3557–3562View Article
  11. Ghanaati S et al (2014) Advanced platelet-rich fibrin: a new concept for cell-based tissue engineering by means of inflammatory cells. J Oral Implantol 40(6):679–689View Article
  12. Cieslik-Bielecka A, Choukroun J, Guillaume O, Dohan Ehrenfest DM (2012) L‑PRP/L-PRF in esthetic plastic surgery, regenerative medicine of the skin and chronic wounds. Curr Pharm Biotechnol 13:1266–1277View Article
  13. Gurtner G, Werner S, Barrandon Y, Longaker M (2008) Wound repair and regeneration. Nature 453(7193):314–321View Article
  14. Soliman AM, Das S, Abd Ghafar N, Teoh SL (2018) Role of microRNA in proliferation phase of wound healing. Front Genet 9:38View Article
  15. DiGiovanni CW, Petricek JM (2010) The evolution of rhPDGF-BB in musculoskeletal repair and its role in foot and ankle fusion surgery. Foot Ankle Clin 15(4):621–640View Article
  16. Kaigler D et al (2011) Platelet-derived growth factor applications in periodontal and peri-implant bone regeneration. Expert Opin Biol Ther 11(3):375–385View Article
  17. Sahni A, Francis CW (2000) Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation. Blood 96:3772–3778View Article
  18. Laurens N, Koolwijk P, de Maat MP (2006) Fibrin structure and wound healing. J Thromb Haemost 4(5):932–939View Article
  19. Ekström K, Omar O, Granéli C, Wang X, Vazirisani F, Thomsen P (2013) Monocyte exosomes stimulate the osteogenic gene expression of mesenchymal stem cells. PLoS ONE 8(9):e75227View Article
  20. Bedford A et al (2015) Epidermal growth factor containing culture supernatant enhances intestine development of early-weaned pigs in vivo: potential mechanisms involved. J Biotechnol 196:9–19View Article
  21. Al-Maawi S et al (2018) Homogeneous pressure influences the growth factor release profiles in solid platelet-rich fibrin matrices and enhances vascular endothelial growth factor release in the solid platelet-rich fibrin plugs. Int J Growth Factors Stem Cells Dent 1(1):8
  22. Anderson JM, Jones JA (2007) Phenotypic dichotomies in the foreign body reaction. Biomaterials 28(34):5114–5120View Article
  23. Ghanaati S et al (2018) Fifteen years of platelet rich fibrin (PRF) in dentistry and oromaxillofacial surgery: how high is the level of scientific evidence? J Oral Implantol. https://​doi.​org/​10.​1563/​aaid-joi-D-17-00179 View ArticlePubMed
  24. Yelamali T, Saikrishna D (2015) Role of platelet rich fibrin and platelet rich plasma in wound healing of extracted third molar sockets: a comparative study. J Maxillofac Oral Surg 14(2):410–416View Article
  25. Wang X, Zhang Y, Choukroun J, Ghanaati S, Miron R (2017) Behavior of gingival fibroblasts on titanium implant surfaces in combination with either injectable-PRF or PRP. Int J Mol Sci 18(2):331View Article
  26. Choukroun J, Ghanaati S (2018) Reduction of relative centrifugation force within injectable platelet-rich-fibrin (PRF) concentrates advances patients’ own inflammatory cells, platelets and growth factors: the first introduction to the low speed centrifugation concept. Eur J Trauma Emerg Surg 44(1):87–95View Article
  27. Everts PAM et al (2006) Platelet-rich plasma and platelet gel: a review. J Extra Corpor Technol 38(2):174–187PubMedPubMed Central
  28. Anitua E, Andia I, Sanchez M (2004) PRGF plasma rich growth factors. Dent Dialogue 3(04):1–9
  29. Aminabadi NA (2008) Plasma rich in growth factors as a potential therapeutic candidate for treatment of recurrent aphthous stomatitis. Med Hypotheses 70(3):529–531View Article
  30. Intini G (2009) The use of platelet-rich plasma in bone reconstruction therapy. Biomaterials 30(28):4956–4966View Article
  31. Choukroun J, Ben Adda F, Schoeffler C, Vervelle AG (2001) Uneopportunite en paro-implantologie: le PRF. Implantodontie 42:55–62
  32. Miron RJ et al (2017) Use of platelet-rich fibrin in regenerative dentistry: a systematic review. Clin Oral Investig 21(6):1913–1927View Article
  33. Kumar YR et al (2016) Platelet-rich fibrin: the benefits. Br J Oral Maxillofac Surg 54(1):57–61View Article
  34. Ghanaati S et al (2018) A proof of the low speed centrifugation concept in rodents: new perspectives for in vivo research. Tissue Eng Part C Methods. https://​doi.​org/​10.​1089/​ten.​TEC.​2018.​0236 View ArticlePubMed
  35. Verboket R et al (2019) Influence of concentration and preparation of platelet rich fibrin on human bone marrow mononuclear cells (in vitro). Platelets 30(7):861–870. https://​doi.​org/​10.​1080/​09537104.​2018.​1530346 View ArticlePubMed
  36. Kubesch A et al (2019) A low-speed centrifugation concept leads to cell accumulation and vascularization of solid platelet-rich fibrin: an experimental study in vivo. Platelets 30(3):329–340. https://​doi.​org/​10.​1080/​09537104.​2018.​1445835 View ArticlePubMed
  37. El Bagdadi K et al (2019) Reduction of relative centrifugal forces increases growth factor release within solid platelet-rich-fibrin (PRF)-based matrices: a proof of concept of LSCC (low speed centrifugation concept). Eur J Trauma Emerg Surg 45(3):467–479. https://​doi.​org/​10.​1007/​s00068-017-0785-7 View ArticlePubMed
  38. Wend S et al (2017) Reduction of the relative centrifugal force influences cell number and growth factor release within injectable PRF-based matrices. J Mater Sci Mater Med 28(12):188View Article
  39. Dohle E, El Bagdadi K, Sader R, Choukroun J, James Kirkpatrick C, Ghanaati S (2018) PRF-based matrices to improve angiogenesis in an in vitro co-culture model for bone tissue engineering. J Tissue Eng Regen Med 12(3):598–610. https://​doi.​org/​10.​1002/​term.​2475 View ArticlePubMed
  40. WHO (2010) Best practices in phlebotomy—WHO guidelines on drawing blood
  41. Al-Maawi S et al (2019) Biologization of collagen-based biomaterials using liquid-platelet-rich fibrin: new insights into clinically applicable tissue engineering. Materials 12(23):3993View Article
  42. Albilia JB, Herrera-Vizcaino C, Weisleder H, Choukroun J, Ghanaati S (2018) Liquid platelet-rich fibrin injections as a treatment adjunct for painful temporomandibular joints: preliminary results. Cranio. https://​doi.​org/​10.​1080/​08869634.​2018.​1516183 View Article
  43. Nørholt SE, Hartlev J (2016) Surgical treatment of osteonecrosis of the jaw with the use of platelet-rich fibrin: a prospective study of 15 patients. Int J Oral Maxillofac Surg 45(10):1256–1260. https://​doi.​org/​10.​1016/​j.​ijom.​2016.​04.​010 View ArticlePubMed
Metadaten
Titel
Autologes „platelet-rich fibrin“ zur Unterstützung von Hart- und Weichgewebsheilung
verfasst von
Prof. Dr. mult. S. Ghanaati
S. Al-Maawi
Publikationsdatum
24.03.2020
Verlag
Springer Medizin
Erschienen in
wissen kompakt / Ausgabe 2/2020
Print ISSN: 1863-2637
Elektronische ISSN: 2190-3816
DOI
https://doi.org/10.1007/s11838-020-00106-0

Weitere Artikel der Ausgabe 2/2020

wissen kompakt 2/2020 Zur Ausgabe

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Zahnmedizin und bleiben Sie gut informiert – ganz bequem per eMail.