Skip to main content
Erschienen in: Acta Neuropathologica 4/2017

05.06.2017 | Review

Autism spectrum disorder: neuropathology and animal models

verfasst von: Merina Varghese, Neha Keshav, Sarah Jacot-Descombes, Tahia Warda, Bridget Wicinski, Dara L. Dickstein, Hala Harony-Nicolas, Silvia De Rubeis, Elodie Drapeau, Joseph D. Buxbaum, Patrick R. Hof

Erschienen in: Acta Neuropathologica | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Autism spectrum disorder (ASD) has a major impact on the development and social integration of affected individuals and is the most heritable of psychiatric disorders. An increase in the incidence of ASD cases has prompted a surge in research efforts on the underlying neuropathologic processes. We present an overview of current findings in neuropathology studies of ASD using two investigational approaches, postmortem human brains and ASD animal models, and discuss the overlap, limitations, and significance of each. Postmortem examination of ASD brains has revealed global changes including disorganized gray and white matter, increased number of neurons, decreased volume of neuronal soma, and increased neuropil, the last reflecting changes in densities of dendritic spines, cerebral vasculature and glia. Both cortical and non-cortical areas show region-specific abnormalities in neuronal morphology and cytoarchitectural organization, with consistent findings reported from the prefrontal cortex, fusiform gyrus, frontoinsular cortex, cingulate cortex, hippocampus, amygdala, cerebellum and brainstem. The paucity of postmortem human studies linking neuropathology to the underlying etiology has been partly addressed using animal models to explore the impact of genetic and non-genetic factors clinically relevant for the ASD phenotype. Genetically modified models include those based on well-studied monogenic ASD genes (NLGN3, NLGN4, NRXN1, CNTNAP2, SHANK3, MECP2, FMR1, TSC1/2), emerging risk genes (CHD8, SCN2A, SYNGAP1, ARID1B, GRIN2B, DSCAM, TBR1), and copy number variants (15q11-q13 deletion, 15q13.3 microdeletion, 15q11-13 duplication, 16p11.2 deletion and duplication, 22q11.2 deletion). Models of idiopathic ASD include inbred rodent strains that mimic ASD behaviors as well as models developed by environmental interventions such as prenatal exposure to sodium valproate, maternal autoantibodies, and maternal immune activation. In addition to replicating some of the neuropathologic features seen in postmortem studies, a common finding in several animal models of ASD is altered density of dendritic spines, with the direction of the change depending on the specific genetic modification, age and brain region. Overall, postmortem neuropathologic studies with larger sample sizes representative of the various ASD risk genes and diverse clinical phenotypes are warranted to clarify putative etiopathogenic pathways further and to promote the emergence of clinically relevant diagnostic and therapeutic tools. In addition, as genetic alterations may render certain individuals more vulnerable to developing the pathological changes at the synapse underlying the behavioral manifestations of ASD, neuropathologic investigation using genetically modified animal models will help to improve our understanding of the disease mechanisms and enhance the development of targeted treatments.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
5.
Zurück zum Zitat Allman JM, Tetreault NA, Hakeem AY, Manaye KF, Semendeferi K, Erwin JM, Goubert V, Hof PR (2010) Brain Struct Funct 214:495–517PubMedCrossRef Allman JM, Tetreault NA, Hakeem AY, Manaye KF, Semendeferi K, Erwin JM, Goubert V, Hof PR (2010) Brain Struct Funct 214:495–517PubMedCrossRef
7.
Zurück zum Zitat Altemeier WA, Altemeier LE (2009) Pediatr Ann 38(167–170):172 Altemeier WA, Altemeier LE (2009) Pediatr Ann 38(167–170):172
8.
Zurück zum Zitat Diagnostic and statistical manual of mental disorders: Dsm-5tm (2013) American Psychiatric Publishing, Inc., Arlington Diagnostic and statistical manual of mental disorders: Dsm-5tm (2013) American Psychiatric Publishing, Inc., Arlington
13.
19.
Zurück zum Zitat Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, Rutter M, Lantos P (1998) Brain 121(Pt 5):889–905PubMedCrossRef Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, Rutter M, Lantos P (1998) Brain 121(Pt 5):889–905PubMedCrossRef
21.
Zurück zum Zitat Barnea-Goraly N, Kwon H, Menon V, Eliez S, Lotspeich L, Reiss AL (2004) Biol Psychiatry 55:323–326 PubMedCrossRef Barnea-Goraly N, Kwon H, Menon V, Eliez S, Lotspeich L, Reiss AL (2004) Biol Psychiatry 55:323–326 PubMedCrossRef
29.
43.
Zurück zum Zitat Broca P (1861) Bull Mem Soc Anat Paris. 36:330–357 Broca P (1861) Bull Mem Soc Anat Paris. 36:330–357
56.
58.
75.
Zurück zum Zitat Committee on Children with Disabilities 2000–2001 (2000) Pediatrics 2001(108):192–196 Committee on Children with Disabilities 2000–2001 (2000) Pediatrics 2001(108):192–196
108.
Zurück zum Zitat Fatemi SH, Halt AR, Realmuto G, Earle J, Kist DA, Thuras P, Merz A (2002) Cell Mol Neurobiol 22:171–175PubMedCrossRef Fatemi SH, Halt AR, Realmuto G, Earle J, Kist DA, Thuras P, Merz A (2002) Cell Mol Neurobiol 22:171–175PubMedCrossRef
115.
Zurück zum Zitat Fukuda T, Itoh M, Ichikawa T, Washiyama K, Goto Y (2005) J Neuropathol Exp Neurol 64:537–544PubMedCrossRef Fukuda T, Itoh M, Ichikawa T, Washiyama K, Goto Y (2005) J Neuropathol Exp Neurol 64:537–544PubMedCrossRef
126.
135.
150.
153.
Zurück zum Zitat Haznedar MM, Buchsbaum MS, Wei TC, Hof PR, Cartwright C, Bienstock CA, Hollander E (2000) Am J Psychiatry 157:1994–2001PubMedCrossRef Haznedar MM, Buchsbaum MS, Wei TC, Hof PR, Cartwright C, Bienstock CA, Hollander E (2000) Am J Psychiatry 157:1994–2001PubMedCrossRef
157.
Zurück zum Zitat Hevner RF, Shi L, Justice N, Hsueh Y, Sheng M, Smiga S, Bulfone A, Goffinet AM, Campagnoni AT, Rubenstein JL (2001) Neuron 29:353–366PubMedCrossRef Hevner RF, Shi L, Justice N, Hsueh Y, Sheng M, Smiga S, Bulfone A, Goffinet AM, Campagnoni AT, Rubenstein JL (2001) Neuron 29:353–366PubMedCrossRef
164.
168.
181.
Zurück zum Zitat Jiang YH, Armstrong D, Albrecht U, Atkins CM, Noebels JL, Eichele G, Sweatt JD, Beaudet AL (1998) Neuron 21:799–811 PubMedCrossRef Jiang YH, Armstrong D, Albrecht U, Atkins CM, Noebels JL, Eichele G, Sweatt JD, Beaudet AL (1998) Neuron 21:799–811 PubMedCrossRef
182.
Zurück zum Zitat Jones EG (1986) Connectivity of the primate sensory-motor cortex. In: Jones EG, Peters A (eds) Cerebral cortex: sensory-motor areas and aspects of cortical connectivity. Plenum, New York, pp 113–183CrossRef Jones EG (1986) Connectivity of the primate sensory-motor cortex. In: Jones EG, Peters A (eds) Cerebral cortex: sensory-motor areas and aspects of cortical connectivity. Plenum, New York, pp 113–183CrossRef
190.
Zurück zum Zitat Kearney JA, Plummer NW, Smith MR, Kapur J, Cummins TR, Waxman SG, Goldin AL, Meisler MH (2001) Neuroscience 102:307–317PubMedCrossRef Kearney JA, Plummer NW, Smith MR, Kapur J, Cummins TR, Waxman SG, Goldin AL, Meisler MH (2001) Neuroscience 102:307–317PubMedCrossRef
191.
208.
Zurück zum Zitat Kutsuwada T, Sakimura K, Manabe T, Takayama C, Katakura N, Kushiya E, Natsume R, Watanabe M, Inoue Y, Yagi T et al (1996) Neuron 16:333–344PubMedCrossRef Kutsuwada T, Sakimura K, Manabe T, Takayama C, Katakura N, Kushiya E, Natsume R, Watanabe M, Inoue Y, Yagi T et al (1996) Neuron 16:333–344PubMedCrossRef
209.
Zurück zum Zitat Kyriakides T, Hallam LA, Hockey A, Silberstein P, Kakulas BA (1992) Acta Neuropathol 83:675–678PubMedCrossRef Kyriakides T, Hallam LA, Hockey A, Silberstein P, Kakulas BA (1992) Acta Neuropathol 83:675–678PubMedCrossRef
252.
Zurück zum Zitat Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, Weinberg RJ, Worley PF, Sheng M (1999) Neuron 23:569–582 PubMedCrossRef Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, Weinberg RJ, Worley PF, Sheng M (1999) Neuron 23:569–582 PubMedCrossRef
257.
Zurück zum Zitat Nimchinsky EA, Oberlander AM, Svoboda K (2001) J Neurosci 21:5139–5146PubMed Nimchinsky EA, Oberlander AM, Svoboda K (2001) J Neurosci 21:5139–5146PubMed
263.
Zurück zum Zitat Ohnishi T, Matsuda H, Hashimoto T, Kunihiro T, Nishikawa M, Uema T, Sasaki M (2000) Brain 123(Pt 9):1838–1844PubMedCrossRef Ohnishi T, Matsuda H, Hashimoto T, Kunihiro T, Nishikawa M, Uema T, Sasaki M (2000) Brain 123(Pt 9):1838–1844PubMedCrossRef
276.
Zurück zum Zitat Paul LK, Van Lancker-Sidtis D, Schieffer B, Dietrich R, Brown WS (2003) Brain Lang 85:313–324PubMedCrossRef Paul LK, Van Lancker-Sidtis D, Schieffer B, Dietrich R, Brown WS (2003) Brain Lang 85:313–324PubMedCrossRef
284.
290.
Zurück zum Zitat Puce A, Allison T, Bentin S, Gore JC, McCarthy G (1998) J Neurosci 18:2188–2199PubMed Puce A, Allison T, Bentin S, Gore JC, McCarthy G (1998) J Neurosci 18:2188–2199PubMed
305.
Zurück zum Zitat Rudelli RD, Brown WT, Wisniewski K, Jenkins EC, Laure-Kamionowska M, Connell F, Wisniewski HM (1985) Acta Neuropathol 67:289–295PubMedCrossRef Rudelli RD, Brown WT, Wisniewski K, Jenkins EC, Laure-Kamionowska M, Connell F, Wisniewski HM (1985) Acta Neuropathol 67:289–295PubMedCrossRef
322.
Zurück zum Zitat Seeley WW, Allman JM, Carlin DA, Crawford RK, Macedo MN, Greicius MD, Dearmond SJ, Miller BL (2007) Alzheimer Dis Assoc Disord 21:S50–S57PubMedCrossRef Seeley WW, Allman JM, Carlin DA, Crawford RK, Macedo MN, Greicius MD, Dearmond SJ, Miller BL (2007) Alzheimer Dis Assoc Disord 21:S50–S57PubMedCrossRef
323.
Zurück zum Zitat Seeley WW, Carlin DA, Allman JM, Macedo MN, Bush C, Miller BL, Dearmond SJ (2006) Ann Neurol 60:660–667PubMedCrossRef Seeley WW, Carlin DA, Allman JM, Macedo MN, Bush C, Miller BL, Dearmond SJ (2006) Ann Neurol 60:660–667PubMedCrossRef
334.
Zurück zum Zitat Sparks BF, Friedman SD, Shaw DW, Aylward EH, Echelard D, Artru AA, Maravilla KR, Giedd JN, Munson J, Dawson G et al (2002) Neurology 59:184–192PubMedCrossRef Sparks BF, Friedman SD, Shaw DW, Aylward EH, Echelard D, Artru AA, Maravilla KR, Giedd JN, Munson J, Dawson G et al (2002) Neurology 59:184–192PubMedCrossRef
355.
Zurück zum Zitat Tottenham N, Hare TA, Casey BJ (2009) A developmental perspective on human amygdala function. In: Whalen PJ, Phelps EA (eds) The human amygdala. The Guilford Press, New York, p 107 Tottenham N, Hare TA, Casey BJ (2009) A developmental perspective on human amygdala function. In: Whalen PJ, Phelps EA (eds) The human amygdala. The Guilford Press, New York, p 107
366.
Zurück zum Zitat von Economo C. Zschr ges Neurol Psychiatr. 1926:706-712 von Economo C. Zschr ges Neurol Psychiatr. 1926:706-712
382.
Zurück zum Zitat Weidenheim KM, Goodman L, Dickson DW, Gillberg C, Rastam M, Rapin I (2001) J Child Neurol 16:809–819PubMedCrossRef Weidenheim KM, Goodman L, Dickson DW, Gillberg C, Rastam M, Rapin I (2001) J Child Neurol 16:809–819PubMedCrossRef
387.
389.
Zurück zum Zitat Wisniewski KE, Segan SM, Miezejeski CM, Sersen EA, Rudelli RD (1991) Am J Med Genet 38:476–480PubMedCrossRef Wisniewski KE, Segan SM, Miezejeski CM, Sersen EA, Rudelli RD (1991) Am J Med Genet 38:476–480PubMedCrossRef
Metadaten
Titel
Autism spectrum disorder: neuropathology and animal models
verfasst von
Merina Varghese
Neha Keshav
Sarah Jacot-Descombes
Tahia Warda
Bridget Wicinski
Dara L. Dickstein
Hala Harony-Nicolas
Silvia De Rubeis
Elodie Drapeau
Joseph D. Buxbaum
Patrick R. Hof
Publikationsdatum
05.06.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Acta Neuropathologica / Ausgabe 4/2017
Print ISSN: 0001-6322
Elektronische ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-017-1736-4

Weitere Artikel der Ausgabe 4/2017

Acta Neuropathologica 4/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.