Introduction
-
RQ1: What is the current state of automated seizure forecast?
-
RQ2: Which data are the most relevant for the forecast of seizure likelihood?
-
RQ3: Which approaches and metrics are most often used to assess forecast performance?
Materials and methods
Concept definition
Forecast horizon
Retrospective vs pseudo-prospective approach
Deterministic vs probabilistic forecast
Systematic review
((automated OR automatic OR algorithm OR machine learning OR deep learning OR artificial intelligence) AND (forecast OR risk OR likelihood OR prediction OR cyclic* OR rhythm*) AND (epilepsy OR seizure))
on the title, abstract, and keywords of the studies. A first search was conducted up to November 2, 2023. Another search was conducted on May 10, 2024.Meta-analysis
metafor
R library and, when applicable, statistical significance was set to 0.05.Results
Study characteristics
First author, year | Data source | Sample size | Duration in days (median) | # Seizures (median) | Type of input data | Algorithmic approach | Reported metrics |
---|---|---|---|---|---|---|---|
Attia, 2021 [33] | 24/7 EEG SubQ trial | 1 | 230 | 22 | SMPS | LSTM | AUC, Sen, % Sig., FPR |
Chen, 2022 [34] | NeuroVista trial | 15 | 557 | 151 | CDE | Phase modeling | AUC, Sen, TiW, % Sig., GSS |
Cook, 2013 [29] | NeuroVista trial | 11 | 265 | 31 | SMPS | k-NN/decision tree type classifier | Sen, TiW, Likelihood ratio |
Costa, 2024 [35] | EPILEPSIAE database | 40 | 5 | 5 | SMPS | SVM, LR, SNN | BSS, Sen, TiW, FPR, BS |
Cousyn, 2022 [36] | Self-collected | 10 | Mean: 10.7 | 2 | SMPS | SVM | AUC, Acc, F1-score, BSS, BS |
Cousyn, 2023 [28] | Self-collected | 15 | 11 | Mean: 25 | SMPS | SVM | AUC, Acc, Sen, Spe, F1-score, BS |
Karoly, 2017 [37] | NeuroVista trial | 9 | 459 | 102 | SMPS; CDE; both | LR; phase modeling; ensemble through LR weight updating | AUC, BSS, Sen, TiW |
Karoly, 2020 [38] | Self-collected and NeuroVista trial | 50 | Mean: 336 | Mean: 109 | CDE | Phase modeling | AUC, Acc, TiW, % Sig. |
Leguia, 2022 [27] | NeuroPace trial and 24/7 EEG SubQ trial | 161 | 1722; 85 | 143 | SMPS; CDE | GLM | AUC, BSS, % Sig. |
Maturana, 2020 [39] | NeuroVista trial | 14 | 512 | 151 | CDE | Phase modeling | Sen, TiW |
Nasseri, 2021 [40] | Self-collected | 6 | 242 | 16 | SMPS | LSTM | AUC, Sen, TiW, % Sig |
Payne, 2020 [20] | NeuroVista trial | 8 | Mean: 548 | 157 | CDE | Phase modeling; ensemble through naive Bayes | AUC, % Sig. |
Proix, 2021 [22] | NeuroPace trial | 18 | Mean: 1484 | Mean: 43 | SMPS; CDE; both | GLM | AUC, BSS, % Sig. |
Stirling, 2021 [41] | self-collected | 11 | 435 | 94 | both | LSTM + RF (ensemble through LR) | AUC, TiW, % Sig., BS |
Stirling, 2021 [42] | Minder sub-scalp system trial | 1 | 183 | 134 | CDE | RF + LR (ensemble through sequential input) | AUC, Sen, TiW |
Truong, 2021 [21] | EPILEPSIAE database | 30 | 4 | Mean: 9 | SMPS; both | Bayesian CNN | AUC |
Viana, 2022 [43] | 24/7 EEG SubQ trial | 6 | 80 | 17 | SMPS | LSTM | AUC, Sen, TiW, % Sig., FPR |
Xiong, 2023 [44] | self-collected | 13 | 495 | 71 | CDE | Phase modeling | AUC, BSS, Sen, TiW, % Sig |
Descriptive analysis
First author, year | Sample size | Total # seizures | Type of input data | Input data | Horizon | Approach | AUC | TiW | % Sig | BSS | BS |
---|---|---|---|---|---|---|---|---|---|---|---|
Attia, 2021 [33] | 1 | 15 | SMPS | EEG | 1 h | R | 0.75 | 100% | |||
EEG, ToD | 0.81 | 100% | |||||||||
Chen, 2022 [34] | 15 | 2398 | CDE | EEG cyclic profile | 5min | R | 0.91±0.08 | L:80% | 100% | ||
12 | 1976 | P | 0.75±0.10 | L:80% | 92% | ||||||
Cook, 2013 [29] | 11 | 154 | SMPS | EEG features | 5min | R | H:27.8% L:42.2% | ||||
10 | 323 | P | H:23% L:45% | ||||||||
Costa, 2024 [35] | 40 | 224 | SMPS | EEG | 10min | P | H:10% | 0.01±0.15 | 0.18±0.1 | ||
Cousyn, 2022 [36] | 10 | 38 | SMPS | EEG features | 24 h | R | 0.79 | ||||
P | 0.72±0.22 | 0.13±0.11 | |||||||||
Cousyn, 2023 [28] | 15 | 47 | SMPS | HR features | 24 h | R | 0.79±0.17 | ||||
14 | P | 0.3 [0.18;0.48] | |||||||||
Karoly, 2017 [37] | 9 | 1383 | SMPS | EEG features | 30min | R | 0.79±0.08 | ||||
P | H:25.3% | 0.05±0.06 | |||||||||
CDE | Seizure cyclic profile | H:24.4% | 0.05±0.03 | ||||||||
Both | ensemble | H:24.7% | 0.11±0.07 | ||||||||
Karoly, 2020 [38] | 50 | 5450 | CDE | Seizure cyclic profile | 5min | P | 0.85±0.05 | H:14.8% L:67.1% | 100% | ||
Leguia, 2022 [27] | 161 | (*) | SMPS | Seizure times | 24 h | R | 0.63±0.08 | 45% | 0.08±0.10 | ||
EEG features | 0.65±0.05 | 31% | 0.08±0.08 | ||||||||
CDE | EEG cyclic profile | 0.69±0.06 | 60% | 0.10±0.09 | |||||||
Maturana, 2020 [39] | 14 | 2871 | CDE | EEG cyclic profile | 2min | P | H:7.75% | ||||
Nasseri, 2021 [40] | 6 | 278 | SMPS | ACC, BVP, EDA, TEMP, HR, ToD, signal quality metrics | 1 h | R | 0.75±0.15 | H:5 (h/day) | 83% | ||
Payne, 2020 [20] | 8 | 1236 | CDE | Sleep features cyclic profile | 10min | P | 0.63±0.11 | 62% | |||
Weather features cyclic profile | 0.55±0.10 | 62% | |||||||||
Seizure cyclic profile | 0.69±0.08 | 75% | |||||||||
ensemble | 0.68±0.11 | 75% | |||||||||
Proix, 2021 [22] | 18 | 767 | SMPS | EEG features, seizure times | 24 h | P | 0.61 [0.59,0.64] | 11% | 0.02 [0.01,0.04] | ||
1 h | 0.60 [0.57,0.65] | 67% | 0.01 [0.00,0.01] | ||||||||
CDE | Seizure and EEG cyclic profiles | 24 h | 0.73 [0.65,0.76] | 83% | 0.17 [0.11,0.26] | ||||||
1 h | 0.70 [0.64,0.77] | 94% | 0.02 [0.01,0.02] | ||||||||
Both | ensemble | 1 h | 0.75 [0.69,0.81] | 100% | 0.03 [0.02,0.06] | ||||||
Stirling, 2021 [41] | 11 | 1493 | Both | HR features, sleep features, activity features, HR cyclic profile, seizure times | 24 h | R | 0.66±0.11 | median L:18% | 91% | 21.91±0.72 | |
8 | 1078 | P | 0.59±0.16 | 50% | |||||||
11 | 1493 | 1 h | R | 0.74±0.10 | median H:14% | 100% | 0.17±0.05 | ||||
8 | 1078 | P | 0.65±0.18 | 88% | |||||||
Stirling, 2021 [42] | 1 | 134 | CDE | Seizure and EEG cyclic profiles | 1 h | P | 0.88 | H:26% L:63% | |||
Truong, 2021 [21] | 30 | 261 | SMPS | EEG | 30min | R | 0.69 | ||||
Both | EEG and seizure cyclic profile | 0.69 | |||||||||
Viana, 2022 [43] | 6 | 103 | SMPS | EEG | 1 h | R | 0.65±0.17 | H:33.3% | 67% | ||
EEG, ToD | 0.73±0.07 | H:31.47% | 83% | ||||||||
Xiong, 2023 [44] | 13 | 2247 | CDE | Seizure and HR cyclic profiles | 24 h | R | 0.70±0.15 | 85% | 0.20±0.23 | ||
6 | 2514 | P | 0.74±0.17 | 83% | 0.17±0.17 | ||||||
13 | 2247 | 1 h | R | 0.71±0.12 | H:27% | 69% | 0.04±0.03 | ||||
6 | 2514 | P | 0.76±0.07 | H:18% | 67% | 0.05±0.05 |