Skip to main content
main-content

01.12.2014 | Ausgabe 6/2014

Journal of Digital Imaging 6/2014

Automated Classification of Radiology Reports to Facilitate Retrospective Study in Radiology

Zeitschrift:
Journal of Digital Imaging > Ausgabe 6/2014
Autoren:
Yihua Zhou, Per K. Amundson, Fang Yu, Marcus M. Kessler, Tammie L. S. Benzinger, Franz J. Wippold

Abstract

Retrospective research is an import tool in radiology. Identifying imaging examinations appropriate for a given research question from the unstructured radiology reports is extremely useful, but labor-intensive. Using the machine learning text-mining methods implemented in LingPipe [1], we evaluated the performance of the dynamic language model (DLM) and the Naïve Bayesian (NB) classifiers in classifying radiology reports to facilitate identification of radiological examinations for research projects. The training dataset consisted of 14,325 sentences from 11,432 radiology reports randomly selected from a database of 5,104,594 reports in all disciplines of radiology. The training sentences were categorized manually into six categories (Positive, Differential, Post Treatment, Negative, Normal, and History). A 10-fold cross-validation [2] was used to evaluate the performance of the models, which were tested in classification of radiology reports for cases of sellar or suprasellar masses and colloid cysts. The average accuracies for the DLM and NB classifiers were 88.5 % with 95 % confidence interval (CI) of 1.9 % and 85.9 % with 95 % CI of 2.0 %, respectively. The DLM performed slightly better and was used to classify 1,397 radiology reports containing the keywords “sellar or suprasellar mass”, or “colloid cyst”. The DLM model produced an accuracy of 88.2 % with 95 % CI of 2.1 % for 959 reports that contain “sellar or suprasellar mass” and an accuracy of 86.3 % with 95 % CI of 2.5 % for 437 reports of “colloid cyst”. We conclude that automated classification of radiology reports using machine learning techniques can effectively facilitate the identification of cases suitable for retrospective research.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 6/2014

Journal of Digital Imaging 6/2014 Zur Ausgabe
  1. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.

Neu im Fachgebiet Radiologie

Meistgelesene Bücher aus der Radiologie

2016 | Buch

Medizinische Fremdkörper in der Bildgebung

Thorax, Abdomen, Gefäße und Kinder

Dieses einzigartige Buch enthält ca. 1.600 hochwertige radiologische Abbildungen und Fotos iatrogen eingebrachter Fremdmaterialien im Röntgenbild und CT.

Herausgeber:
Dr. med. Daniela Kildal

2011 | Buch

Atlas Klinische Neuroradiologie des Gehirns

Radiologie lebt von Bildern! Der vorliegende Atlas trägt dieser Tatsache Rechnung. Sie finden zu jedem Krankheitsbild des Gehirns Referenzbilder zum Abgleichen mit eigenen Befunden.

Autoren:
Priv.-Doz. Dr. med. Jennifer Linn, Prof. Dr. med. Martin Wiesmann, Prof. Dr. med. Hartmut Brückmann

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Radiologie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise