Skip to main content
main-content

28.08.2018 | Original Article | Ausgabe 1/2019

Comparative Clinical Pathology 1/2019

Automated detection of anomalies in cervix cells using image analysis and machine learning

Zeitschrift:
Comparative Clinical Pathology > Ausgabe 1/2019
Autoren:
Leonardo Moreira Moscon, Nayana Damiani Macedo, Célio Siman Mafra Nunes, Paulo César Ribeiro Boasquevisque, Tadeu Uggere de Andrade, Denise Coutinho Endringer, Dominik Lenz

Abstract

Usage machine-based learning image cytometry to establish the diagnosis of cervix cancer using cellular morphology classification in comparison to the conventional cytological test. The study was divided into two phases consisting of 15 samples of cervix cells. In phase1, with previous diagnosis, the samples were divided into three groups of five samples each: normal (NC), low-grade squamous intraepithelial lesion (LGSIL or LSIL), and high-grade squamous intraepithelial lesion (HGSIL or HSIL). Images of cells were analyzed to create a training set of cells with known diagnosis for machine learning purposes. With the numerical data created, the software was trained to automatically classify the three types of cells. In phase 2, 885 cells were classified without previous diagnosis. In a last step, the classification of CPA was compared to cytopathology. NC and HSIL were identified with a high sensitivity and specificity (99%, 99%) and (98%, 97%) respectively. While the sensitivity and specificity of LSIL cells were lower (78%, 79%). It is possible to extract features of cervical cells by automatically generating numerical data that allowed the program to identify and classify different cell classes, using simple and low-cost reagents and free, reproducible softwires.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Jetzt e.Med bestellen und 100 € sparen!

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2019

Comparative Clinical Pathology 1/2019 Zur Ausgabe

Neu im Fachgebiet Pathologie

01.02.2020 | Forensische Begutachtung | CME | Ausgabe 1/2020

Diagnose einer gewaltsamen Erstickung

Teil 1: Reevaluation der Spezifität makroskopischer und histomorphologischer Befunde

27.01.2020 | Schwerpunkt: Lunge | Ausgabe 1/2020

Immunhistochemiebasierte prädiktive Biomarker bei Lungenkarzinomen

27.01.2020 | Schwerpunkt: Lunge | Ausgabe 1/2020

Zytologie der primären Lungenkarzinome